Generated Code

The following is c_ida code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

/*
   There are a total of 18 entries in the algebraic variable array.
   There are a total of 31 entries in each of the rate and state variable arrays.
   There are a total of 59 entries in the constant variable array.
 */
/*
 * VOI is time in component environment (second).
 * ALGEBRAIC[0] is L_iso in component beta_1_adrenergic_parameters (uM).
 * CONSTANTS[0] is K_H in component beta_1_adrenergic_parameters (uM).
 * CONSTANTS[1] is K_L in component beta_1_adrenergic_parameters (uM).
 * CONSTANTS[2] is K_C in component beta_1_adrenergic_parameters (uM).
 * ALGEBRAIC[1] is L_ach in component muscarinic_parameters (uM).
 * CONSTANTS[3] is K_H in component muscarinic_parameters (uM).
 * CONSTANTS[4] is K_L in component muscarinic_parameters (uM).
 * CONSTANTS[5] is K_C in component muscarinic_parameters (uM).
 * CONSTANTS[6] is k_PDE2 in component PDE_parameters (per_sec).
 * CONSTANTS[7] is Km_PDE2 in component PDE_parameters (uM).
 * CONSTANTS[8] is k_PDE3 in component PDE_parameters (per_sec).
 * CONSTANTS[9] is Km_PDE3 in component PDE_parameters (uM).
 * CONSTANTS[10] is k_PDE4 in component PDE_parameters (per_sec).
 * CONSTANTS[11] is Km_PDE4 in component PDE_parameters (uM).
 * CONSTANTS[12] is k_act1 in component G_s_parameters (per_sec).
 * CONSTANTS[13] is k_act2 in component G_s_parameters (per_sec).
 * CONSTANTS[14] is k_hydr in component G_s_parameters (per_sec).
 * CONSTANTS[15] is k_reas in component G_s_parameters (per_uM_per_sec).
 * CONSTANTS[16] is k_act1 in component G_i_parameters (per_sec).
 * CONSTANTS[17] is k_act2 in component G_i_parameters (per_sec).
 * CONSTANTS[18] is k_hydr in component G_i_parameters (per_sec).
 * CONSTANTS[19] is k_reas in component G_i_parameters (per_uM_per_sec).
 * STATES[15] is R in component caveolar_beta_1_adrenergic_receptor_module (uM).
 * STATES[16] is LR in component caveolar_beta_1_adrenergic_receptor_module (uM).
 * STATES[17] is LRG in component caveolar_beta_1_adrenergic_receptor_module (uM).
 * STATES[18] is RG in component caveolar_beta_1_adrenergic_receptor_module (uM).
 * CONSTANTS[20] is R_Total in component caveolar_beta_1_adrenergic_receptor_module (uM).
 * ALGEBRAIC[2] is Gs_alpha_beta_gamma in component caveolar_G_s_protein_activation_module (uM).
 * STATES[19] is R in component caveolar_muscarinic_receptor_module (uM).
 * STATES[20] is LR in component caveolar_muscarinic_receptor_module (uM).
 * STATES[21] is LRG in component caveolar_muscarinic_receptor_module (uM).
 * STATES[22] is RG in component caveolar_muscarinic_receptor_module (uM).
 * CONSTANTS[21] is R_Total in component caveolar_muscarinic_receptor_module (uM).
 * ALGEBRAIC[3] is Gi_alpha_beta_gamma in component caveolar_G_i_protein_activation_module (uM).
 * STATES[0] is Gs_alpha_GTP in component caveolar_G_s_protein_activation_module (uM).
 * STATES[1] is Gs_beta_gamma in component caveolar_G_s_protein_activation_module (uM).
 * STATES[2] is Gs_alpha_GDP in component caveolar_G_s_protein_activation_module (uM).
 * CONSTANTS[22] is Gs_Total in component caveolar_G_s_protein_activation_module (uM).
