Generated Code
The following is matlab code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction() % This is the "main function". In Matlab, things work best if you rename this function to match the filename. [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel(); end function [algebraicVariableCount] = getAlgebraicVariableCount() % Used later when setting a global variable with the number of algebraic variables. % Note: This is not the "main method". algebraicVariableCount =7; end % There are a total of 4 entries in each of the rate and state variable arrays. % There are a total of 11 entries in the constant variable array. % function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel() % Create ALGEBRAIC of correct size global algebraicVariableCount; algebraicVariableCount = getAlgebraicVariableCount(); % Initialise constants and state variables [INIT_STATES, CONSTANTS] = initConsts; % Set timespan to solve over tspan = [0, 10]; % Set numerical accuracy options for ODE solver options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1); % Solve model with ODE solver [VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options); % Compute algebraic variables [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS); ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI); % Plot state variables against variable of integration [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends(); figure(); plot(VOI, STATES); xlabel(LEGEND_VOI); l = legend(LEGEND_STATES); set(l,'Interpreter','none'); end function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends() LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = ''; LEGEND_VOI = strpad('time in component environment (second)'); LEGEND_CONSTANTS(:,1) = strpad('sigma in component parameters (dm)'); LEGEND_CONSTANTS(:,2) = strpad('CNG_tot in component parameters (mole_per_dm_squared)'); LEGEND_CONSTANTS(:,3) = strpad('CaM_tot in component parameters (mole_per_dm_cubed)'); LEGEND_CONSTANTS(:,4) = strpad('km_CNG_0 in component parameters (per_second)'); LEGEND_CONSTANTS(:,5) = strpad('km_CaM4 in component parameters (per_second)'); LEGEND_CONSTANTS(:,6) = strpad('kp_CaM4 in component parameters (dm_6_per_second_per_mole_squared)'); LEGEND_CONSTANTS(:,7) = strpad('kp_CNG_i in component parameters (dm_3_per_second_per_mole)'); LEGEND_CONSTANTS(:,8) = strpad('km_CNG_i in component parameters (per_second)'); LEGEND_CONSTANTS(:,9) = strpad('i_Ca in component parameters (per_second)'); LEGEND_CONSTANTS(:,10) = strpad('k_Ca in component parameters (mole_per_dm_squared_per_second)'); LEGEND_CONSTANTS(:,11) = strpad('K_Ca in component parameters (mole_per_dm_cubed)'); LEGEND_ALGEBRAIC(:,1) = strpad('kp_act in component parameters (per_second)'); LEGEND_STATES(:,1) = strpad('CNG_o in component dCNG_o_dt (mole_per_dm_squared)'); LEGEND_ALGEBRAIC(:,2) = strpad('CNG_o_normalized in component dCNG_o_dt (dimensionless)'); LEGEND_STATES(:,2) = strpad('CNG_i in component dCNG_i_dt (mole_per_dm_squared)'); LEGEND_STATES(:,3) = strpad('CaM4 in component dCaM4_dt (mole_per_dm_cubed)'); LEGEND_STATES(:,4) = strpad('Ca in component dCa_dt (mole_per_dm_cubed)'); LEGEND_ALGEBRAIC(:,3) = strpad('Ca_normalized in component dCa_dt (dimensionless)'); LEGEND_ALGEBRAIC(:,4) = strpad('CaM4_normalized in component dCaM4_dt (dimensionless)'); LEGEND_ALGEBRAIC(:,5) = strpad('CNG_i_normalized in component dCNG_i_dt (dimensionless)'); LEGEND_ALGEBRAIC(:,6) = strpad('CNG_c in component dCNG_c_dt (mole_per_dm_squared)'); LEGEND_ALGEBRAIC(:,7) = strpad('CaM in component dCaM_dt (mole_per_dm_cubed)'); LEGEND_RATES(:,1) = strpad('d/dt CNG_o in