Generated Code

The following is c_ida code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

/*
   There are a total of 42 entries in the algebraic variable array.
   There are a total of 14 entries in each of the rate and state variable arrays.
   There are a total of 44 entries in the constant variable array.
 */
/*
 * VOI is time in component environment (second).
 * STATES[0] is V in component membrane (millivolt).
 * CONSTANTS[0] is R in component membrane (joule_per_kilomole_kelvin).
 * CONSTANTS[1] is T in component membrane (kelvin).
 * CONSTANTS[2] is F in component membrane (coulomb_per_mole).
 * CONSTANTS[3] is C in component membrane (microF).
 * CONSTANTS[39] is RTONF in component membrane (millivolt).
 * ALGEBRAIC[4] is i_f in component hyperpolarising_activated_current (nanoA).
 * ALGEBRAIC[8] is i_K in component time_dependent_potassium_current (nanoA).
 * ALGEBRAIC[11] is i_K1 in component time_independent_potassium_current (nanoA).
 * ALGEBRAIC[12] is i_Na_b in component sodium_background_current (nanoA).
 * ALGEBRAIC[14] is i_Ca_b in component calcium_background_current (nanoA).
 * ALGEBRAIC[15] is i_p in component sodium_potassium_pump (nanoA).
 * ALGEBRAIC[16] is i_NaCa in component Na_Ca_exchanger (nanoA).
 * ALGEBRAIC[18] is i_Na in component fast_sodium_current (nanoA).
 * ALGEBRAIC[27] is i_si in component second_inward_current (nanoA).
 * ALGEBRAIC[2] is i_fNa in component hyperpolarising_activated_current (nanoA).
 * ALGEBRAIC[0] is E_Na in component hyperpolarising_activated_current (millivolt).
 * ALGEBRAIC[1] is E_K in component hyperpolarising_activated_current (millivolt).
 * ALGEBRAIC[3] is i_fK in component hyperpolarising_activated_current (nanoA).
 * CONSTANTS[4] is g_f_Na in component hyperpolarising_activated_current (microS).
 * CONSTANTS[5] is g_f_K in component hyperpolarising_activated_current (microS).
 * CONSTANTS[6] is Km_f in component hyperpolarising_activated_current (millimolar).
 * CONSTANTS[7] is Kc in component extracellular_potassium_concentration (millimolar).
 * STATES[1] is Ki in component intracellular_potassium_concentration (millimolar).
 * STATES[2] is Nai in component intracellular_sodium_concentration (millimolar).
 * CONSTANTS[8] is Nao in component extracellular_sodium_concentration (millimolar).
 * STATES[3] is y in component hyperpolarising_activated_current_y_gate (dimensionless).
 * ALGEBRAIC[5] is alpha_y in component hyperpolarising_activated_current_y_gate (per_second).
 * ALGEBRAIC[6] is beta_y in component hyperpolarising_activated_current_y_gate (per_second).
 * CONSTANTS[9] is speed_y in component hyperpolarising_activated_current_y_gate (dimensionless).
 * ALGEBRAIC[7] is I_K in component time_dependent_potassium_current (nanoA).
 * CONSTANTS[10] is i_K_max in component time_dependent_potassium_current (nanoA).
 * STATES[4] is x in component time_dependent_potassium_current_x_gate (dimensionless).
 * ALGEBRAIC[9] is alpha_x in component time_dependent_potassium_current_x_gate (per_second).
 * ALGEBRAIC[10] is beta_x in component time_dependent_potassium_current_x_gate (per_second).
 * CONSTANTS[11] is g_K1 in component time_independent_potassium_current (microS).
 * CONSTANTS[12] is Km_K1 in component time_independent_potassium_current (millimolar).
 * CONSTANTS[13] is g_Nab in component sodium_background_current (microS).
 * ALGEBRAIC[13] is E_Ca in component calcium_background_current (millivolt).
 * CONSTANTS[14] is g_Cab in component calcium_background_current (microS).
 * STATES[5] is Cai in component intracellular_calcium_concentration (millimolar).
 * CONSTANTS[15] is Cao in component extracellular_calcium_concentration (millimolar).
 * CONSTANTS[16] is I_p in component sodium_potassium_pump (nanoA).
 * CONSTANTS[17] is K_mK in component sodium_potassium_pump (millimolar).
 * CONSTANTS[18] is K_mNa in component sodium_potassium_pump (millimolar).
