- Author:
- Dewan Sarwar <dsar941@UoA.auckland.ac.nz>
- Date:
- 2020-03-03 13:11:47+13:00
- Desc:
- adding protocol 12 in the protocolSEDML.xml
- Permanent Source URI:
- https://models.cellml.org/workspace/267/rawfile/eab94f6a3248160a2b8e27525166e337d11727c6/mackenzie_1996.cellml
<?xml version="1.0" encoding="UTF-8"?>
<model xmlns="http://www.cellml.org/cellml/1.1#" xmlns:cmeta="http://www.cellml.org/metadata/1.0#" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bqs="http://www.cellml.org/bqs/1.0#" xmlns:semsim="http://www.bhi.washington.edu/SemSim#" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:vCard="http://www.w3.org/2001/vcard-rdf/3.0#" name="mackenzie_1996" cmeta:id="mackenzie_1996">
<documentation xmlns="http://cellml.org/tmp-documentation">
<article>
<articleinfo>
<title>Biophysical Characteristics of the Pig Kidney Na/Glucose Cotransporter SGLT2 Reveal a Common Mechanism for SGLT1 and SGLT2</title>
<author>
<firstname>Jonna</firstname>
<surname>Terkildsen</surname>
<affiliation>
<shortaffil>Auckland Bioengineering Institute, University of Auckland</shortaffil>
</affiliation>
</author>
</articleinfo>
<sect1 id="sec_status">
<title>Model Status</title>
<para>This CellML model has been curated, the units are consistent and the model runs in COR and PCEnv. This model recreates the published results.</para>
</sect1>
<sect1 id="sec_structure">
<title>Model Structure</title>
<para>Abstract: The Na-dependent, low affinity glucose transporter SGLT2 cloned from pig kidney is 76% identical (at the amino acid level) to its high affinity homologue SGLT1. Using two-microelectrode voltage clamp, we have characterized the presteady-state and steady-state kinetics of SGLT2 expressed in Xenopus oocytes. The kinetic properties of the steady-state sugar-evoked currents as a function of external Na and a-methyl-D-glucopyranoside (aMG) concentrations were consistent with an ordered, simultaneous transport model in which Na binds first. Na binding was voltage-dependent and saturated with hyperpolarizing voltages. Phlorizin was a potent inhibitor of the sugar-evoked currents (Ki ~10 mM) and blocked an inward Na current in the absence of sugar. SGLT2 exhibited Na-dependent presteadystate currents with time constants 3-7 ms. Charge movements were described by Boltzmann relations with apparent valence ~1 and maximal charge transfer ~11 nC, and were reduced by the addition of sugar or phlorizin. The differences between SGLT1 and SGLT2 were that (i) the apparent affinity constant (K0.5) for aMG (~3 mM) was an order of magnitude higher for SGLT2; (ii) SGLT2 excluded galactose, suggesting discrete sugar binding; (iii) K0.5 for Na was lower in SGLT2; and (iv) the Hill coefficient for Na was 1 for SGLT2 but 2 for SGLT1. Simulations of the six-state kinetic model previously proposed for SGLT1 indicated that many of the kinetic properties observed in SGLT2 are expected by simply reducing the Na/glucose coupling from 2 to 1.</para>
<para>The original paper reference is cited below:</para>
<para>
Biophysical Characteristics of the Pig Kidney Na/Glucose Cotransporter SGLT2 Reveal a Common Mechanism for SGLT1 and SGLT2, M. Mackenzie, D.D.F. Loo, M. Panayotova-Heiermann, and E. M. Wright, 1996,
<emphasis>Journal of Biological Chemistry</emphasis>
, 271, 32678-32683.
<ulink url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=8955098&query_hl=1&itool=pubmed_docsum">PubMed ID: 8955098</ulink>
</para>
<informalfigure float="0" id="fig_reaction_diagram">
<mediaobject>
<imageobject>
<objectinfo>
<title>model diagram</title>
</objectinfo>
<imagedata fileref="mackenzie_1996.png" />
</imageobject>
</mediaobject>
<caption>Schematic diagram of the Mackenzie et al 1996 SGLT2 model. C' represents the external-facing carrier. C'' represents the internal-facing carrier.</caption>
</informalfigure>
</sect1>
</article>
</documentation>
<units name="per_second">
<unit exponent="-1.0" units="second" />
</units>
<units name="per_M2_per_second5">
<unit exponent="-2.0" units="M" />
<unit exponent="-5.0" units="second" />
</units>
<units name="M3">
<unit exponent="3.0" units="M" />
</units>
<units name="per_M2_per_second">
<unit exponent="-2.0" units="M" />
<unit exponent="-1.0" units="second" />
</units>
<units name="uA_per_um2">
<unit exponent="-1.0" units="um2" />
<unit units="uA" />
</units>
<units name="pA_per_cm2">
<unit prefix="pico" units="ampere" />
<unit exponent="-2.0" prefix="centi" units="metre" />
</units>
<units name="M2">
<unit exponent="2.0" units="M" />
</units>
<units name="umol">
<unit prefix="micro" units="mole" />
</units>
<units name="per_second5">
<unit exponent="-5.0" units="second" />
</units>
<units name="mol_per_um2">
<unit exponent="-1.0" units="um2" />
<unit units="mole" />
</units>
<units name="mV">
<unit prefix="milli" units="volt" />
</units>
<units name="per_mol">
<unit exponent="-1.0" units="mole" />
</units>
<units name="volt_per_second">
<unit units="volt" />
<unit exponent="-1.0" units="second" />
</units>
<units name="umol_per_second">
<unit units="umol" />
<unit exponent="-1.0" units="second" />
</units>
<units name="J_per_K_per_mol">
<unit units="joule" />
<unit exponent="-1.0" units="mole" />
<unit exponent="-1.0" units="kelvin" />
</units>
<units name="M2_per_second">
<unit exponent="-1.0" units="second" />
<unit exponent="2.0" units="M" />
</units>
<units name="M">
<unit exponent="-1.0" units="litre" />
<unit units="mole" />
</units>
<units name="uA">
<unit prefix="micro" units="ampere" />
</units>
<units name="uA_per_A">
<unit exponent="-1.0" units="ampere" />
<unit units="uA" />
</units>
<units name="um2">
<unit exponent="2.0" prefix="micro" units="metre" />
</units>
<units name="C_per_mol">
<unit exponent="-1.0" units="mole" />
<unit units="coulomb" />
</units>
<units name="per_M_per_second">
<unit exponent="-1.0" units="M" />
<unit exponent="-1.0" units="second" />
</units>
<units name="umol_per_mol">
<unit units="umol" />
<unit exponent="-1.0" units="mole" />
</units>
<units name="mM">
<unit prefix="milli" units="mole" />
<unit exponent="-1.0" units="litre" />
</units>
<units name="M_per_second">
<unit exponent="-1.0" units="second" />
<unit units="M" />
</units>
<component name="environment">
<variable cmeta:id="environment.time" name="time" public_interface="out" units="second" />
</component>
<component name="parameters">
<variable cmeta:id="parameters.k0_12" initial_value="20000" name="k0_12" public_interface="out" units="per_M_per_second" />
<variable cmeta:id="parameters.k0_21" initial_value="400" name="k0_21" public_interface="out" units="per_second" />
<variable cmeta:id="parameters.k0_23" initial_value="1e4" name="k0_23" public_interface="out" units="per_M_per_second" />
<variable cmeta:id="parameters.k0_32" initial_value="20" name="k0_32" public_interface="out" units="per_second" />
<variable cmeta:id="parameters.k0_34" initial_value="50" name="k0_34" public_interface="out" units="per_second" />
<variable cmeta:id="parameters.k0_43" initial_value="50" name="k0_43" public_interface="out" units="per_second" />
<variable cmeta:id="parameters.k0_45" initial_value="800" name="k0_45" public_interface="out" units="per_second" />
<variable cmeta:id="parameters.k0_54" initial_value="6.7e6" name="k0_54" public_interface="out" units="per_M_per_second" />
<variable cmeta:id="parameters.k0_25" initial_value="0.01" name="k0_25" public_interface="out" units="per_second" />
<variable cmeta:id="parameters.k0_52" initial_value="0.17" name="k0_52" public_interface="out" units="per_second" />
<variable cmeta:id="parameters.k0_56" initial_value="48" name="k0_56" public_interface="out" units="per_second" />
<variable cmeta:id="parameters.k0_65" initial_value="50" name="k0_65" public_interface="out" units="per_M_per_second" />
<variable cmeta:id="parameters.k0_61" initial_value="35" name="k0_61" public_interface="out" units="per_second" />
<variable cmeta:id="parameters.k0_16" initial_value="100" name="k0_16" public_interface="out" units="per_second" />
<variable cmeta:id="parameters.delta" initial_value="0.7" name="delta" public_interface="out" units="dimensionless" />
<variable cmeta:id="parameters.alpha_p" name="alpha_p" public_interface="out" units="dimensionless" />
<variable cmeta:id="parameters.alpha_pp" initial_value="0" name="alpha_pp" public_interface="out" units="dimensionless" />