 * STATES[3] is Gi_alpha_GTP in component caveolar_G_i_protein_activation_module (uM).
 * STATES[4] is Gi_beta_gamma in component caveolar_G_i_protein_activation_module (uM).
 * STATES[5] is Gi_alpha_GDP in component caveolar_G_i_protein_activation_module (uM).
 * CONSTANTS[23] is Gi_Total in component caveolar_G_i_protein_activation_module (uM).
 * STATES[23] is R in component extracaveolar_beta_1_adrenergic_receptor_module (uM).
 * STATES[24] is LR in component extracaveolar_beta_1_adrenergic_receptor_module (uM).
 * STATES[25] is LRG in component extracaveolar_beta_1_adrenergic_receptor_module (uM).
 * STATES[26] is RG in component extracaveolar_beta_1_adrenergic_receptor_module (uM).
 * CONSTANTS[24] is R_Total in component extracaveolar_beta_1_adrenergic_receptor_module (uM).
 * ALGEBRAIC[4] is Gs_alpha_beta_gamma in component extracaveolar_G_s_protein_activation_module (uM).
 * STATES[27] is R in component extracaveolar_muscarinic_receptor_module (uM).
 * STATES[28] is LR in component extracaveolar_muscarinic_receptor_module (uM).
 * STATES[29] is LRG in component extracaveolar_muscarinic_receptor_module (uM).
 * STATES[30] is RG in component extracaveolar_muscarinic_receptor_module (uM).
 * CONSTANTS[25] is R_Total in component extracaveolar_muscarinic_receptor_module (uM).
 * ALGEBRAIC[5] is Gi_alpha_beta_gamma in component extracaveolar_G_i_protein_activation_module (uM).
 * STATES[6] is Gs_alpha_GTP in component extracaveolar_G_s_protein_activation_module (uM).
 * STATES[7] is Gs_beta_gamma in component extracaveolar_G_s_protein_activation_module (uM).
 * STATES[8] is Gs_alpha_GDP in component extracaveolar_G_s_protein_activation_module (uM).
 * CONSTANTS[26] is Gs_Total in component extracaveolar_G_s_protein_activation_module (uM).
 * STATES[9] is Gi_alpha_GTP in component extracaveolar_G_i_protein_activation_module (uM).
 * STATES[10] is Gi_beta_gamma in component extracaveolar_G_i_protein_activation_module (uM).
 * STATES[11] is Gi_alpha_GDP in component extracaveolar_G_i_protein_activation_module (uM).
 * CONSTANTS[27] is Gi_Total in component extracaveolar_G_i_protein_activation_module (uM).
 * ALGEBRAIC[7] is dcAMP_AC_56_dt in component AC56_module (uM_per_sec).
 * ALGEBRAIC[6] is k_AC56 in component AC56_module (per_sec).
 * CONSTANTS[28] is AC_56 in component AC56_module (uM).
 * CONSTANTS[29] is AF56 in component AC56_module (dimensionless).
 * CONSTANTS[30] is MW_AC56 in component AC56_module (kDa).
 * CONSTANTS[31] is ATP in component AC56_module (uM).
 * CONSTANTS[32] is Km_ATP in component AC56_module (uM).
 * ALGEBRAIC[9] is dcAMP_AC_47_ecav_dt in component AC47_ecav_module (uM_per_sec).
 * ALGEBRAIC[8] is k_AC47_ecav in component AC47_ecav_module (per_sec).
 * CONSTANTS[33] is AC_47_ecav in component AC47_ecav_module (uM).
 * CONSTANTS[34] is AF47 in component AC47_ecav_module (dimensionless).
 * CONSTANTS[35] is MW_AC47 in component AC47_ecav_module (kDa).
 * CONSTANTS[36] is ATP in component AC47_ecav_module (uM).
 * CONSTANTS[37] is Km_ATP in component AC47_ecav_module (uM).
 * CONSTANTS[55] is dcAMP_AC_47_cyt_dt in component AC47_cyt_module (uM_per_sec).