 * CONSTANTS[19] is n_NaCa in component Na_Ca_exchanger (dimensionless).
 * CONSTANTS[20] is K_NaCa in component Na_Ca_exchanger (nanoA).
 * CONSTANTS[21] is d_NaCa in component Na_Ca_exchanger (dimensionless).
 * CONSTANTS[22] is gamma in component Na_Ca_exchanger (dimensionless).
 * CONSTANTS[23] is g_Na in component fast_sodium_current (microS).
 * ALGEBRAIC[17] is E_mh in component fast_sodium_current (millivolt).
 * STATES[6] is m in component fast_sodium_current_m_gate (dimensionless).
 * STATES[7] is h in component fast_sodium_current_h_gate (dimensionless).
 * ALGEBRAIC[20] is alpha_m in component fast_sodium_current_m_gate (per_second).
 * ALGEBRAIC[21] is beta_m in component fast_sodium_current_m_gate (per_second).
 * CONSTANTS[24] is delta_m in component fast_sodium_current_m_gate (millivolt).
 * ALGEBRAIC[19] is E0_m in component fast_sodium_current_m_gate (millivolt).
 * ALGEBRAIC[22] is alpha_h in component fast_sodium_current_h_gate (per_second).
 * ALGEBRAIC[23] is beta_h in component fast_sodium_current_h_gate (per_second).
 * ALGEBRAIC[24] is i_siCa in component second_inward_current (nanoA).
 * ALGEBRAIC[25] is i_siK in component second_inward_current (nanoA).
 * ALGEBRAIC[26] is i_siNa in component second_inward_current (nanoA).
 * CONSTANTS[25] is P_si in component second_inward_current (nanoA_per_millimolar).
 * STATES[8] is d in component second_inward_current_d_gate (dimensionless).
 * STATES[9] is f in component second_inward_current_f_gate (dimensionless).
 * STATES[10] is f2 in component second_inward_current_f2_gate (dimensionless).
 * ALGEBRAIC[29] is alpha_d in component second_inward_current_d_gate (per_second).
 * ALGEBRAIC[30] is beta_d in component second_inward_current_d_gate (per_second).
 * CONSTANTS[26] is delta_d in component second_inward_current_d_gate (millivolt).
 * ALGEBRAIC[28] is E0_d in component second_inward_current_d_gate (millivolt).
 * ALGEBRAIC[32] is alpha_f in component second_inward_current_f_gate (per_second).
 * ALGEBRAIC[33] is beta_f in component second_inward_current_f_gate (per_second).
 * CONSTANTS[27] is delta_f in component second_inward_current_f_gate (millivolt).
 * ALGEBRAIC[31] is E0_f in component second_inward_current_f_gate (millivolt).
 * CONSTANTS[28] is alpha_f2 in component second_inward_current_f2_gate (per_second).
 * ALGEBRAIC[34] is beta_f2 in component second_inward_current_f2_gate (per_second).
 * CONSTANTS[29] is K_mf2 in component second_inward_current_f2_gate (millimolar).
 * CONSTANTS[30] is radius in component intracellular_sodium_concentration (millimetre).
 * CONSTANTS[31] is length in component intracellular_sodium_concentration (millimetre).
 * CONSTANTS[32] is V_e_ratio in component intracellular_sodium_concentration (dimensionless).
 * CONSTANTS[40] is V_Cell in component intracellular_sodium_concentration (millimetre3).
 * CONSTANTS[41] is Vi in component intracellular_sodium_concentration (millimetre3).
 * CONSTANTS[42] is V_up in component intracellular_calcium_concentration (millimetre3).
 * CONSTANTS[43] is V_rel in component intracellular_calcium_concentration (millimetre3).
 * ALGEBRAIC[35] is i_up in component intracellular_calcium_concentration (nanoA).
 * ALGEBRAIC[36] is i_tr in component intracellular_calcium_concentration (nanoA).
 * ALGEBRAIC[40] is i_rel in component intracellular_calcium_concentration (nanoA).
 * STATES[11] is Ca_up in component intracellular_calcium_concentration (millimolar).
 * STATES[12] is Ca_rel in component intracellular_calcium_concentration (millimolar).
 * CONSTANTS[33] is Ca_up_max in component intracellular_calcium_concentration (millimolar).
 * CONSTANTS[34] is K_mCa in component intracellular_calcium_concentration (millimolar).
 * STATES[13] is p in component intracellular_calcium_concentration (dimensionless).