<variable cmeta:id="parameters.N_C" initial_value="8.4e10" name="N_C" units="dimensionless" />
<variable cmeta:id="parameters.N_Avo" initial_value="6.022e23" name="N_Avo" units="per_mol" />
<variable cmeta:id="parameters.area" initial_value="1e6" name="area" units="um2" />
<variable cmeta:id="parameters.C_T" name="C_T" public_interface="out" units="umol" />
<variable cmeta:id="parameters.n" initial_value="1" name="n" public_interface="out" units="dimensionless" />
<variable cmeta:id="parameters.z_c" initial_value="-1" name="z_c" public_interface="out" units="dimensionless" />
<variable cmeta:id="parameters.z_Na" initial_value="1" name="z_Na" public_interface="out" units="dimensionless" />
<variable cmeta:id="parameters.F" initial_value="96485.34" name="F" public_interface="out" units="C_per_mol" />
<variable cmeta:id="parameters.R" initial_value="8.314" name="R" public_interface="out" units="J_per_K_per_mol" />
<variable cmeta:id="parameters.T" initial_value="310" name="T" public_interface="out" units="kelvin" />
<variable cmeta:id="parameters.V" name="V" public_interface="in" units="volt" />
<variable cmeta:id="parameters.mu" name="mu" public_interface="out" units="dimensionless" />
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq />
<ci>alpha_p</ci>
<apply>
<minus />
<apply>
<minus />
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="dimensionless">1</cn>
<ci>delta</ci>
</apply>
<ci>alpha_pp</ci>
</apply>
</apply>
<apply>
<eq />
<ci>C_T</ci>
<apply>
<divide />
<apply>
<times />
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" type="e-notation" cellml:units="umol_per_mol">
1
<sep />
6
</cn>
<ci>N_C</ci>
</apply>
<ci>N_Avo</ci>
</apply>
</apply>
<apply>
<eq />
<ci>mu</ci>
<apply>
<divide />
<apply>
<times />
<ci>F</ci>
<ci>V</ci>
</apply>
<apply>
<times />
<ci>R</ci>
<ci>T</ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="ion_concentrations">
<variable cmeta:id="ion_concentrations.V" initial_value="-150e-3" name="V" public_interface="out" units="volt" />
<variable cmeta:id="ion_concentrations.Na_i" initial_value="10e-3" name="Na_i" public_interface="out" units="M" />
<variable cmeta:id="ion_concentrations.Na_o" initial_value="100e-3" name="Na_o" public_interface="out" units="M" />
<variable cmeta:id="ion_concentrations.glucose_i" initial_value="0e-3" name="glucose_i" public_interface="out" units="M" />
<variable cmeta:id="ion_concentrations.glucose_o" initial_value="1e-3" name="glucose_o" public_interface="out" units="M" />
<variable cmeta:id="ion_concentrations.time" name="time" public_interface="in" units="second" />
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq />
<apply>
<diff />
<bvar>
<ci>time</ci>
</bvar>
<ci>V</ci>
</apply>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" type="e-notation" cellml:units="volt_per_second">
100
<sep />
-6
</cn>
</apply>
</math>
</component>
<component name="rate_constants">
<variable cmeta:id="rate_constants.Na_i" name="Na_i" public_interface="in" units="M" />
<variable cmeta:id="rate_constants.Na_o" name="Na_o" public_interface="in" units="M" />
<variable cmeta:id="rate_constants.glucose_i" name="glucose_i" public_interface="in" units="M" />
<variable cmeta:id="rate_constants.glucose_o" name="glucose_o" public_interface="in" units="M" />
<variable cmeta:id="rate_constants.k_12" name="k_12" public_interface="out" units="per_second" />
<variable cmeta:id="rate_constants.k_21" name="k_21" public_interface="out" units="per_second" />
<variable cmeta:id="rate_constants.k_23" name="k_23" public_interface="out" units="per_second" />
<variable cmeta:id="rate_constants.k_32" name="k_32" public_interface="out" units="per_second" />
<variable cmeta:id="rate_constants.k_34" name="k_34" public_interface="out" units="per_second" />
<variable cmeta:id="rate_constants.k_43" name="k_43" public_interface="out" units="per_second" />
<variable cmeta:id="rate_constants.k_45" name="k_45" public_interface="out" units="per_second" />
<variable cmeta:id="rate_constants.k_54" name="k_54" public_interface="out" units="per_second" />
<variable cmeta:id="rate_constants.k_25" name="k_25" public_interface="out" units="per_second" />
<variable cmeta:id="rate_constants.k_52" name="k_52" public_interface="out" units="per_second" />
<variable cmeta:id="rate_constants.k_56" name="k_56" public_interface="out" units="per_second" />
<variable cmeta:id="rate_constants.k_65" name="k_65" public_interface="out" units="per_second" />
<variable cmeta:id="rate_constants.k_61" name="k_61" public_interface="out" units="per_second" />
<variable cmeta:id="rate_constants.k_16" name="k_16" public_interface="out" units="per_second" />
<variable cmeta:id="rate_constants.k0_12" name="k0_12" public_interface="in" units="per_M_per_second" />
<variable cmeta:id="rate_constants.ks_12" name="ks_12" public_interface="out" units="per_M_per_second" />
<variable cmeta:id="rate_constants.k0_21" name="k0_21" public_interface="in" units="per_second" />
<variable cmeta:id="rate_constants.k0_23" name="k0_23" public_interface="in" units="per_M_per_second" />
<variable cmeta:id="rate_constants.k0_32" name="k0_32" public_interface="in" units="per_second" />
<variable cmeta:id="rate_constants.k0_34" name="k0_34" public_interface="in" units="per_second" />
<variable cmeta:id="rate_constants.k0_43" name="k0_43" public_interface="in" units="per_second" />
<variable cmeta:id="rate_constants.k0_45" name="k0_45" public_interface="in" units="per_second" />
<variable cmeta:id="rate_constants.k0_54_temp" name="k0_54_temp" public_interface="out" units="per_M_per_second" />
<variable cmeta:id="rate_constants.k0_54" name="k0_54" public_interface="in" units="per_M_per_second" />
<variable cmeta:id="rate_constants.k0_25" name="k0_25" public_interface="in" units="per_second" />
<variable cmeta:id="rate_constants.k_52_temp" name="k_52_temp" public_interface="out" units="per_second" />
<variable cmeta:id="rate_constants.k0_52" name="k0_52" public_interface="in" units="per_second" />
<variable cmeta:id="rate_constants.k0_56" name="k0_56" public_interface="in" units="per_second" />
<variable cmeta:id="rate_constants.k0_65" name="k0_65" public_interface="in" units="per_M_per_second" />
<variable cmeta:id="rate_constants.k0_61" name="k0_61" public_interface="in" units="per_second" />
<variable cmeta:id="rate_constants.k0_16" name="k0_16" public_interface="in" units="per_second" />
<variable cmeta:id="rate_constants.delta" name="delta" public_interface="in" units="dimensionless" />
<variable cmeta:id="rate_constants.n" name="n" public_interface="in" units="dimensionless" />
<variable cmeta:id="rate_constants.z_c" name="z_c" public_interface="in" units="dimensionless" />
<variable cmeta:id="rate_constants.z_Na" name="z_Na" public_interface="in" units="dimensionless" />
<variable cmeta:id="rate_constants.alpha_p" name="alpha_p" public_interface="in" units="dimensionless" />
<variable cmeta:id="rate_constants.alpha_pp" name="alpha_pp" public_interface="in" units="dimensionless" />
<variable cmeta:id="rate_constants.C_T" name="C_T" public_interface="in" units="umol" />
<variable cmeta:id="rate_constants.mu" name="mu" public_interface="in" units="dimensionless" />
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq />
<ci>ks_12</ci>
<apply>
<times />
<ci>k0_12</ci>
<apply>
<exp />
<apply>
<divide />
<apply>
<times />
<apply>
<minus />
<ci>n</ci>
</apply>
<ci>alpha_p</ci>
<ci>mu</ci>
</apply>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="dimensionless">2</cn>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq />
<ci>k_12</ci>
<apply>
<times />
<ci>ks_12</ci>
<apply>
<power />
<ci>Na_o</ci>
<ci>n</ci>
</apply>
</apply>
</apply>
<apply>
<eq />
<ci>k_21</ci>
<apply>
<times />
<ci>k0_21</ci>
<apply>
<exp />
<apply>
<divide />
<apply>
<times />
<ci>n</ci>
<ci>z_Na</ci>
<ci>alpha_p</ci>
<ci>mu</ci>
</apply>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="dimensionless">2</cn>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq />
<ci>k_23</ci>
<apply>
<times />
<ci>k0_23</ci>
<ci>glucose_o</ci>
</apply>
</apply>
<apply>
<eq />
<ci>k_32</ci>
<ci>k0_32</ci>
</apply>
<apply>
<eq />
<ci>k_34</ci>
<apply>
<times />
<ci>k0_34</ci>
<apply>
<exp />
<apply>
<divide />
<apply>
<times />
<apply>
<minus />
<apply>
<plus />
<ci>z_c</ci>
<ci>n</ci>
</apply>
</apply>
<ci>delta</ci>
<ci>mu</ci>