 * CONSTANTS[38] is k_AC47_cyt in component AC47_cyt_module (per_sec).
 * CONSTANTS[39] is AC_47_cyt in component AC47_cyt_module (uM).
 * CONSTANTS[40] is AF47 in component AC47_cyt_module (dimensionless).
 * CONSTANTS[41] is ATP in component AC47_cyt_module (uM).
 * CONSTANTS[42] is Km_ATP in component AC47_cyt_module (uM).
 * ALGEBRAIC[10] is dcAMP_cav_PDE2_dt in component caveolar_PDE_module (uM_per_sec).
 * ALGEBRAIC[11] is dcAMP_cav_PDE3_dt in component caveolar_PDE_module (uM_per_sec).
 * ALGEBRAIC[12] is dcAMP_cav_PDE4_dt in component caveolar_PDE_module (uM_per_sec).
 * STATES[12] is cAMP_cav in component cAMP_flux_module (uM).
 * CONSTANTS[43] is PDE2 in component caveolar_PDE_module (uM).
 * CONSTANTS[44] is PDE3 in component caveolar_PDE_module (uM).
 * CONSTANTS[45] is PDE4 in component caveolar_PDE_module (uM).
 * ALGEBRAIC[13] is dcAMP_ecav_PDE2_dt in component extracaveolar_PDE_module (uM_per_sec).
 * ALGEBRAIC[14] is dcAMP_ecav_PDE4_dt in component extracaveolar_PDE_module (uM_per_sec).
 * STATES[13] is cAMP_ecav in component cAMP_flux_module (uM).
 * CONSTANTS[46] is PDE2 in component extracaveolar_PDE_module (uM).
 * CONSTANTS[47] is PDE4 in component extracaveolar_PDE_module (uM).
 * ALGEBRAIC[15] is dcAMP_cyt_PDE2_dt in component bulk_cytoplasmic_PDE_module (uM_per_sec).
 * ALGEBRAIC[16] is dcAMP_cyt_PDE3_dt in component bulk_cytoplasmic_PDE_module (uM_per_sec).
 * ALGEBRAIC[17] is dcAMP_cyt_PDE4_dt in component bulk_cytoplasmic_PDE_module (uM_per_sec).
 * STATES[14] is cAMP_cyt in component cAMP_flux_module (uM).
 * CONSTANTS[48] is PDE2 in component bulk_cytoplasmic_PDE_module (uM).
 * CONSTANTS[49] is PDE3 in component bulk_cytoplasmic_PDE_module (uM).
 * CONSTANTS[50] is PDE4 in component bulk_cytoplasmic_PDE_module (uM).
 * CONSTANTS[56] is V_cav in component cAMP_flux_module (liter).
 * CONSTANTS[57] is V_ecav in component cAMP_flux_module (liter).
 * CONSTANTS[58] is V_cyt in component cAMP_flux_module (liter).
 * CONSTANTS[51] is V_cell in component cAMP_flux_module (liter).
 * CONSTANTS[52] is J_cav_ecav in component cAMP_flux_module (liters_per_second).
 * CONSTANTS[53] is J_cav_cyt in component cAMP_flux_module (liters_per_second).
 * CONSTANTS[54] is J_ecav_cyt in component cAMP_flux_module (liters_per_second).
 * RATES[0] is d/dt Gs_alpha_GTP in component caveolar_G_s_protein_activation_module (uM).
 * RATES[1] is d/dt Gs_beta_gamma in component caveolar_G_s_protein_activation_module (uM).
 * RATES[2] is d/dt Gs_alpha_GDP in component caveolar_G_s_protein_activation_module (uM).
 * RATES[3] is d/dt Gi_alpha_GTP in component caveolar_G_i_protein_activation_module (uM).
 * RATES[4] is d/dt Gi_beta_gamma in component caveolar_G_i_protein_activation_module (uM).
