Generated Code
The following is python code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
# Size of variable arrays: sizeAlgebraic = 7 sizeStates = 4 sizeConstants = 11 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (second)" legend_constants[0] = "sigma in component parameters (dm)" legend_constants[1] = "CNG_tot in component parameters (mole_per_dm_squared)" legend_constants[2] = "CaM_tot in component parameters (mole_per_dm_cubed)" legend_constants[3] = "km_CNG_0 in component parameters (per_second)" legend_constants[4] = "km_CaM4 in component parameters (per_second)" legend_constants[5] = "kp_CaM4 in component parameters (dm_6_per_second_per_mole_squared)" legend_constants[6] = "kp_CNG_i in component parameters (dm_3_per_second_per_mole)" legend_constants[7] = "km_CNG_i in component parameters (per_second)" legend_constants[8] = "i_Ca in component parameters (per_second)" legend_constants[9] = "k_Ca in component parameters (mole_per_dm_squared_per_second)" legend_constants[10] = "K_Ca in component parameters (mole_per_dm_cubed)" legend_algebraic[0] = "kp_act in component parameters (per_second)" legend_states[0] = "CNG_o in component dCNG_o_dt (mole_per_dm_squared)" legend_algebraic[1] = "CNG_o_normalized in component dCNG_o_dt (dimensionless)" legend_states[1] = "CNG_i in component dCNG_i_dt (mole_per_dm_squared)" legend_states[2] = "CaM4 in component dCaM4_dt (mole_per_dm_cubed)" legend_states[3] = "Ca in component dCa_dt (mole_per_dm_cubed)" legend_algebraic[2] = "Ca_normalized in component dCa_dt (dimensionless)" legend_algebraic[3] = "CaM4_normalized in component dCaM4_dt (dimensionless)" legend_algebraic[4] = "CNG_i_normalized in component dCNG_i_dt (dimensionless)" legend_algebraic[5] = "CNG_c in component dCNG_c_dt (mole_per_dm_squared)" legend_algebraic[6] = "CaM in component dCaM_dt (mole_per_dm_cubed)" legend_rates[0] = "d/dt CNG_o in component dCNG_o_dt (mole_per_dm_squared)" legend_rates[3] = "d/dt Ca in component dCa_dt (mole_per_dm_cubed)" legend_rates[2] = "d/dt CaM4 in component dCaM4_dt (mole_per_dm_cubed)" legend_rates[1] = "d/dt CNG_i in component dCNG_i_dt (mole_per_dm_squared)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; constants[0] = 5e-7 constants[1] = 1.3e-13 constants[2] = 2e-5 constants[3] = 1e-2 constants[4] = 2.5 constants[5] = 1.1e9 constants[6] = 2.1e6 constants[7] = 3.4e-1 constants[8] = 2e4 constants[9] = 1e-10 constants[10] = 1.2e-7 states[0] = 0 states[1] = 0 states[2] = 0 states[3] = 0 return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic rates[3] = ((states[0]/constants[0])*constants[8]-((constants[9]/constants[0])*states[3])/(states[3]+constants[10]))-4.00000*(constants[5]*(power(states[3], 2.00000))*((constants[2]-states[2])-states[1]/constants[0])-constants[4]*states[2]) rates[2] = ((constants[5]*(power(states[3], 2.00000))*((constants[2]-states[2])-states[1]/constants[0])-constants[4]*states[2])-(constants[6]/constants[0])*states[2]*(constants[1]-states[0]))+(constants[7]/constants[0])*states[1] rates[1] = -constants[7]*states[1]+constants[6]*states[2]*(constants[1]-states[1]) algebraic[0] = custom_piecewise([greater(voi , 0.100000) & less(voi , 0.200000), 5.50000 , greater(voi , 4.10000) & less(voi , 4.20000), 5.50000 , True, 1.60000e-05]) rates[0] = (algebraic[0]*((constants[1]-states[0])-states[1])-constants[3]*states[0])-constants[6]*states[0]*states[2] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[0] = custom_piecewise([greater(voi , 0.100000) & less(voi , 0.200000), 5.50000 , greater(voi , 4.10000) & less(voi , 4.20000), 5.50000 , True, 1.60000e-05]) algebraic[1] = states[0]/constants[1] algebraic[2] = states[3]*10000.0 algebraic[3] = states[2]/constants[2] algebraic[4] = states[1]/constants[1] algebraic[5] = (constants[1]-states[0])-states[1] algebraic[6] = (constants[2]-states[2])-(1.00000/constants[0])*states[1] return algebraic def custom_piecewise(cases): """Compute result of a piecewise function""" return select(cases[0::2],cases[1::2]) def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)