</apply>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="dimensionless">2</cn>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq />
<ci>k_43</ci>
<apply>
<times />
<ci>k0_43</ci>
<apply>
<exp />
<apply>
<divide />
<apply>
<times />
<apply>
<plus />
<ci>z_c</ci>
<ci>n</ci>
</apply>
<ci>delta</ci>
<ci>mu</ci>
</apply>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="dimensionless">2</cn>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq />
<ci>k_45</ci>
<ci>k0_45</ci>
</apply>
<apply>
<eq />
<ci>k_54</ci>
<apply>
<times />
<ci>k0_54_temp</ci>
<ci>glucose_i</ci>
</apply>
</apply>
<apply>
<eq />
<ci>k_25</ci>
<apply>
<times />
<ci>k0_25</ci>
<apply>
<exp />
<apply>
<divide />
<apply>
<times />
<apply>
<minus />
<apply>
<plus />
<ci>z_c</ci>
<ci>n</ci>
</apply>
</apply>
<ci>delta</ci>
<ci>mu</ci>
</apply>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="dimensionless">2</cn>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq />
<ci>k_52_temp</ci>
<apply>
<times />
<ci>k0_52</ci>
<apply>
<exp />
<apply>
<divide />
<apply>
<times />
<apply>
<plus />
<ci>z_c</ci>
<ci>n</ci>
</apply>
<ci>delta</ci>
<ci>mu</ci>
</apply>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="dimensionless">2</cn>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq />
<ci>k_56</ci>
<apply>
<times />
<ci>k0_56</ci>
<apply>
<exp />
<apply>
<divide />
<apply>
<times />
<apply>
<minus />
<ci>n</ci>
</apply>
<ci>z_Na</ci>
<ci>alpha_pp</ci>
<ci>mu</ci>
</apply>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="dimensionless">2</cn>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq />
<ci>k_65</ci>
<apply>
<times />
<ci>k0_65</ci>
<apply>
<power />
<ci>Na_i</ci>
<ci>n</ci>
</apply>
<apply>
<exp />
<apply>
<divide />
<apply>
<times />
<ci>n</ci>
<ci>z_Na</ci>
<ci>alpha_pp</ci>
<ci>mu</ci>
</apply>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="dimensionless">2</cn>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq />
<ci>k_61</ci>
<apply>
<times />
<ci>k0_61</ci>
<apply>
<exp />
<apply>
<divide />
<apply>
<times />
<ci>z_c</ci>
<ci>delta</ci>
<ci>mu</ci>
</apply>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="dimensionless">2</cn>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq />
<ci>k_16</ci>
<apply>
<times />
<ci>k0_16</ci>
<apply>
<exp />
<apply>
<divide />
<apply>
<times />
<apply>
<minus />
<ci>z_c</ci>
</apply>
<ci>delta</ci>
<ci>mu</ci>
</apply>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="dimensionless">2</cn>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq />
<ci>k_52</ci>
<apply>
<divide />
<apply>
<times />
<ci>k0_12</ci>
<ci>k_25</ci>
<ci>k0_56</ci>
<ci>k0_61</ci>
</apply>
<apply>
<times />
<ci>k0_21</ci>
<ci>k0_16</ci>
<ci>k0_65</ci>
</apply>
</apply>
</apply>
<apply>
<eq />
<ci>k0_54_temp</ci>
<apply>
<divide />
<apply>
<times />
<ci>k0_23</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_52</ci>
</apply>
<apply>
<times />
<ci>k_43</ci>
<ci>k_32</ci>
<ci>k_25</ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="kinetic_equations">
<variable cmeta:id="kinetic_equations.k_12" name="k_12" public_interface="in" units="per_second" />
<variable cmeta:id="kinetic_equations.k_21" name="k_21" public_interface="in" units="per_second" />
<variable cmeta:id="kinetic_equations.k_23" name="k_23" public_interface="in" units="per_second" />
<variable cmeta:id="kinetic_equations.k_32" name="k_32" public_interface="in" units="per_second" />
<variable cmeta:id="kinetic_equations.k_34" name="k_34" public_interface="in" units="per_second" />
<variable cmeta:id="kinetic_equations.k_43" name="k_43" public_interface="in" units="per_second" />
<variable cmeta:id="kinetic_equations.k_45" name="k_45" public_interface="in" units="per_second" />
<variable cmeta:id="kinetic_equations.k_54" name="k_54" public_interface="in" units="per_second" />
<variable cmeta:id="kinetic_equations.k_25" name="k_25" public_interface="in" units="per_second" />
<variable cmeta:id="kinetic_equations.k_52" name="k_52" public_interface="in" units="per_second" />
<variable cmeta:id="kinetic_equations.k_56" name="k_56" public_interface="in" units="per_second" />
<variable cmeta:id="kinetic_equations.k_65" name="k_65" public_interface="in" units="per_second" />
<variable cmeta:id="kinetic_equations.k_61" name="k_61" public_interface="in" units="per_second" />
<variable cmeta:id="kinetic_equations.k_16" name="k_16" public_interface="in" units="per_second" />
<variable cmeta:id="kinetic_equations.C_1" initial_value="3.923e-9" name="C_1" public_interface="out" units="umol" />
<variable cmeta:id="kinetic_equations.C_2" initial_value="1.016e-7" name="C_2" public_interface="out" units="umol" />
<variable cmeta:id="kinetic_equations.C_3" initial_value="1.515e-8" name="C_3" public_interface="out" units="umol" />
<variable cmeta:id="kinetic_equations.C_4" initial_value="8.912e-10" name="C_4" public_interface="out" units="umol" />
<variable cmeta:id="kinetic_equations.C_5" initial_value="1.485e-8" name="C_5" public_interface="out" units="umol" />
<variable cmeta:id="kinetic_equations.C_6" name="C_6" public_interface="out" units="umol" />
<variable cmeta:id="kinetic_equations.C_6_temp" initial_value="3.06798e-9" name="C_6_temp" public_interface="out" units="umol" />
<variable cmeta:id="kinetic_equations.C_T" name="C_T" public_interface="in" units="umol" />
<variable cmeta:id="kinetic_equations.time" name="time" public_interface="in" units="second" />
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq />
<apply>
<diff />
<bvar>
<ci>time</ci>
</bvar>
<ci>C_1</ci>
</apply>
<apply>
<minus />
<apply>
<plus />
<apply>
<times />
<ci>k_21</ci>
<ci>C_2</ci>
</apply>
<apply>
<times />
<ci>k_61</ci>
<ci>C_6</ci>
</apply>
</apply>
<apply>
<times />
<apply>
<plus />
<ci>k_12</ci>
<ci>k_16</ci>
</apply>
<ci>C_1</ci>
</apply>
</apply>
</apply>
<apply>
<eq />
<apply>
<diff />
<bvar>
<ci>time</ci>
</bvar>
<ci>C_2</ci>
</apply>
<apply>
<minus />
<apply>
<plus />
<apply>
<times />
<ci>k_12</ci>
<ci>C_1</ci>
</apply>
<apply>
<times />
<ci>k_32</ci>
<ci>C_3</ci>
</apply>
<apply>
<times />
<ci>k_52</ci>
<ci>C_5</ci>
</apply>
</apply>
<apply>
<times />
<apply>
<plus />
<ci>k_21</ci>
<ci>k_23</ci>
<ci>k_25</ci>
</apply>
<ci>C_2</ci>
</apply>
</apply>
</apply>
<apply>
<eq />
<apply>
<diff />
<bvar>
<ci>time</ci>
</bvar>
<ci>C_3</ci>
</apply>
<apply>
<minus />
<apply>
<plus />
<apply>
<times />
<ci>k_23</ci>
<ci>C_2</ci>
</apply>
<apply>
<times />
<ci>k_43</ci>
<ci>C_4</ci>
</apply>
</apply>
<apply>
<times />
<apply>
<plus />
<ci>k_32</ci>
<ci>k_34</ci>
</apply>
<ci>C_3</ci>
</apply>
</apply>
</apply>
<apply>
<eq />
<apply>
<diff />
<bvar>
<ci>time</ci>
</bvar>
<ci>C_4</ci>
</apply>
<apply>
<minus />
<apply>
<plus />
<apply>
<times />
<ci>k_34</ci>
<ci>C_3</ci>
</apply>
<apply>
<times />
<ci>k_54</ci>
<ci>C_5</ci>
</apply>
</apply>
<apply>
<times />
<apply>
<plus />
<ci>k_45</ci>
<ci>k_43</ci>
</apply>
<ci>C_4</ci>
</apply>
</apply>
</apply>
<apply>
<eq />
<apply>
<diff />
<bvar>
<ci>time</ci>
</bvar>
<ci>C_5</ci>
</apply>
<apply>
<minus />
<apply>
<plus />
<apply>
<times />
<ci>k_45</ci>
<ci>C_4</ci>
</apply>
<apply>
<times />
<ci>k_65</ci>
<ci>C_6</ci>
</apply>
<apply>
<times />
<ci>k_25</ci>
<ci>C_2</ci>
</apply>
</apply>
<apply>
<times />
<apply>
<plus />
<ci>k_54</ci>
<ci>k_52</ci>
<ci>k_56</ci>
</apply>
<ci>C_5</ci>
</apply>
</apply>
</apply>
<apply>
<eq />
<apply>
<diff />
<bvar>
<ci>time</ci>
</bvar>
<ci>C_6_temp</ci>
</apply>
<apply>
<minus />
<apply>
<plus />
<apply>
<times />
<ci>k_16</ci>
<ci>C_1</ci>
</apply>
<apply>
<times />
<ci>k_56</ci>
<ci>C_5</ci>
</apply>
</apply>
<apply>
<times />
<apply>
<plus />
<ci>k_61</ci>
<ci>k_65</ci>
</apply>
<ci>C_6_temp</ci>
</apply>
</apply>
</apply>
<apply>
<eq />
<ci>C_6</ci>
<apply>
<minus />
<ci>C_T</ci>
<apply>
<plus />
<ci>C_1</ci>
<ci>C_2</ci>
<ci>C_3</ci>
<ci>C_4</ci>
<ci>C_5</ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="king_altman_states">
<variable cmeta:id="king_altman_states.k_12" name="k_12" public_interface="in" units="per_second" />
<variable cmeta:id="king_altman_states.k_21" name="k_21" public_interface="in" units="per_second" />
<variable cmeta:id="king_altman_states.k_23" name="k_23" public_interface="in" units="per_second" />
<variable cmeta:id="king_altman_states.k_32" name="k_32" public_interface="in" units="per_second" />
<variable cmeta:id="king_altman_states.k_34" name="k_34" public_interface="in" units="per_second" />