 * RATES[5] is d/dt Gi_alpha_GDP in component caveolar_G_i_protein_activation_module (uM).
 * RATES[6] is d/dt Gs_alpha_GTP in component extracaveolar_G_s_protein_activation_module (uM).
 * RATES[7] is d/dt Gs_beta_gamma in component extracaveolar_G_s_protein_activation_module (uM).
 * RATES[8] is d/dt Gs_alpha_GDP in component extracaveolar_G_s_protein_activation_module (uM).
 * RATES[9] is d/dt Gi_alpha_GTP in component extracaveolar_G_i_protein_activation_module (uM).
 * RATES[10] is d/dt Gi_beta_gamma in component extracaveolar_G_i_protein_activation_module (uM).
 * RATES[11] is d/dt Gi_alpha_GDP in component extracaveolar_G_i_protein_activation_module (uM).
 * RATES[12] is d/dt cAMP_cav in component cAMP_flux_module (uM).
 * RATES[13] is d/dt cAMP_ecav in component cAMP_flux_module (uM).
 * RATES[14] is d/dt cAMP_cyt in component cAMP_flux_module (uM).
 * There are a total of 4 condition variables.
 */
void
initConsts(double* CONSTANTS, double* RATES, double *STATES)
{
CONSTANTS[0] = 0.035;
CONSTANTS[1] = 0.386;
CONSTANTS[2] = 8.809;
CONSTANTS[3] = 0.16;
CONSTANTS[4] = 11;
CONSTANTS[5] = 30;
CONSTANTS[6] = 20;
CONSTANTS[7] = 50;
CONSTANTS[8] = 1.25;
CONSTANTS[9] = 0.08;
CONSTANTS[10] = 2.5;
CONSTANTS[11] = 2.2;
CONSTANTS[12] = 5;
CONSTANTS[13] = 0.1;
CONSTANTS[14] = 0.8;
CONSTANTS[15] = 1.21e3;
CONSTANTS[16] = 2.5;
CONSTANTS[17] = 0.05;
CONSTANTS[18] = 0.8;
CONSTANTS[19] = 1.21e3;
CONSTANTS[20] = 0.633;
CONSTANTS[21] = 0.633;
STATES[0] = 0.041983438;
STATES[1] = 0.042634499;
STATES[2] = 0.000651061;
CONSTANTS[22] = 10;
STATES[3] = 0.012644961;
STATES[4] = 0.013274751;
STATES[5] = 0.00062979;
CONSTANTS[23] = 20;
CONSTANTS[24] = 0.633;
CONSTANTS[25] = 0.633;
STATES[6] = 0.083866891;
STATES[7] = 0.084522918;
STATES[8] = 0.000656025;
CONSTANTS[26] = 10;
STATES[9] = 0.001018705;
STATES[10] = 0.001475253;
STATES[11] = 0.000456548;
CONSTANTS[27] = 1;
CONSTANTS[28] = 3.379;
CONSTANTS[29] = 500;
CONSTANTS[30] = 130;
CONSTANTS[31] = 5000;
CONSTANTS[32] = 315;
CONSTANTS[33] = 0.2;
CONSTANTS[34] = 130;
CONSTANTS[35] = 130;
CONSTANTS[36] = 5000;
CONSTANTS[37] = 315;
CONSTANTS[38] = 1.08e-3;
CONSTANTS[39] = 0.136;
CONSTANTS[40] = 130;
CONSTANTS[41] = 5000;
CONSTANTS[42] = 315;
STATES[12] = 0.11750433;
CONSTANTS[43] = 4.5;
CONSTANTS[44] = 5.6;
CONSTANTS[45] = 2;
STATES[13] = 1.092200547;