 * ALGEBRAIC[38] is alpha_p in component intracellular_calcium_concentration (per_second).
 * ALGEBRAIC[39] is beta_p in component intracellular_calcium_concentration (per_second).
 * ALGEBRAIC[37] is E0_p in component intracellular_calcium_concentration (millivolt).
 * CONSTANTS[35] is tau_up in component intracellular_calcium_concentration (second).
 * CONSTANTS[36] is tau_rep in component intracellular_calcium_concentration (second).
 * CONSTANTS[37] is tau_rel in component intracellular_calcium_concentration (second).
 * CONSTANTS[38] is rCa in component intracellular_calcium_concentration (dimensionless).
 * ALGEBRAIC[41] is i_mK in component intracellular_potassium_concentration (nanoA).
 * RATES[0] is d/dt V in component membrane (millivolt).
 * RATES[3] is d/dt y in component hyperpolarising_activated_current_y_gate (dimensionless).
 * RATES[4] is d/dt x in component time_dependent_potassium_current_x_gate (dimensionless).
 * RATES[6] is d/dt m in component fast_sodium_current_m_gate (dimensionless).
 * RATES[7] is d/dt h in component fast_sodium_current_h_gate (dimensionless).
 * RATES[8] is d/dt d in component second_inward_current_d_gate (dimensionless).
 * RATES[9] is d/dt f in component second_inward_current_f_gate (dimensionless).
 * RATES[10] is d/dt f2 in component second_inward_current_f2_gate (dimensionless).
 * RATES[2] is d/dt Nai in component intracellular_sodium_concentration (millimolar).
 * RATES[13] is d/dt p in component intracellular_calcium_concentration (dimensionless).
 * RATES[11] is d/dt Ca_up in component intracellular_calcium_concentration (millimolar).
 * RATES[12] is d/dt Ca_rel in component intracellular_calcium_concentration (millimolar).
 * RATES[5] is d/dt Cai in component intracellular_calcium_concentration (millimolar).
 * RATES[1] is d/dt Ki in component intracellular_potassium_concentration (millimolar).
 * There are a total of 4 condition variables.
 */
void
initConsts(double* CONSTANTS, double* RATES, double *STATES)
{
STATES[0] = -67.797059970601;
CONSTANTS[0] = 8314.472;
CONSTANTS[1] = 310;
CONSTANTS[2] = 96485.3415;
CONSTANTS[3] = 6e-5;
CONSTANTS[4] = 0.06;
CONSTANTS[5] = 0.06;
CONSTANTS[6] = 45;
CONSTANTS[7] = 3;
STATES[1] = 139.859968229045;
STATES[2] = 7.51007221193712;
CONSTANTS[8] = 140;
STATES[3] = 0.0743464067197738;
CONSTANTS[9] = 2;
CONSTANTS[10] = 0.8;
STATES[4] = 0.129303443591363;
CONSTANTS[11] = 0.0075;
CONSTANTS[12] = 10;
CONSTANTS[13] = 0.0007;
CONSTANTS[14] = 0.0001;
STATES[5] = 5.84191784887783e-5;
CONSTANTS[15] = 2;
CONSTANTS[16] = 0.45;
CONSTANTS[17] = 1;
CONSTANTS[18] = 40;
CONSTANTS[19] = 3;
CONSTANTS[20] = 2e-5;
CONSTANTS[21] = 0.0001;
CONSTANTS[22] = 0.5;
CONSTANTS[23] = 0.0125;