<variable cmeta:id="king_altman_states.k_43" name="k_43" public_interface="in" units="per_second" />
<variable cmeta:id="king_altman_states.k_45" name="k_45" public_interface="in" units="per_second" />
<variable cmeta:id="king_altman_states.k_54" name="k_54" public_interface="in" units="per_second" />
<variable cmeta:id="king_altman_states.k_25" name="k_25" public_interface="in" units="per_second" />
<variable cmeta:id="king_altman_states.k_52" name="k_52" public_interface="in" units="per_second" />
<variable cmeta:id="king_altman_states.k_56" name="k_56" public_interface="in" units="per_second" />
<variable cmeta:id="king_altman_states.k_65" name="k_65" public_interface="in" units="per_second" />
<variable cmeta:id="king_altman_states.k_61" name="k_61" public_interface="in" units="per_second" />
<variable cmeta:id="king_altman_states.k_16" name="k_16" public_interface="in" units="per_second" />
<variable cmeta:id="king_altman_states.C1_sum" name="C1_sum" units="per_second5" />
<variable cmeta:id="king_altman_states.C2_sum" name="C2_sum" units="per_second5" />
<variable cmeta:id="king_altman_states.C3_sum" name="C3_sum" units="per_second5" />
<variable cmeta:id="king_altman_states.C4_sum" name="C4_sum" units="per_second5" />
<variable cmeta:id="king_altman_states.C5_sum" name="C5_sum" units="per_second5" />
<variable cmeta:id="king_altman_states.C6_sum" name="C6_sum" units="per_second5" />
<variable cmeta:id="king_altman_states.C_sum" name="C_sum" units="per_second5" />
<variable cmeta:id="king_altman_states.C_T" name="C_T" public_interface="in" units="umol" />
<variable cmeta:id="king_altman_states.C1" name="C1" public_interface="out" units="umol" />
<variable cmeta:id="king_altman_states.C2" name="C2" public_interface="out" units="umol" />
<variable cmeta:id="king_altman_states.C3" name="C3" public_interface="out" units="umol" />
<variable cmeta:id="king_altman_states.C4" name="C4" public_interface="out" units="umol" />
<variable cmeta:id="king_altman_states.C5" name="C5" public_interface="out" units="umol" />
<variable cmeta:id="king_altman_states.C6" name="C6" public_interface="out" units="umol" />
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq />
<ci>C1_sum</ci>
<apply>
<plus />
<apply>
<times />
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_21</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_25</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_56</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_23</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_56</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_21</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_56</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_25</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_56</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_56</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_25</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_56</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_56</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_54</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_21</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_52</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_52</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_52</ci>
<ci>k_61</ci>
</apply>
</apply>
</apply>
<apply>
<eq />
<ci>C2_sum</ci>
<apply>
<plus />
<apply>
<times />
<ci>k_16</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_56</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_56</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_56</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_54</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_52</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_52</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_52</ci>
<ci>k_61</ci>
</apply>
</apply>
</apply>
<apply>
<eq />
<ci>C3_sum</ci>
<apply>
<plus />
<apply>
<times />
<ci>k_16</ci>
<ci>k_25</ci>
<ci>k_43</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_25</ci>
<ci>k_43</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_23</ci>
<ci>k_43</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_23</ci>
<ci>k_43</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_21</ci>
<ci>k_43</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_23</ci>
<ci>k_45</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_23</ci>
<ci>k_45</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_23</ci>
<ci>k_43</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_23</ci>
<ci>k_43</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_23</ci>
<ci>k_45</ci>
<ci>k_56</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_23</ci>
<ci>k_43</ci>
<ci>k_56</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_25</ci>
<ci>k_43</ci>
<ci>k_54</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_23</ci>
<ci>k_43</ci>
<ci>k_54</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_23</ci>
<ci>k_45</ci>
<ci>k_52</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_23</ci>
<ci>k_43</ci>
<ci>k_52</ci>
<ci>k_61</ci>
</apply>
</apply>
</apply>
<apply>
<eq />
<ci>C4_sum</ci>
<apply>
<plus />
<apply>
<times />
<ci>k_16</ci>
<ci>k_25</ci>
<ci>k_34</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_25</ci>
<ci>k_34</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_23</ci>
<ci>k_34</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_23</ci>
<ci>k_34</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_21</ci>
<ci>k_34</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_25</ci>
<ci>k_32</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_25</ci>
<ci>k_32</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_23</ci>
<ci>k_34</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_23</ci>
<ci>k_34</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_23</ci>
<ci>k_34</ci>
<ci>k_56</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_25</ci>
<ci>k_34</ci>
<ci>k_54</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_23</ci>
<ci>k_34</ci>
<ci>k_54</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_25</ci>
<ci>k_32</ci>
<ci>k_54</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_23</ci>
<ci>k_34</ci>
<ci>k_52</ci>
<ci>k_61</ci>
</apply>
</apply>
</apply>
<apply>
<eq />
<ci>C5_sum</ci>
<apply>
<plus />
<apply>
<times />
<ci>k_16</ci>
<ci>k_25</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_25</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_23</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_23</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_21</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_25</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_25</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_25</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_25</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_25</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_23</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_25</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_25</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_61</ci>
</apply>
</apply>
</apply>
<apply>
<eq />
<ci>C6_sum</ci>
<apply>
<plus />
<apply>
<times />
<ci>k_16</ci>
<ci>k_25</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_56</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_25</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_56</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_23</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_56</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_23</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_56</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_21</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_56</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_25</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_56</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_25</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_56</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_56</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_25</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_56</ci>
</apply>
<apply>
<times />
<ci>k_12</ci>