CONSTANTS[46] = 0.02;
CONSTANTS[47] = 0.16;
STATES[14] = 0.992583576;
CONSTANTS[48] = 5e-3;
CONSTANTS[49] = 7.5e-3;
CONSTANTS[50] = 5e-3;
CONSTANTS[51] = 38e-12;
CONSTANTS[52] = 7.5e-15;
CONSTANTS[53] = 7.5e-14;
CONSTANTS[54] = 1.5e-17;
CONSTANTS[55] = ( CONSTANTS[38]*CONSTANTS[39]*CONSTANTS[40]*CONSTANTS[41])/(CONSTANTS[42]+CONSTANTS[41]);
CONSTANTS[56] =  0.0100000*CONSTANTS[51];
CONSTANTS[57] =  0.0200000*CONSTANTS[51];
CONSTANTS[58] =  0.500000*CONSTANTS[51];
STATES[15] = 0.1001;
STATES[16] = 0.1001;
STATES[17] = 0.1001;
STATES[18] = 0.1001;
STATES[19] = 0.1001;
STATES[20] = 0.1001;
STATES[21] = 0.1001;
STATES[22] = 0.1001;
STATES[23] = 0.1001;
STATES[24] = 0.1001;
STATES[25] = 0.1001;
STATES[26] = 0.1001;
STATES[27] = 0.1001;
STATES[28] = 0.1001;
STATES[29] = 0.1001;
STATES[30] = 0.1001;
RATES[0] = 0.1001;
RATES[1] = 0.1001;
RATES[2] = 0.1001;
RATES[3] = 0.1001;
RATES[4] = 0.1001;
RATES[5] = 0.1001;
RATES[6] = 0.1001;
RATES[7] = 0.1001;
RATES[8] = 0.1001;
RATES[9] = 0.1001;
RATES[10] = 0.1001;
RATES[11] = 0.1001;
RATES[12] = 0.1001;
RATES[13] = 0.1001;
RATES[14] = 0.1001;
}
void
computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
                 double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
resid[0] = STATES[15] - ((CONSTANTS[20] - STATES[16]) - STATES[17]) - STATES[18];
resid[1] = STATES[16] - ( ALGEBRAIC[0]*STATES[15])/CONSTANTS[1];
resid[2] = STATES[17] - ( ALGEBRAIC[0]*STATES[15]*ALGEBRAIC[2])/( CONSTANTS[0]*CONSTANTS[2]);
resid[3] = STATES[18] - ( STATES[15]*ALGEBRAIC[2])/CONSTANTS[2];
resid[4] = STATES[19] - ((CONSTANTS[21] - STATES[20]) - STATES[21]) - STATES[22];
resid[5] = STATES[20] - ( ALGEBRAIC[1]*STATES[19])/CONSTANTS[4];
resid[6] = STATES[21] - ( ALGEBRAIC[1]*STATES[19]*ALGEBRAIC[3])/( CONSTANTS[3]*CONSTANTS[5]);
resid[7] = STATES[22] - ( STATES[19]*ALGEBRAIC[3])/CONSTANTS[5];
resid[8] = RATES[0] - ( STATES[18]*CONSTANTS[13]+ STATES[17]*CONSTANTS[12]) -  STATES[0]*CONSTANTS[14];
resid[9] = RATES[1] - ( STATES[18]*CONSTANTS[13]+ STATES[17]*CONSTANTS[12]) -  STATES[2]*STATES[1]*CONSTANTS[15];
resid[10] = RATES[2] -  STATES[0]*CONSTANTS[14] -  STATES[2]*STATES[1]*CONSTANTS[15];
resid[11] = RATES[3] - ( STATES[22]*CONSTANTS[17]+ STATES[21]*CONSTANTS[16]) -  STATES[3]*CONSTANTS[18];
resid[12] = RATES[4] - ( STATES[22]*CONSTANTS[17]+ STATES[21]*CONSTANTS[16]) -  STATES[5]*STATES[4]*CONSTANTS[19];
