$\frac{d \mathrm{R_des}}{d \mathrm{time}}}=\mathrm{K_plus}\mathrm{C_cyto}^{\mathrm{n_i}}\times 1\frac{1-\mathrm{R_des}}{1+\left(\frac{\mathrm{C_cyto}}{\mathrm{K_act}}\right)^{\mathrm{n_a}}}\times 1-\mathrm{K_minus}\mathrm{R_des}$ $\frac{d \mathrm{C_cyto}}{d \mathrm{time}}}=\mathrm{K_1}\times 1(b\times 1+\mathrm{I_ra}\times 1)(\mathrm{Ca_tot}-\mathrm{C_cyto}(\mathrm{alpha}+1))\times 1-\mathrm{V_MP}\frac{\mathrm{C_cyto}^{\mathrm{n_p}}}{\mathrm{K_p}^{\mathrm{n_p}}+\mathrm{C_cyto}^{\mathrm{n_p}}}\times 1$ $\mathrm{I_ra}=\frac{\mathrm{I_rable}\times 1}{1+\left(\frac{\mathrm{K_act}}{\mathrm{C_cyto}}\right)^{\mathrm{n_a}}}$ $\mathrm{I_rable}=\frac{(1-\mathrm{R_des})\mathrm{IP3}}{\mathrm{K_IP}+\mathrm{IP3}}$ $\frac{d \mathrm{IP3}}{d \mathrm{time}}}=\frac{\mathrm{V_PLC}-\mathrm{V_3K}-\mathrm{V_5P}}{1}$ $\mathrm{V_PLC}=\mathrm{gamma}\mathrm{V_plc}\times 1$ $\mathrm{V_3K}=\mathrm{V_k}\frac{\mathrm{IP3}}{\mathrm{K_k}+\mathrm{IP3}}\frac{\mathrm{C_cyto}^{\mathrm{n_d}}}{\mathrm{K_d}^{\mathrm{n_d}}+\mathrm{C_cyto}^{\mathrm{n_d}}}\times 1$ $\mathrm{V_5P}=\mathrm{V_p1}\times 1\frac{\mathrm{IP3}}{\mathrm{K_p1}(1+\frac{\mathrm{IP4}}{\mathrm{K_p2}})+\mathrm{IP3}}$ $\frac{d \mathrm{IP4}}{d \mathrm{time}}}=(\mathrm{V_3K}-\mathrm{V_15P})\times 1-k\mathrm{IP4}$ $\mathrm{V_15P}=\frac{\mathrm{V_p2}\times 1\mathrm{IP4}}{\mathrm{K_p2}(1+\frac{\mathrm{IP3}}{\mathrm{K_p1}})+\mathrm{IP4}}$ $\mathrm{K_plus}=\frac{\mathrm{K_minus}}{\mathrm{K_inh}^{\mathrm{n_i}}}$ NielsenHannekeyword 9448939 2011-09-26DupontGMarhlMCell Calcium Simulations of the effects of inositol 1,4,5-trisphosphate 3-kinase and 5-phosphatase activities on Ca2+ oscillations 22(5)321331ErneuxCZ2011-10-10hnie010@aucklanduni.ac.nzliverhepatologyhepatocyteHumanLiverhepatocyte20The University of AucklandAuckland Bioengineering Institute