C C There are a total of 1 entries in the algebraic variable array. C There are a total of 2 entries in each of the rate and state variable arrays. C There are a total of 9 entries in the constant variable array. C C C VOI is time in component environment (hour). C STATES(1) is M in component M (nanomolar). C ALGBRC(1) is q in component M (dimensionless). C CONSTS(1) is vm in component M (flux). C CONSTS(2) is km in component M (first_order_rate_constant). C CONSTS(3) is Pcrit in component M (nanomolar). C CONSTS(4) is Keq in component M (per_nanomolar). C STATES(2) is Pt in component Pt (nanomolar). C CONSTS(5) is vp in component Pt (first_order_rate_constant). C CONSTS(6) is kp1 in component Pt (flux). C CONSTS(7) is kp3 in component Pt (first_order_rate_constant). C CONSTS(8) is kp2 in component Pt (flux). C CONSTS(9) is Jp in component Pt (nanomolar). C RATES(1) is d/dt M in component M (nanomolar). C RATES(2) is d/dt Pt in component Pt (nanomolar). C SUBROUTINE initConsts(CONSTS, RATES, STATES) REAL CONSTS(*), RATES(*), STATES(*) STATES(1) = 0.0 CONSTS(1) = 1.0 CONSTS(2) = 0.1 CONSTS(3) = 0.1 CONSTS(4) = 200.0 STATES(2) = 0.0 CONSTS(5) = 0.5 CONSTS(6) = 10.0 CONSTS(7) = 0.1 CONSTS(8) = 0.03 CONSTS(9) = 0.05 RETURN END SUBROUTINE computeRates(VOI, CONSTS, RATES, STATES, ALGBRC) REAL VOI, CONSTS(*), RATES(*), STATES(*), ALGBRC(*) ALGBRC(1) = 2.00000/(1.00000+ (1.00000+ 8.00000*CONSTS(4)*STATES(2)) ** (1.0 / 2)) RATES(1) = CONSTS(1)/(1.00000+( STATES(2)*(1.00000 - ALGBRC(1)))/( 2.00000*CONSTS(3)) ** 2.00000) - CONSTS(2)*STATES(1) RATES(2) = CONSTS(5)*STATES(1) - (( CONSTS(6)*STATES(2)*ALGBRC(1)+ CONSTS(8)*STATES(2))/(CONSTS(9)+STATES(2))+ CONSTS(7)*STATES(2)) RETURN END SUBROUTINE computeVariables(VOI, CONSTS, RATES, STATES, ALGBRC) REAL VOI, CONSTS(*), RATES(*), STATES(*), ALGBRC(*) ALGBRC(1) = 2.00000/(1.00000+ (1.00000+ 8.00000*CONSTS(4)*STATES(2)) ** (1.0 / 2)) RETURN END