STATES[6] = 0.042697621819783;
STATES[7] = 0.138105285882671;
CONSTANTS[24] = 1e-5;
CONSTANTS[25] = 0.12;
STATES[8] = 1.26333192869164e-5;
STATES[9] = 0.999507224159629;
STATES[10] = 0.485471180273736;
CONSTANTS[26] = 0.0001;
CONSTANTS[27] = 0.0001;
CONSTANTS[28] = 10;
CONSTANTS[29] = 0.0005;
CONSTANTS[30] = 0.008;
CONSTANTS[31] = 0.11;
CONSTANTS[32] = 0.1;
STATES[11] = 3.70806465918854;
STATES[12] = 0.177741556496929;
CONSTANTS[33] = 5;
CONSTANTS[34] = 0.002;
STATES[13] = 0.176207580044253;
CONSTANTS[35] = 0.005;
CONSTANTS[36] = 0.2;
CONSTANTS[37] = 0.01;
CONSTANTS[38] = 2;
CONSTANTS[39] = ( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2];
CONSTANTS[40] =  3.14159*pow(CONSTANTS[30], 2.00000)*CONSTANTS[31];
CONSTANTS[41] =  CONSTANTS[40]*(1.00000 - CONSTANTS[32]);
CONSTANTS[42] =  CONSTANTS[41]*0.0500000;
CONSTANTS[43] =  CONSTANTS[41]*0.0200000;
RATES[0] = 0.1001;
RATES[3] = 0.1001;
RATES[4] = 0.1001;
RATES[6] = 0.1001;
RATES[7] = 0.1001;
RATES[8] = 0.1001;
RATES[9] = 0.1001;
RATES[10] = 0.1001;
RATES[2] = 0.1001;
RATES[13] = 0.1001;
RATES[11] = 0.1001;
RATES[12] = 0.1001;
RATES[5] = 0.1001;
RATES[1] = 0.1001;
}
void
computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
                 double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
resid[0] = RATES[0] - - (ALGEBRAIC[4]+ALGEBRAIC[8]+ALGEBRAIC[11]+ALGEBRAIC[12]+ALGEBRAIC[14]+ALGEBRAIC[15]+ALGEBRAIC[16]+ALGEBRAIC[18]+ALGEBRAIC[27])/CONSTANTS[3];
resid[1] = RATES[3] -  CONSTANTS[9]*( ALGEBRAIC[5]*(1.00000 - STATES[3]) -  ALGEBRAIC[6]*STATES[3]);
resid[2] = RATES[4] -  ALGEBRAIC[9]*(1.00000 - STATES[4]) -  ALGEBRAIC[10]*STATES[4];
resid[3] = RATES[6] -  ALGEBRAIC[20]*(1.00000 - STATES[6]) -  ALGEBRAIC[21]*STATES[6];
resid[4] = RATES[7] -  ALGEBRAIC[22]*(1.00000 - STATES[7]) -  ALGEBRAIC[23]*STATES[7];
resid[5] = RATES[8] -  ALGEBRAIC[29]*(1.00000 - STATES[8]) -  ALGEBRAIC[30]*STATES[8];
resid[6] = RATES[9] -  ALGEBRAIC[32]*(1.00000 - STATES[9]) -  ALGEBRAIC[33]*STATES[9];
resid[7] = RATES[10] - CONSTANTS[28] -  STATES[10]*(CONSTANTS[28]+ALGEBRAIC[34]);
resid[8] = RATES[2] - ( - 1.00000*(ALGEBRAIC[18]+ALGEBRAIC[12]+ALGEBRAIC[2]+ALGEBRAIC[26]+ ALGEBRAIC[15]*3.00000+( ALGEBRAIC[16]*CONSTANTS[19])/(CONSTANTS[19] - 2.00000)))/( 1.00000*CONSTANTS[41]*CONSTANTS[2]);
resid[9] = RATES[13] -  ALGEBRAIC[38]*(1.00000 - STATES[13]) -  ALGEBRAIC[39]*STATES[13];
resid[10] = RATES[11] - ( 1.00000*(ALGEBRAIC[35] - ALGEBRAIC[36]))/( 2.00000*1.00000*CONSTANTS[42]*CONSTANTS[2]);
resid[11] = RATES[12] - ( 1.00000*(ALGEBRAIC[36] - ALGEBRAIC[40]))/( 2.00000*1.00000*CONSTANTS[43]*CONSTANTS[2]);
resid[12] = RATES[5] - ( - 1.00000*((((ALGEBRAIC[24]+ALGEBRAIC[14]) - ( 2.00000*ALGEBRAIC[16])/(CONSTANTS[19] - 2.00000)) - ALGEBRAIC[40])+ALGEBRAIC[35]))/( 2.00000*1.00000*CONSTANTS[41]*CONSTANTS[2]);
