function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction() % This is the "main function". In Matlab, things work best if you rename this function to match the filename. [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel(); end function [algebraicVariableCount] = getAlgebraicVariableCount() % Used later when setting a global variable with the number of algebraic variables. % Note: This is not the "main method". algebraicVariableCount =0; end % There are a total of 0 entries in each of the rate and state variable arrays. % There are a total of 21 entries in the constant variable array. % function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel() % Create ALGEBRAIC of correct size global algebraicVariableCount; algebraicVariableCount = getAlgebraicVariableCount(); % Initialise constants and state variables [INIT_STATES, CONSTANTS] = initConsts; % Set timespan to solve over tspan = [0, 10]; % Set numerical accuracy options for ODE solver options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1); % Solve model with ODE solver [VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options); % Compute algebraic variables [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS); ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI); % Plot state variables against variable of integration [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends(); figure(); plot(VOI, STATES); xlabel(LEGEND_VOI); l = legend(LEGEND_STATES); set(l,'Interpreter','none'); end function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends() LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = ''; LEGEND_CONSTANTS(:,17) = strpad('v_cystathionine in component v_cystathionine (flux)'); LEGEND_CONSTANTS(:,1) = strpad('Cys in component Cys (micromolar)'); LEGEND_CONSTANTS(:,2) = strpad('CGS in component CGS (micromolar)'); LEGEND_CONSTANTS(:,3) = strpad('Pi in component Pi (micromolar)'); LEGEND_CONSTANTS(:,4) = strpad('Phser in component Phser (micromolar)'); LEGEND_CONSTANTS(:,16) = strpad('Km_CGS_app_Cys in component v_cystathionine (micromolar)'); LEGEND_CONSTANTS(:,5) = strpad('Km_CGS_Cys in component v_cystathionine (micromolar)'); LEGEND_CONSTANTS(:,6) = strpad('kcat_CGS in component v_cystathionine (first_order_rate_constant)'); LEGEND_CONSTANTS(:,15) = strpad('kcat_CGS_app_Cys in component v_cystathionine (first_order_rate_constant)'); LEGEND_CONSTANTS(:,7) = strpad('Km_CGS_Phser in component v_cystathionine (micromolar)'); LEGEND_CONSTANTS(:,8) = strpad('Ki_CGS_Pi in component v_cystathionine (micromolar)'); LEGEND_CONSTANTS(:,20) = strpad('v_Thr in component v_Thr (flux)'); LEGEND_CONSTANTS(:,9) = strpad('TS in component TS (micromolar)'); LEGEND_CONSTANTS(:,10) = strpad('AdoMet in component AdoMet (micromolar)'); LEGEND_CONSTANTS(:,19) = strpad('Km_TS in component v_Thr (micromolar)'); LEGEND_CONSTANTS(:,11) = strpad('kcat_TS_noAdoMet in component v_Thr (first_order_rate_constant)'); LEGEND_CONSTANTS(:,12) = strpad('kcat_TS_AdoMet in component v_Thr (first_order_rate_constant)'); LEGEND_CONSTANTS(:,18) = strpad('kcat_TS in component v_Thr (first_order_rate_constant)'); LEGEND_CONSTANTS(:,13) = strpad('K1K2 in component v_Thr (micromolar2)'); LEGEND_CONSTANTS(:,14) = strpad('Ki_TS_Pi in component v_Thr (micromolar)'); LEGEND_CONSTANTS(:,21) = strpad('J_Phser in component J_Phser (flux)'); LEGEND_STATES = LEGEND_STATES'; LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC'; LEGEND_RATES = LEGEND_RATES'; LEGEND_CONSTANTS = LEGEND_CONSTANTS'; end function [STATES, CONSTANTS] = initConsts() VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = []; CONSTANTS(:,1) = 15.0; CONSTANTS(:,2) = 0.7; CONSTANTS(:,3) = 10000.0; CONSTANTS(:,4) = 500.0; CONSTANTS(:,5) = 460.0; CONSTANTS(:,6) = 30.0; CONSTANTS(:,7) = 2500.0; CONSTANTS(:,8) = 2500.0; CONSTANTS(:,9) = 5.0; CONSTANTS(:,10) = 20.0; CONSTANTS(:,11) = 0.42; CONSTANTS(:,12) = 3.5; CONSTANTS(:,13) = 73.0; CONSTANTS(:,14) = 1000.0; CONSTANTS(:,15) = CONSTANTS(:,6)./(1.00000+ (CONSTANTS(:,7)./CONSTANTS(:,4)).*(1.00000+CONSTANTS(:,3)./CONSTANTS(:,8))); CONSTANTS(:,16) = CONSTANTS(:,5)./(1.00000+ (CONSTANTS(:,7)./CONSTANTS(:,4)).*(1.00000+CONSTANTS(:,3)./CONSTANTS(:,8))); CONSTANTS(:,17) = ( CONSTANTS(:,15).*CONSTANTS(:,2).*CONSTANTS(:,1))./(CONSTANTS(:,16)+CONSTANTS(:,1)); CONSTANTS(:,18) = (CONSTANTS(:,11)+ CONSTANTS(:,12).*(power(CONSTANTS(:,10), 2.00000)./CONSTANTS(:,13)))./(1.00000+power(CONSTANTS(:,10), 2.00000)./CONSTANTS(:,13)); CONSTANTS(:,19) = (( 250.000.*((1.00000+CONSTANTS(:,10)./0.500000)./(1.00000+CONSTANTS(:,10)./1.10000)))./(1.00000+power(CONSTANTS(:,10), 2.00000)./140.000)).*(1.00000+CONSTANTS(:,3)./CONSTANTS(:,14)); CONSTANTS(:,20) = ( CONSTANTS(:,9).*CONSTANTS(:,18).*CONSTANTS(:,4))./(CONSTANTS(:,19)+CONSTANTS(:,4)); CONSTANTS(:,21) = CONSTANTS(:,17)+CONSTANTS(:,20); if (isempty(STATES)), warning('Initial values for states not set');, end end function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS) global algebraicVariableCount; statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; ALGEBRAIC = zeros(1, algebraicVariableCount); utilOnes = 1; else statesRowCount = statesSize(1); ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount); RATES = zeros(statesRowCount, statesColumnCount); utilOnes = ones(statesRowCount, 1); end RATES = RATES'; end % Calculate algebraic variables function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI) statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; utilOnes = 1; else statesRowCount = statesSize(1); utilOnes = ones(statesRowCount, 1); end end % Pad out or shorten strings to a set length function strout = strpad(strin) req_length = 160; insize = size(strin,2); if insize > req_length strout = strin(1:req_length); else strout = [strin, blanks(req_length - insize)]; end end