resid[13] = RATES[5] -  STATES[3]*CONSTANTS[18] -  STATES[5]*STATES[4]*CONSTANTS[19];
resid[14] = STATES[23] - ((CONSTANTS[24] - STATES[24]) - STATES[25]) - STATES[26];
resid[15] = STATES[24] - ( ALGEBRAIC[0]*STATES[23])/CONSTANTS[1];
resid[16] = STATES[25] - ( ALGEBRAIC[0]*STATES[23]*ALGEBRAIC[4])/( CONSTANTS[0]*CONSTANTS[2]);
resid[17] = STATES[26] - ( STATES[23]*ALGEBRAIC[4])/CONSTANTS[2];
resid[18] = STATES[27] - ((CONSTANTS[25] - STATES[28]) - STATES[29]) - STATES[30];
resid[19] = STATES[28] - ( ALGEBRAIC[1]*STATES[27])/CONSTANTS[4];
resid[20] = STATES[29] - ( ALGEBRAIC[1]*STATES[27]*ALGEBRAIC[5])/( CONSTANTS[3]*CONSTANTS[5]);
resid[21] = STATES[30] - ( STATES[27]*ALGEBRAIC[5])/CONSTANTS[5];
resid[22] = RATES[6] - ( STATES[26]*CONSTANTS[13]+ STATES[25]*CONSTANTS[12]) -  STATES[6]*CONSTANTS[14];
resid[23] = RATES[7] - ( STATES[26]*CONSTANTS[13]+ STATES[25]*CONSTANTS[12]) -  STATES[8]*STATES[7]*CONSTANTS[15];
resid[24] = RATES[8] -  STATES[6]*CONSTANTS[14] -  STATES[8]*STATES[7]*CONSTANTS[15];
resid[25] = RATES[9] - ( STATES[30]*CONSTANTS[17]+ STATES[29]*CONSTANTS[16]) -  STATES[9]*CONSTANTS[18];
resid[26] = RATES[10] - ( STATES[30]*CONSTANTS[17]+ STATES[29]*CONSTANTS[16]) -  STATES[11]*STATES[10]*CONSTANTS[19];
resid[27] = RATES[11] -  STATES[9]*CONSTANTS[18] -  STATES[11]*STATES[10]*CONSTANTS[19];
resid[28] = RATES[12] - ((ALGEBRAIC[7] - (ALGEBRAIC[10]+ALGEBRAIC[11]+ALGEBRAIC[12])) - ( CONSTANTS[52]*(STATES[12] - STATES[13]))/CONSTANTS[56]) - ( CONSTANTS[53]*(STATES[12] - STATES[14]))/CONSTANTS[56];
resid[29] = RATES[13] - ((ALGEBRAIC[9] - (ALGEBRAIC[13]+ALGEBRAIC[14]))+( CONSTANTS[52]*(STATES[12] - STATES[13]))/CONSTANTS[57]) - ( CONSTANTS[54]*(STATES[13] - STATES[14]))/CONSTANTS[57];
resid[30] = RATES[14] - (CONSTANTS[55] - (ALGEBRAIC[15]+ALGEBRAIC[16]+ALGEBRAIC[17]))+( CONSTANTS[53]*(STATES[12] - STATES[14]))/CONSTANTS[58]+( CONSTANTS[54]*(STATES[13] - STATES[14]))/CONSTANTS[58];
}
void
computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
}
void
computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
ALGEBRAIC[0] = (CONDVAR[0]>0.00000&&CONDVAR[1]<=0.00000 ? 1.00000 : 1.00000);
ALGEBRAIC[1] = (CONDVAR[2]>0.00000&&CONDVAR[3]<=0.00000 ? 0.00000 : 0.00000);
ALGEBRAIC[2] = (CONSTANTS[22] - STATES[0]) - STATES[2];