resid[13] = RATES[1] - ( - 1.00000*ALGEBRAIC[41])/( 1.00000*CONSTANTS[41]*CONSTANTS[2]);
}
void
computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
}
void
computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
ALGEBRAIC[0] =  CONSTANTS[39]*log(CONSTANTS[8]/STATES[2]);
ALGEBRAIC[2] =  (( pow(STATES[3], 2.00000)*CONSTANTS[7])/(CONSTANTS[7]+CONSTANTS[6]))*CONSTANTS[4]*(STATES[0] - ALGEBRAIC[0]);
ALGEBRAIC[1] =  CONSTANTS[39]*log(CONSTANTS[7]/STATES[1]);
ALGEBRAIC[3] =  (( pow(STATES[3], 2.00000)*CONSTANTS[7])/(CONSTANTS[7]+CONSTANTS[6]))*CONSTANTS[5]*(STATES[0] - ALGEBRAIC[1]);
ALGEBRAIC[4] = ALGEBRAIC[2]+ALGEBRAIC[3];
ALGEBRAIC[5] =  0.0140000*exp(- STATES[0]/16.0000);
ALGEBRAIC[6] =  9.75000*exp(STATES[0]/19.0000);
ALGEBRAIC[7] = ( CONSTANTS[10]*(STATES[1] -  CONSTANTS[7]*exp(- STATES[0]/CONSTANTS[39])))/140.000;
ALGEBRAIC[8] =  STATES[4]*ALGEBRAIC[7];
ALGEBRAIC[9] =  2.10000*exp(STATES[0]/28.0000);
ALGEBRAIC[10] =  0.960000*exp(- STATES[0]/24.0000);
ALGEBRAIC[11] = ( (( CONSTANTS[11]*CONSTANTS[7])/(CONSTANTS[7]+CONSTANTS[12]))*(STATES[0] - ALGEBRAIC[1]))/(1.00000+exp(( ((STATES[0]+10.0000) - ALGEBRAIC[1])*2.00000)/CONSTANTS[39]));
ALGEBRAIC[12] =  CONSTANTS[13]*(STATES[0] - ALGEBRAIC[0]);
ALGEBRAIC[13] =  0.500000*CONSTANTS[39]*log(CONSTANTS[15]/STATES[5]);
ALGEBRAIC[14] =  CONSTANTS[14]*(STATES[0] - ALGEBRAIC[13]);
ALGEBRAIC[15] = ( (( CONSTANTS[16]*CONSTANTS[7])/(CONSTANTS[17]+CONSTANTS[7]))*STATES[2])/(CONSTANTS[18]+STATES[2]);
ALGEBRAIC[16] = ( CONSTANTS[20]*( exp(( CONSTANTS[22]*(CONSTANTS[19] - 2.00000)*STATES[0])/CONSTANTS[39])*pow(STATES[2], CONSTANTS[19])*CONSTANTS[15] -  exp(( (CONSTANTS[22] - 1.00000)*(CONSTANTS[19] - 2.00000)*STATES[0])/CONSTANTS[39])*pow(CONSTANTS[8], CONSTANTS[19])*STATES[5]))/( (1.00000+ CONSTANTS[21]*( STATES[5]*pow(CONSTANTS[8], CONSTANTS[19])+ CONSTANTS[15]*pow(STATES[2], CONSTANTS[19])))*(1.00000+STATES[5]/0.00690000));
ALGEBRAIC[17] =  CONSTANTS[39]*log((CONSTANTS[8]+ 0.120000*CONSTANTS[7])/(STATES[2]+ 0.120000*STATES[1]));
ALGEBRAIC[18] =  CONSTANTS[23]*pow(STATES[6], 3.00000)*STATES[7]*(STATES[0] - ALGEBRAIC[17]);
ALGEBRAIC[19] = STATES[0]+41.0000;
ALGEBRAIC[20] = (CONDVAR[0]<0.00000 ? 2000.00 : ( 200.000*ALGEBRAIC[19])/(1.00000 - exp( - 0.100000*ALGEBRAIC[19])));
ALGEBRAIC[21] =  8000.00*exp( - 0.0560000*(STATES[0]+66.0000));
ALGEBRAIC[22] =  20.0000*exp( - 0.125000*(STATES[0]+75.0000));
ALGEBRAIC[23] = 2000.00/( 320.000*exp( - 0.100000*(STATES[0]+75.0000))+1.00000);
ALGEBRAIC[24] =  (( 4.00000*CONSTANTS[25]*(STATES[0] - 50.0000))/( CONSTANTS[39]*(1.00000 - exp(( - 1.00000*(STATES[0] - 50.0000)*2.00000)/CONSTANTS[39]))))*( STATES[5]*exp(100.000/CONSTANTS[39]) -  CONSTANTS[15]*exp(( - 2.00000*(STATES[0] - 50.0000))/CONSTANTS[39]))*STATES[8]*STATES[9]*STATES[10];