component dCNG_o_dt (mole_per_dm_squared)'); LEGEND_RATES(:,4) = strpad('d/dt Ca in component dCa_dt (mole_per_dm_cubed)'); LEGEND_RATES(:,3) = strpad('d/dt CaM4 in component dCaM4_dt (mole_per_dm_cubed)'); LEGEND_RATES(:,2) = strpad('d/dt CNG_i in component dCNG_i_dt (mole_per_dm_squared)'); LEGEND_STATES = LEGEND_STATES'; LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC'; LEGEND_RATES = LEGEND_RATES'; LEGEND_CONSTANTS = LEGEND_CONSTANTS'; end function [STATES, CONSTANTS] = initConsts() VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = []; CONSTANTS(:,1) = 5e-7; CONSTANTS(:,2) = 1.3e-13; CONSTANTS(:,3) = 2e-5; CONSTANTS(:,4) = 1e-2; CONSTANTS(:,5) = 2.5; CONSTANTS(:,6) = 1.1e9; CONSTANTS(:,7) = 2.1e6; CONSTANTS(:,8) = 3.4e-1; CONSTANTS(:,9) = 2e4; CONSTANTS(:,10) = 1e-10; CONSTANTS(:,11) = 1.2e-7; STATES(:,1) = 0; STATES(:,2) = 0; STATES(:,3) = 0; STATES(:,4) = 0; if (isempty(STATES)), warning('Initial values for states not set');, end end function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS) global algebraicVariableCount; statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; ALGEBRAIC = zeros(1, algebraicVariableCount); utilOnes = 1; else statesRowCount = statesSize(1); ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount); RATES = zeros(statesRowCount, statesColumnCount); utilOnes = ones(statesRowCount, 1); end RATES(:,4) = ( (STATES(:,1)./CONSTANTS(:,1)).*CONSTANTS(:,9) - ( (CONSTANTS(:,10)./CONSTANTS(:,1)).*STATES(:,4))./(STATES(:,4)+CONSTANTS(:,11))) - 4.00000.*( CONSTANTS(:,6).*power(STATES(:,4), 2.00000).*((CONSTANTS(:,3) - STATES(:,3)) - STATES(:,2)./CONSTANTS(:,1)) - CONSTANTS(:,5).*STATES(:,3)); RATES(:,3) = (( CONSTANTS(:,6).*power(STATES(:,4), 2.00000).*((CONSTANTS(:,3) - STATES(:,3)) - STATES(:,2)./CONSTANTS(:,1)) - CONSTANTS(:,5).*STATES(:,3)) - (CONSTANTS(:,7)./CONSTANTS(:,1)).*STATES(:,3).*(CONSTANTS(:,2) - STATES(:,1)))+ (CONSTANTS(:,8)./CONSTANTS(:,1)).*STATES(:,2); RATES(:,2) = - CONSTANTS(:,8).*STATES(:,2)+ CONSTANTS(:,7).*STATES(:,3).*(CONSTANTS(:,2) - STATES(:,2)); ALGEBRAIC(:,1) = piecewise({VOI>0.100000&VOI<0.200000, 5.50000 , VOI>4.10000&VOI<4.20000, 5.50000 }, 1.60000e-05); RATES(:,1) = ( ALGEBRAIC(:,1).*((CONSTANTS(:,2) - STATES(:,1)) - STATES(:,2)) - CONSTANTS(:,4).*STATES(:,1)) - CONSTANTS(:,7).*STATES(:,1).*STATES(:,3); RATES = RATES'; end % Calculate algebraic variables function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI) statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; utilOnes = 1; else statesRowCount = statesSize(1); utilOnes = ones(statesRowCount, 1); end ALGEBRAIC(:,1) = piecewise({VOI>0.100000&VOI<0.200000, 5.50000 , VOI>4.10000&VOI<4.20000, 5.50000 }, 1.60000e-05); ALGEBRAIC(:,2) = STATES(:,1)./CONSTANTS(:,2); ALGEBRAIC(:,3) = STATES(:,4).*10000.0; ALGEBRAIC(:,4) = STATES(:,3)./CONSTANTS(:,3); ALGEBRAIC(:,5) = STATES(:,2)./CONSTANTS(:,2); ALGEBRAIC(:,6) = (CONSTANTS(:,2) - STATES(:,1)) - STATES(:,2); ALGEBRAIC(:,7) = (CONSTANTS(:,3) - STATES(:,3)) - (1.00000./CONSTANTS(:,1)).*STATES(:,2); end % Compute result of a piecewise function function x = piecewise(cases, default) set = [0]; for i = 1:2:length(cases) if (length(cases{i+1}) == 1) x(cases{i} & ~set,:) = cases{i+1}; else x(cases{i} & ~set,:) = cases{i+1}(cases{i} & ~set); end set = set | cases{i}; if(set), break, end end if (length(default) == 1) x(~set,:) = default; else x(~set,:) = default(~set); end end % Pad out or shorten strings to a set length function strout = strpad(strin) req_length = 160; insize = size(strin,2); if insize > req_length strout = strin(1:req_length); else strout = [strin, blanks(req_length - insize)]; end end