<ci>k_25</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_56</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_56</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_54</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_21</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_52</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_52</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_52</ci>
</apply>
</apply>
</apply>
<apply>
<eq />
<ci>C_sum</ci>
<apply>
<plus />
<ci>C1_sum</ci>
<ci>C2_sum</ci>
<ci>C3_sum</ci>
<ci>C4_sum</ci>
<ci>C5_sum</ci>
<ci>C6_sum</ci>
</apply>
</apply>
<apply>
<eq />
<ci>C1</ci>
<apply>
<divide />
<apply>
<times />
<ci>C_T</ci>
<ci>C1_sum</ci>
</apply>
<ci>C_sum</ci>
</apply>
</apply>
<apply>
<eq />
<ci>C2</ci>
<apply>
<divide />
<apply>
<times />
<ci>C_T</ci>
<ci>C2_sum</ci>
</apply>
<ci>C_sum</ci>
</apply>
</apply>
<apply>
<eq />
<ci>C3</ci>
<apply>
<divide />
<apply>
<times />
<ci>C_T</ci>
<ci>C3_sum</ci>
</apply>
<ci>C_sum</ci>
</apply>
</apply>
<apply>
<eq />
<ci>C4</ci>
<apply>
<divide />
<apply>
<times />
<ci>C_T</ci>
<ci>C4_sum</ci>
</apply>
<ci>C_sum</ci>
</apply>
</apply>
<apply>
<eq />
<ci>C5</ci>
<apply>
<divide />
<apply>
<times />
<ci>C_T</ci>
<ci>C5_sum</ci>
</apply>
<ci>C_sum</ci>
</apply>
</apply>
<apply>
<eq />
<ci>C6</ci>
<apply>
<divide />
<apply>
<times />
<ci>C_T</ci>
<ci>C6_sum</ci>
</apply>
<ci>C_sum</ci>
</apply>
</apply>
</math>
</component>
<component name="NBC_current">
<variable cmeta:id="NBC_current.k_12" name="k_12" public_interface="in" units="per_second" />
<variable cmeta:id="NBC_current.k_21" name="k_21" public_interface="in" units="per_second" />
<variable cmeta:id="NBC_current.k_56" name="k_56" public_interface="in" units="per_second" />
<variable cmeta:id="NBC_current.k_65" name="k_65" public_interface="in" units="per_second" />
<variable cmeta:id="NBC_current.k_34" name="k_34" public_interface="in" units="per_second" />
<variable cmeta:id="NBC_current.k_43" name="k_43" public_interface="in" units="per_second" />
<variable cmeta:id="NBC_current.k_25" name="k_25" public_interface="in" units="per_second" />
<variable cmeta:id="NBC_current.k_52" name="k_52" public_interface="in" units="per_second" />
<variable cmeta:id="NBC_current.k_61" name="k_61" public_interface="in" units="per_second" />
<variable cmeta:id="NBC_current.k_16" name="k_16" public_interface="in" units="per_second" />
<variable cmeta:id="NBC_current.C_1" name="C_1" public_interface="in" units="umol" />
<variable cmeta:id="NBC_current.C_2" name="C_2" public_interface="in" units="umol" />
<variable cmeta:id="NBC_current.C_3" name="C_3" public_interface="in" units="umol" />
<variable cmeta:id="NBC_current.C_4" name="C_4" public_interface="in" units="umol" />
<variable cmeta:id="NBC_current.C_5" name="C_5" public_interface="in" units="umol" />
<variable cmeta:id="NBC_current.C_6" name="C_6" public_interface="in" units="umol" />
<variable cmeta:id="NBC_current.C1" name="C1" public_interface="in" units="umol" />
<variable cmeta:id="NBC_current.C2" name="C2" public_interface="in" units="umol" />
<variable cmeta:id="NBC_current.C3" name="C3" public_interface="in" units="umol" />
<variable cmeta:id="NBC_current.C4" name="C4" public_interface="in" units="umol" />
<variable cmeta:id="NBC_current.C5" name="C5" public_interface="in" units="umol" />
<variable cmeta:id="NBC_current.C6" name="C6" public_interface="in" units="umol" />
<variable cmeta:id="NBC_current.delta" name="delta" public_interface="in" units="dimensionless" />
<variable cmeta:id="NBC_current.alpha_p" name="alpha_p" public_interface="in" units="dimensionless" />
<variable cmeta:id="NBC_current.alpha_pp" name="alpha_pp" public_interface="in" units="dimensionless" />
<variable cmeta:id="NBC_current.n" name="n" public_interface="in" units="dimensionless" />
<variable cmeta:id="NBC_current.z_c" name="z_c" public_interface="in" units="dimensionless" />
<variable cmeta:id="NBC_current.z_Na" name="z_Na" public_interface="in" units="dimensionless" />
<variable cmeta:id="NBC_current.F" name="F" public_interface="in" units="C_per_mol" />
<variable cmeta:id="NBC_current.I_NaGl_pSS" name="I_NaGl_pSS" public_interface="out" units="uA" />
<variable cmeta:id="NBC_current.I_NaGl_SS" name="I_NaGl_SS" public_interface="out" units="uA" />
<variable cmeta:id="NBC_current.J_Na" name="J_Na" public_interface="out" units="umol_per_second" />
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq />
<ci>I_NaGl_pSS</ci>
<apply>
<times />
<apply>
<minus />
<ci>F</ci>
</apply>
<apply>
<plus />
<apply>
<times />
<ci>n</ci>
<ci>z_Na</ci>
<ci>alpha_p</ci>
<apply>
<minus />
<apply>
<times />
<ci>k_12</ci>
<ci>C_1</ci>
</apply>
<apply>
<times />
<ci>k_21</ci>
<ci>C_2</ci>
</apply>
</apply>
</apply>
<apply>
<times />
<ci>z_c</ci>
<ci>delta</ci>
<apply>
<minus />
<apply>
<times />
<ci>k_16</ci>
<ci>C_1</ci>
</apply>
<apply>
<times />
<ci>k_61</ci>
<ci>C_6</ci>
</apply>
</apply>
</apply>
<apply>
<times />
<ci>n</ci>
<ci>z_Na</ci>
<ci>alpha_pp</ci>
<apply>
<minus />
<apply>
<times />
<ci>k_56</ci>
<ci>C_5</ci>
</apply>
<apply>
<times />
<ci>k_65</ci>
<ci>C_6</ci>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq />
<ci>I_NaGl_SS</ci>
<apply>
<times />
<apply>
<minus />
<ci>F</ci>
</apply>
<apply>
<plus />
<apply>
<times />
<ci>z_c</ci>
<apply>
<minus />
<apply>
<times />
<ci>k_16</ci>
<ci>C1</ci>
</apply>
<apply>
<times />
<ci>k_61</ci>
<ci>C6</ci>
</apply>
</apply>
</apply>
<apply>
<times />
<apply>
<plus />
<ci>z_c</ci>
<apply>
<times />
<ci>z_Na</ci>
<ci>n</ci>
</apply>
</apply>
<apply>
<minus />
<apply>
<times />
<ci>k_25</ci>
<ci>C2</ci>
</apply>
<apply>
<times />
<ci>k_52</ci>
<ci>C5</ci>
</apply>
</apply>
</apply>
<apply>
<times />
<apply>
<plus />
<ci>z_c</ci>
<apply>
<times />
<ci>z_Na</ci>
<ci>n</ci>
</apply>
</apply>
<apply>
<minus />
<apply>
<times />
<ci>k_34</ci>
<ci>C3</ci>
</apply>
<apply>
<times />
<ci>k_43</ci>
<ci>C4</ci>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq />
<ci>J_Na</ci>
<apply>
<plus />
<apply>
<minus />
<apply>
<times />
<ci>k_25</ci>
<ci>C2</ci>
</apply>
<apply>
<times />
<ci>k_52</ci>
<ci>C5</ci>
</apply>
</apply>
<apply>
<minus />
<apply>
<times />
<ci>k_34</ci>
<ci>C3</ci>
</apply>
<apply>
<times />
<ci>k_43</ci>
<ci>C4</ci>
</apply>
</apply>
</apply>
</apply>
</math>
</component>
<component name="phenomonological_constants">
<variable cmeta:id="phenomonological_constants.epsilon" name="epsilon" public_interface="out" units="per_second" />
<variable cmeta:id="phenomonological_constants.lambda" name="lambda" public_interface="out" units="per_M2_per_second5" />
<variable cmeta:id="phenomonological_constants.chi" name="chi" public_interface="out" units="M" />
<variable cmeta:id="phenomonological_constants.alpha" name="alpha" public_interface="out" units="M2" />
<variable cmeta:id="phenomonological_constants.beta" name="beta" public_interface="out" units="M" />
<variable cmeta:id="phenomonological_constants.gamma" name="gamma" public_interface="out" units="M2_per_second" />
<variable cmeta:id="phenomonological_constants.phi" name="phi" public_interface="out" units="M_per_second" />
<variable cmeta:id="phenomonological_constants.k_12" name="k_12" public_interface="in" units="per_second" />
<variable cmeta:id="phenomonological_constants.k_21" name="k_21" public_interface="in" units="per_second" />
<variable cmeta:id="phenomonological_constants.k_23" name="k_23" public_interface="in" units="per_second" />
<variable cmeta:id="phenomonological_constants.k_32" name="k_32" public_interface="in" units="per_second" />
<variable cmeta:id="phenomonological_constants.k_34" name="k_34" public_interface="in" units="per_second" />
<variable cmeta:id="phenomonological_constants.k_43" name="k_43" public_interface="in" units="per_second" />
<variable cmeta:id="phenomonological_constants.k_45" name="k_45" public_interface="in" units="per_second" />
<variable cmeta:id="phenomonological_constants.k_54" name="k_54" public_interface="in" units="per_second" />
<variable cmeta:id="phenomonological_constants.k_25" name="k_25" public_interface="in" units="per_second" />
<variable cmeta:id="phenomonological_constants.k_52" name="k_52" public_interface="in" units="per_second" />
<variable cmeta:id="phenomonological_constants.k_56" name="k_56" public_interface="in" units="per_second" />
<variable cmeta:id="phenomonological_constants.k_65" name="k_65" public_interface="in" units="per_second" />
<variable cmeta:id="phenomonological_constants.k_61" name="k_61" public_interface="in" units="per_second" />