ALGEBRAIC[26] =  (( 0.0100000*CONSTANTS[25]*(STATES[0] - 50.0000))/( CONSTANTS[39]*(1.00000 - exp(( - 1.00000*(STATES[0] - 50.0000))/CONSTANTS[39]))))*( STATES[2]*exp(50.0000/CONSTANTS[39]) -  CONSTANTS[8]*exp(( - 1.00000*(STATES[0] - 50.0000))/CONSTANTS[39]))*STATES[8]*STATES[9]*STATES[10];
ALGEBRAIC[25] =  (( 0.0100000*CONSTANTS[25]*(STATES[0] - 50.0000))/( CONSTANTS[39]*(1.00000 - exp(( - 1.00000*(STATES[0] - 50.0000))/CONSTANTS[39]))))*( STATES[1]*exp(50.0000/CONSTANTS[39]) -  CONSTANTS[7]*exp(( - 1.00000*(STATES[0] - 50.0000))/CONSTANTS[39]))*STATES[8]*STATES[9]*STATES[10];
ALGEBRAIC[27] = ALGEBRAIC[24]+ALGEBRAIC[25]+ALGEBRAIC[26];
ALGEBRAIC[28] = (STATES[0]+24.0000) - 5.00000;
ALGEBRAIC[29] = (CONDVAR[1]<0.00000 ? 120.000 : ( 30.0000*ALGEBRAIC[28])/(1.00000 - exp(( - 1.00000*ALGEBRAIC[28])/4.00000)));
ALGEBRAIC[30] = (CONDVAR[2]<0.00000 ? 120.000 : ( 12.0000*ALGEBRAIC[28])/(exp(ALGEBRAIC[28]/10.0000) - 1.00000));
ALGEBRAIC[31] = STATES[0]+34.0000;
ALGEBRAIC[32] = (CONDVAR[3]<0.00000 ? 25.0000 : ( 6.25000*ALGEBRAIC[31])/(exp(ALGEBRAIC[31]/4.00000) - 1.00000));
ALGEBRAIC[33] = 50.0000/(1.00000+exp(( - 1.00000*(STATES[0]+34.0000))/4.00000));
ALGEBRAIC[34] = ( STATES[5]*CONSTANTS[28])/CONSTANTS[29];
ALGEBRAIC[35] =  (( 2.00000*1.00000*CONSTANTS[41]*CONSTANTS[2])/( 1.00000*CONSTANTS[35]*CONSTANTS[33]))*STATES[5]*(CONSTANTS[33] - STATES[11]);
ALGEBRAIC[36] =  (( 2.00000*1.00000*CONSTANTS[43]*CONSTANTS[2])/( 1.00000*CONSTANTS[36]))*STATES[13]*(STATES[11] - STATES[12]);
ALGEBRAIC[37] = (STATES[0]+34.0000) - - 30.0000;
ALGEBRAIC[38] = ( 0.625000*ALGEBRAIC[37])/(exp(ALGEBRAIC[37]/4.00000) - 1.00000);
ALGEBRAIC[39] = 5.00000/(1.00000+exp(( - 1.00000*ALGEBRAIC[37])/4.00000));
ALGEBRAIC[40] = ( (( 2.00000*1.00000*CONSTANTS[43]*CONSTANTS[2])/( 1.00000*CONSTANTS[37]))*STATES[12]*pow(STATES[5], CONSTANTS[38]))/(pow(STATES[5], CONSTANTS[38])+pow(CONSTANTS[34], CONSTANTS[38]));
ALGEBRAIC[41] = (ALGEBRAIC[11]+ALGEBRAIC[8]+ALGEBRAIC[3]+ALGEBRAIC[25]) -  2.00000*ALGEBRAIC[15];
}
void
getStateInformation(double* SI)
{
SI[0] = 1.0;
SI[1] = 1.0;
SI[2] = 1.0;
SI[3] = 1.0;
SI[4] = 1.0;
SI[5] = 1.0;
SI[6] = 1.0;
SI[7] = 1.0;
SI[8] = 1.0;
SI[9] = 1.0;
SI[10] = 1.0;
SI[11] = 1.0;
SI[12] = 1.0;
SI[13] = 1.0;
}
void
computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
             double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
CONDVAR[0] = fabs(ALGEBRAIC[19]) - CONSTANTS[24];
CONDVAR[1] = fabs(ALGEBRAIC[28]) - CONSTANTS[26];
CONDVAR[2] = fabs(ALGEBRAIC[28]) - CONSTANTS[26];
CONDVAR[3] = fabs(ALGEBRAIC[31]) - CONSTANTS[27];
}