ALGEBRAIC[3] = (CONSTANTS[23] - STATES[3]) - STATES[5];
ALGEBRAIC[4] = (CONSTANTS[26] - STATES[6]) - STATES[8];
ALGEBRAIC[5] = (CONSTANTS[27] - STATES[9]) - STATES[11];
ALGEBRAIC[6] =  (( (0.700000+( 3.82340*pow(STATES[0]/1.00000, 0.978700))/(0.198600+pow(STATES[0]/1.00000, 0.978700)))*(1.00000+( (1.00000/1.44320)*- 1.00610*pow(STATES[3]/1.00000, 0.835600))/(0.191800+pow(STATES[3]/1.00000, 0.835600)))*CONSTANTS[30])/60.0000)*0.00100000;
ALGEBRAIC[7] = ( ALGEBRAIC[6]*CONSTANTS[28]*CONSTANTS[29]*CONSTANTS[31])/(CONSTANTS[32]+CONSTANTS[31]);
ALGEBRAIC[8] =  (( (0.0630000+( 2.01000*pow( STATES[6]*1000.00, 1.00430))/(31.5440+pow( STATES[6]*1000.00, 1.00430)))*(1.00000+( (1.00000/3.01000)*49.1000*pow( STATES[10]*1000.00, 0.892100))/(25.4400+pow( STATES[10]*1000.00, 0.892100)))*CONSTANTS[35])/60.0000)*0.00100000;
ALGEBRAIC[9] = ( ALGEBRAIC[8]*CONSTANTS[33]*CONSTANTS[34]*CONSTANTS[36])/(CONSTANTS[37]+CONSTANTS[36]);
ALGEBRAIC[10] = ( CONSTANTS[6]*CONSTANTS[43]*STATES[12])/(CONSTANTS[7]+STATES[12]);
ALGEBRAIC[11] = ( CONSTANTS[8]*CONSTANTS[44]*STATES[12])/(CONSTANTS[9]+STATES[12]);
ALGEBRAIC[12] = ( CONSTANTS[10]*CONSTANTS[45]*STATES[12])/(CONSTANTS[11]+STATES[12]);
ALGEBRAIC[13] = ( CONSTANTS[6]*CONSTANTS[46]*STATES[13])/(CONSTANTS[7]+STATES[13]);
ALGEBRAIC[14] = ( CONSTANTS[10]*CONSTANTS[47]*STATES[13])/(CONSTANTS[11]+STATES[13]);
ALGEBRAIC[15] = ( CONSTANTS[6]*CONSTANTS[48]*STATES[14])/(CONSTANTS[7]+STATES[14]);
ALGEBRAIC[16] = ( CONSTANTS[8]*CONSTANTS[49]*STATES[14])/(CONSTANTS[9]+STATES[14]);
ALGEBRAIC[17] = ( CONSTANTS[10]*CONSTANTS[50]*STATES[14])/(CONSTANTS[11]+STATES[14]);
}
void
getStateInformation(double* SI)
{
SI[15] = 0.0;
SI[16] = 0.0;
SI[17] = 0.0;
SI[18] = 0.0;
SI[19] = 0.0;
SI[20] = 0.0;
SI[21] = 0.0;
SI[22] = 0.0;
SI[0] = 1.0;
SI[1] = 1.0;
SI[2] = 1.0;
SI[3] = 1.0;
SI[4] = 1.0;
SI[5] = 1.0;
SI[23] = 0.0;
SI[24] = 0.0;
SI[25] = 0.0;
SI[26] = 0.0;
SI[27] = 0.0;
SI[28] = 0.0;
SI[29] = 0.0;
SI[30] = 0.0;
SI[6] = 1.0;
SI[7] = 1.0;
SI[8] = 1.0;
SI[9] = 1.0;
SI[10] = 1.0;
SI[11] = 1.0;
SI[12] = 1.0;
SI[13] = 1.0;
SI[14] = 1.0;
}
void
computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
             double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
CONDVAR[0] = VOI - 120.000;
CONDVAR[1] = VOI - 720.000;
CONDVAR[2] = VOI - 240.000;
CONDVAR[3] = VOI - 540.000;
}