<variable cmeta:id="phenomonological_constants.k_16" name="k_16" public_interface="in" units="per_second" />
<variable cmeta:id="phenomonological_constants.ks_12" name="ks_12" public_interface="in" units="per_M_per_second" />
<variable cmeta:id="phenomonological_constants.k0_23" name="k0_23" public_interface="in" units="per_M_per_second" />
<variable cmeta:id="phenomonological_constants.C_T" name="C_T" public_interface="in" units="umol" />
<variable cmeta:id="phenomonological_constants.F" name="F" public_interface="in" units="C_per_mol" />
<variable cmeta:id="phenomonological_constants.Na_o" name="Na_o" public_interface="in" units="M" />
<variable cmeta:id="phenomonological_constants.glucose_o" name="glucose_o" public_interface="in" units="M" />
<variable cmeta:id="phenomonological_constants.Imax_Na" name="Imax_Na" public_interface="out" units="uA" />
<variable cmeta:id="phenomonological_constants.Imax_gluc" name="Imax_gluc" public_interface="out" units="uA" />
<variable cmeta:id="phenomonological_constants.Khalf_Na" name="Khalf_Na" public_interface="out" units="M" />
<variable cmeta:id="phenomonological_constants.Khalf_gluc" name="Khalf_gluc" public_interface="out" units="M" />
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq />
<ci>lambda</ci>
<apply>
<plus />
<apply>
<times />
<ci>ks_12</ci>
<ci>k0_23</ci>
<ci>k_43</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k0_23</ci>
<ci>k_34</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k0_23</ci>
<ci>k_45</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k0_23</ci>
<ci>k_43</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k0_23</ci>
<ci>k_34</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k0_23</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k0_23</ci>
<ci>k_45</ci>
<ci>k_56</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k0_23</ci>
<ci>k_43</ci>
<ci>k_56</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k0_23</ci>
<ci>k_34</ci>
<ci>k_56</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k0_23</ci>
<ci>k_43</ci>
<ci>k_54</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k0_23</ci>
<ci>k_34</ci>
<ci>k_54</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k0_23</ci>
<ci>k_45</ci>
<ci>k_52</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k0_23</ci>
<ci>k_43</ci>
<ci>k_52</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k0_23</ci>
<ci>k_34</ci>
<ci>k_52</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k0_23</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k0_23</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_56</ci>
</apply>
</apply>
</apply>
<apply>
<eq />
<ci>chi</ci>
<apply>
<times />
<apply>
<divide />
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="dimensionless">1</cn>
<ci>lambda</ci>
</apply>
<apply>
<plus />
<apply>
<times />
<ci>ks_12</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k_25</ci>
<ci>k_43</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k_25</ci>
<ci>k_34</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k_25</ci>
<ci>k_32</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k_25</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k_25</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k_25</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_56</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_56</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_56</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_54</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k_25</ci>
<ci>k_43</ci>
<ci>k_54</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k_25</ci>
<ci>k_34</ci>
<ci>k_54</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k_25</ci>
<ci>k_32</ci>
<ci>k_54</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_52</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_52</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_52</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k_25</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k_25</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k_25</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k_25</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_56</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k_25</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_56</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k_25</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_56</ci>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq />
<ci>beta</ci>
<apply>
<times />
<apply>
<divide />
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="dimensionless">1</cn>
<ci>lambda</ci>
</apply>
<apply>
<plus />
<apply>
<times />
<ci>k0_23</ci>
<ci>k_16</ci>
<ci>k_43</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k0_23</ci>
<ci>k_16</ci>
<ci>k_34</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k0_23</ci>
<ci>k_16</ci>
<ci>k_45</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k0_23</ci>
<ci>k_16</ci>
<ci>k_43</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k0_23</ci>
<ci>k_16</ci>
<ci>k_34</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k0_23</ci>
<ci>k_16</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k0_23</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_56</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k0_23</ci>
<ci>k_16</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_56</ci>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq />
<ci>alpha</ci>
<apply>
<times />
<apply>
<divide />
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="dimensionless">1</cn>
<ci>lambda</ci>
</apply>
<apply>
<plus />
<apply>
<times />
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_25</ci>
<ci>k_43</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_21</ci>
<ci>k_43</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_25</ci>
<ci>k_34</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_21</ci>
<ci>k_34</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_25</ci>
<ci>k_32</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_21</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_25</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_21</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_25</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_25</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_25</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_56</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_21</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_56</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_25</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_56</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_56</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_25</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_56</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_56</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_54</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_21</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_52</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_52</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_52</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_25</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_56</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_21</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_56</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_25</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_56</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_56</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_25</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_56</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_56</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_54</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_21</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_52</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_52</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_52</ci>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq />
<ci>gamma</ci>
<apply>
<times />
<apply>
<divide />
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="dimensionless">1</cn>
<ci>lambda</ci>
</apply>
<apply>
<plus />
<apply>
<times />
<ci>k_16</ci>
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_54</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_21</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
<apply>
<times />
<ci>k_16</ci>
<ci>k_21</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_52</ci>
<ci>k_65</ci>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq />
<ci>phi</ci>
<apply>
<times />
<apply>
<divide />
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="dimensionless">1</cn>
<ci>lambda</ci>
</apply>
<apply>
<minus />
<apply>
<minus />
<apply>
<times />
<apply>
<minus />
<ci>ks_12</ci>
</apply>
<ci>k_25</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_56</ci>
<ci>k_61</ci>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k_25</ci>
<ci>k_32</ci>
<ci>k_45</ci>
<ci>k_56</ci>
<ci>k_61</ci>
</apply>
</apply>
<apply>
<times />
<ci>ks_12</ci>
<ci>k_25</ci>
<ci>k_32</ci>
<ci>k_43</ci>
<ci>k_56</ci>
<ci>k_61</ci>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq />
<ci>epsilon</ci>
<apply>
<times />
<apply>
<divide />
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="dimensionless">1</cn>
<ci>lambda</ci>
</apply>
<apply>
<minus />
<ci>ks_12</ci>
</apply>
<ci>k0_23</ci>
<ci>k_34</ci>
<ci>k_45</ci>
<ci>k_56</ci>
<ci>k_61</ci>
</apply>
</apply>
<apply>
<eq />
<ci>Imax_gluc</ci>
<apply>
<divide />
<apply>
<times />
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="dimensionless">2</cn>
<ci>F</ci>
<ci>C_T</ci>
<ci>epsilon</ci>
<ci>Na_o</ci>
</apply>
<apply>
<plus />
<ci>beta</ci>
<ci>Na_o</ci>
</apply>
</apply>
</apply>
<apply>
<eq />
<ci>Imax_Na</ci>
<apply>
<divide />
<apply>
<times />
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="dimensionless">2</cn>
<ci>F</ci>
<ci>C_T</ci>
<apply>
<plus />
<ci>phi</ci>
<apply>
<times />
<ci>epsilon</ci>
<ci>glucose_o</ci>
</apply>
</apply>
</apply>
<apply>
<plus />
<ci>chi</ci>
<ci>glucose_o</ci>
</apply>
</apply>
</apply>
<apply>
<eq />
<ci>Khalf_gluc</ci>
<apply>
<divide />
<apply>
<plus />
<ci>alpha</ci>
<apply>
<times />
<ci>chi</ci>
<ci>Na_o</ci>
</apply>
</apply>
<apply>
<plus />
<ci>beta</ci>
<ci>Na_o</ci>
</apply>
</apply>
</apply>
<apply>
<eq />
<ci>Khalf_Na</ci>
<apply>
<divide />
<apply>
<plus />
<ci>alpha</ci>
<apply>
<times />
<ci>beta</ci>
<ci>glucose_o</ci>
</apply>
</apply>
<apply>
<plus />
<ci>chi</ci>
<ci>glucose_o</ci>
</apply>
</apply>
</apply>
</math>
</component>
<connection>
<map_components component_1="ion_concentrations" component_2="parameters" />
<map_variables variable_1="V" variable_2="V" />
</connection>
<connection>
<map_components component_1="rate_constants" component_2="kinetic_equations" />
<map_variables variable_1="k_54" variable_2="k_54" />
<map_variables variable_1="k_25" variable_2="k_25" />
<map_variables variable_1="k_16" variable_2="k_16" />
<map_variables variable_1="k_45" variable_2="k_45" />
<map_variables variable_1="k_52" variable_2="k_52" />
<map_variables variable_1="k_23" variable_2="k_23" />
<map_variables variable_1="k_43" variable_2="k_43" />
<map_variables variable_1="k_61" variable_2="k_61" />
<map_variables variable_1="k_56" variable_2="k_56" />
<map_variables variable_1="k_65" variable_2="k_65" />
<map_variables variable_1="k_34" variable_2="k_34" />
<map_variables variable_1="k_12" variable_2="k_12" />
<map_variables variable_1="k_21" variable_2="k_21" />
<map_variables variable_1="k_32" variable_2="k_32" />
</connection>
<connection>
<map_components component_1="parameters" component_2="phenomonological_constants" />
<map_variables variable_1="F" variable_2="F" />
<map_variables variable_1="k0_23" variable_2="k0_23" />
<map_variables variable_1="C_T" variable_2="C_T" />
</connection>
<connection>
<map_components component_1="kinetic_equations" component_2="NBC_current" />
<map_variables variable_1="C_4" variable_2="C_4" />
<map_variables variable_1="C_2" variable_2="C_2" />
<map_variables variable_1="C_1" variable_2="C_1" />
<map_variables variable_1="C_6" variable_2="C_6" />
<map_variables variable_1="C_5" variable_2="C_5" />
<map_variables variable_1="C_3" variable_2="C_3" />
</connection>
<connection>
<map_components component_1="ion_concentrations" component_2="rate_constants" />
<map_variables variable_1="glucose_o" variable_2="glucose_o" />
<map_variables variable_1="Na_o" variable_2="Na_o" />
<map_variables variable_1="Na_i" variable_2="Na_i" />
<map_variables variable_1="glucose_i" variable_2="glucose_i" />
</connection>
<connection>
<map_components component_1="environment" component_2="kinetic_equations" />
<map_variables variable_1="time" variable_2="time" />
</connection>
<connection>
<map_components component_1="ion_concentrations" component_2="phenomonological_constants" />
<map_variables variable_1="glucose_o" variable_2="glucose_o" />
<map_variables variable_1="Na_o" variable_2="Na_o" />
</connection>
<connection>
<map_components component_1="king_altman_states" component_2="NBC_current" />
<map_variables variable_1="C5" variable_2="C5" />
<map_variables variable_1="C1" variable_2="C1" />
<map_variables variable_1="C6" variable_2="C6" />
<map_variables variable_1="C4" variable_2="C4" />
<map_variables variable_1="C3" variable_2="C3" />
<map_variables variable_1="C2" variable_2="C2" />
</connection>
<connection>
<map_components component_1="parameters" component_2="kinetic_equations" />
<map_variables variable_1="C_T" variable_2="C_T" />
</connection>
<connection>
<map_components component_1="rate_constants" component_2="king_altman_states" />
<map_variables variable_1="k_54" variable_2="k_54" />
<map_variables variable_1="k_25" variable_2="k_25" />
<map_variables variable_1="k_16" variable_2="k_16" />
<map_variables variable_1="k_45" variable_2="k_45" />
<map_variables variable_1="k_52" variable_2="k_52" />
<map_variables variable_1="k_23" variable_2="k_23" />
<map_variables variable_1="k_43" variable_2="k_43" />
<map_variables variable_1="k_61" variable_2="k_61" />
<map_variables variable_1="k_56" variable_2="k_56" />
<map_variables variable_1="k_65" variable_2="k_65" />
<map_variables variable_1="k_34" variable_2="k_34" />
<map_variables variable_1="k_12" variable_2="k_12" />
<map_variables variable_1="k_21" variable_2="k_21" />
<map_variables variable_1="k_32" variable_2="k_32" />
</connection>
<connection>
<map_components component_1="parameters" component_2="NBC_current" />
<map_variables variable_1="alpha_p" variable_2="alpha_p" />
<map_variables variable_1="alpha_pp" variable_2="alpha_pp" />
<map_variables variable_1="F" variable_2="F" />
<map_variables variable_1="n" variable_2="n" />
<map_variables variable_1="z_Na" variable_2="z_Na" />
<map_variables variable_1="delta" variable_2="delta" />
<map_variables variable_1="z_c" variable_2="z_c" />
</connection>
<connection>
<map_components component_1="parameters" component_2="king_altman_states" />
<map_variables variable_1="C_T" variable_2="C_T" />
</connection>
<connection>
<map_components component_1="parameters" component_2="rate_constants" />
<map_variables variable_1="k0_21" variable_2="k0_21" />
<map_variables variable_1="k0_34" variable_2="k0_34" />
<map_variables variable_1="k0_16" variable_2="k0_16" />
<map_variables variable_1="alpha_pp" variable_2="alpha_pp" />
<map_variables variable_1="z_Na" variable_2="z_Na" />
<map_variables variable_1="k0_54" variable_2="k0_54" />
<map_variables variable_1="delta" variable_2="delta" />
<map_variables variable_1="k0_12" variable_2="k0_12" />
<map_variables variable_1="k0_32" variable_2="k0_32" />
<map_variables variable_1="C_T" variable_2="C_T" />
<map_variables variable_1="z_c" variable_2="z_c" />
<map_variables variable_1="k0_43" variable_2="k0_43" />
<map_variables variable_1="mu" variable_2="mu" />
<map_variables variable_1="k0_45" variable_2="k0_45" />
<map_variables variable_1="alpha_p" variable_2="alpha_p" />
<map_variables variable_1="k0_52" variable_2="k0_52" />
<map_variables variable_1="k0_65" variable_2="k0_65" />
<map_variables variable_1="k0_61" variable_2="k0_61" />
<map_variables variable_1="k0_23" variable_2="k0_23" />
<map_variables variable_1="n" variable_2="n" />
<map_variables variable_1="k0_25" variable_2="k0_25" />
<map_variables variable_1="k0_56" variable_2="k0_56" />
</connection>
<connection>
<map_components component_1="rate_constants" component_2="phenomonological_constants" />
<map_variables variable_1="k_54" variable_2="k_54" />
<map_variables variable_1="k_25" variable_2="k_25" />
<map_variables variable_1="k_16" variable_2="k_16" />
<map_variables variable_1="ks_12" variable_2="ks_12" />
<map_variables variable_1="k_45" variable_2="k_45" />
<map_variables variable_1="k_52" variable_2="k_52" />
<map_variables variable_1="k_23" variable_2="k_23" />
<map_variables variable_1="k_43" variable_2="k_43" />
<map_variables variable_1="k_61" variable_2="k_61" />
<map_variables variable_1="k_56" variable_2="k_56" />
<map_variables variable_1="k_65" variable_2="k_65" />
<map_variables variable_1="k_34" variable_2="k_34" />
<map_variables variable_1="k_12" variable_2="k_12" />
<map_variables variable_1="k_21" variable_2="k_21" />
<map_variables variable_1="k_32" variable_2="k_32" />
</connection>
<connection>
<map_components component_1="rate_constants" component_2="NBC_current" />
<map_variables variable_1="k_43" variable_2="k_43" />
<map_variables variable_1="k_25" variable_2="k_25" />
<map_variables variable_1="k_61" variable_2="k_61" />
<map_variables variable_1="k_16" variable_2="k_16" />
<map_variables variable_1="k_56" variable_2="k_56" />
<map_variables variable_1="k_52" variable_2="k_52" />
<map_variables variable_1="k_65" variable_2="k_65" />
<map_variables variable_1="k_34" variable_2="k_34" />
<map_variables variable_1="k_12" variable_2="k_12" />
<map_variables variable_1="k_21" variable_2="k_21" />
</connection>
<connection>
<map_components component_1="environment" component_2="ion_concentrations" />
<map_variables variable_1="time" variable_2="time" />
</connection>
<rdf:RDF xmlns:bqmodel="http://biomodels.net/model-qualifiers/" xmlns:bqbiol="http://biomodels.net/biology-qualifiers/" xmlns:ro="http://www.obofoundry.org/ro/ro.owl#" xmlns:opb="http://bhi.washington.edu/OPB#">
<rdf:Description rdf:about="#ion_concentrations.Na_i">
<semsim:isComputationalComponentFor>
<rdf:Description rdf:about="#property_2">
<semsim:physicalPropertyOf>
<rdf:Description rdf:about="#entity_1">
<ro:part_of>
<rdf:Description rdf:about="#entity_2">
<ro:part_of>
<rdf:Description rdf:about="#entity_3">
<semsim:hasPhysicalDefinition rdf:resource="http://purl.obolibrary.org/obo/FMA_70973" />
</rdf:Description>
</ro:part_of>
<semsim:hasPhysicalDefinition rdf:resource="http://purl.obolibrary.org/obo/FMA_66836" />
</rdf:Description>
</ro:part_of>
<semsim:hasPhysicalDefinition rdf:resource="http://purl.obolibrary.org/obo/CHEBI_29101" />
</rdf:Description>
</semsim:physicalPropertyOf>
<semsim:hasPhysicalDefinition rdf:resource="http://identifiers.org/opb/OPB_00340" />
</rdf:Description>
</semsim:isComputationalComponentFor>
<dcterms:description>Concentration of Na+ in the portion of cytosol in epithelial cell of proximal tubule compartment</dcterms:description>
</rdf:Description>
<rdf:Description rdf:about="#process_1" dcterms:description="" />
<rdf:Description rdf:about="#ion_concentrations.V">
<semsim:isComputationalComponentFor>
<rdf:Description rdf:about="#property_1">
<semsim:physicalPropertyOf>
<rdf:Description rdf:about="#entity_0">
<semsim:hasPhysicalDefinition rdf:resource="http://purl.obolibrary.org/obo/FMA_84666" />
</rdf:Description>
</semsim:physicalPropertyOf>
<semsim:hasPhysicalDefinition rdf:resource="http://identifiers.org/opb/OPB_00506" />
</rdf:Description>
</semsim:isComputationalComponentFor>
<dcterms:description>membrane potential measured from portion of renal filtrate in proximal convoluted tubule to portion of cytosol in epithelial cell of proximal tubule compartment across apical plasma membrane</dcterms:description>
</rdf:Description>
<rdf:Description rdf:about="#ion_concentrations.Na_o">
<semsim:isComputationalComponentFor>
<rdf:Description rdf:about="#property_3">
<semsim:physicalPropertyOf>
<rdf:Description rdf:about="#entity_4">
<ro:part_of>
<rdf:Description rdf:about="#entity_5">
<semsim:hasPhysicalDefinition rdf:resource="http://purl.obolibrary.org/obo/FMA_280787" />
</rdf:Description>
</ro:part_of>
<semsim:hasPhysicalDefinition rdf:resource="http://purl.obolibrary.org/obo/CHEBI_29101" />
</rdf:Description>
</semsim:physicalPropertyOf>
<semsim:hasPhysicalDefinition rdf:resource="http://identifiers.org/opb/OPB_00340" />
</rdf:Description>
</semsim:isComputationalComponentFor>
<dcterms:description>Concentration of Na+ in the portion of renal filtrate in proximal convoluted tubule compartment</dcterms:description>
</rdf:Description>
<rdf:Description rdf:about="#phenomonological_constants.Na_o">
<semsim:isComputationalComponentFor>
<rdf:Description rdf:about="#property_8">
<semsim:physicalPropertyOf rdf:resource="#entity_4" />
<semsim:hasPhysicalDefinition rdf:resource="http://identifiers.org/opb/OPB_00340" />
</rdf:Description>
</semsim:isComputationalComponentFor>
<dcterms:description>Concentration of Na+ in the portion of renal filtrate in proximal convoluted tubule compartment</dcterms:description>
</rdf:Description>
<rdf:Description rdf:about="#parameters.V">
<semsim:isComputationalComponentFor>
<rdf:Description rdf:about="#property_0">
<semsim:physicalPropertyOf rdf:resource="#entity_0" />
<semsim:hasPhysicalDefinition rdf:resource="http://identifiers.org/opb/OPB_00506" />
</rdf:Description>
</semsim:isComputationalComponentFor>
<dcterms:description>membrane potential measured from portion of renal filtrate in proximal convoluted tubule to portion of cytosol in epithelial cell of proximal tubule compartment across apical plasma membrane</dcterms:description>
</rdf:Description>
<rdf:Description rdf:about="#rate_constants.Na_o">
<semsim:isComputationalComponentFor>
<rdf:Description rdf:about="#property_5">
<semsim:physicalPropertyOf rdf:resource="#entity_4" />
<semsim:hasPhysicalDefinition rdf:resource="http://identifiers.org/opb/OPB_00340" />
</rdf:Description>
</semsim:isComputationalComponentFor>
<dcterms:description>Concentration of Na+ in the portion of renal filtrate in proximal convoluted tubule compartment</dcterms:description>
</rdf:Description>
<rdf:Description rdf:about="#kinetic_equations.time" dcterms:description="Time">
<bqbiol:is rdf:resource="http://identifiers.org/opb/OPB_01023" />
</rdf:Description>
<rdf:Description rdf:about="#NBC_current.J_Na">
<semsim:isComputationalComponentFor>
<rdf:Description rdf:about="#property_7">
<semsim:physicalPropertyOf>
<rdf:Description rdf:about="#process_0" dcterms:description="">
<semsim:hasMediatorParticipant>
<rdf:Description rdf:about="#mediator_0">
<semsim:hasPhysicalEntityReference>
<rdf:Description rdf:about="#entity_6">
<ro:part_of rdf:resource="#entity_3" />
<semsim:hasPhysicalDefinition rdf:resource="http://purl.obolibrary.org/obo/FMA_84666" />
</rdf:Description>
</semsim:hasPhysicalEntityReference>
</rdf:Description>
</semsim:hasMediatorParticipant>
<semsim:hasSinkParticipant>
<rdf:Description rdf:about="#sink_1" semsim:hasMultiplier="1.0">
<semsim:hasPhysicalEntityReference rdf:resource="#entity_4" />
</rdf:Description>
</semsim:hasSinkParticipant>
<semsim:hasSinkParticipant>
<rdf:Description rdf:about="#sink_0" semsim:hasMultiplier="1.0">
<semsim:hasPhysicalEntityReference rdf:resource="#entity_1" />
</rdf:Description>
</semsim:hasSinkParticipant>
<semsim:hasSourceParticipant>
<rdf:Description rdf:about="#source_1" semsim:hasMultiplier="1.0">
<semsim:hasPhysicalEntityReference rdf:resource="#entity_4" />
</rdf:Description>
</semsim:hasSourceParticipant>
<semsim:hasSourceParticipant>
<rdf:Description rdf:about="#source_0" semsim:hasMultiplier="1.0">
<semsim:hasPhysicalEntityReference rdf:resource="#entity_1" />
</rdf:Description>
</semsim:hasSourceParticipant>
<semsim:name>Na+ flow through apical plasma membrane</semsim:name>
</rdf:Description>
</semsim:physicalPropertyOf>
<semsim:hasPhysicalDefinition rdf:resource="http://identifiers.org/opb/OPB_00593" />
</rdf:Description>
</semsim:isComputationalComponentFor>
<dcterms:description>Flux of Na+ from portion of renal filtrate in proximal convoluted tubule to portion of cytosol in epithelial cell of proximal tubule and portion of cytosol in epithelial cell of proximal tubule to portion of renal filtrate in proximal convoluted tubule through apical plasma membrane</dcterms:description>
</rdf:Description>
<rdf:Description rdf:about="#NBC_current.I_NaGl_pSS">
<semsim:isComputationalComponentFor>
<rdf:Description rdf:about="#property_6">
<semsim:physicalPropertyOf rdf:resource="#process_0" />
<semsim:hasPhysicalDefinition rdf:resource="http://identifiers.org/opb/OPB_00318" />
</rdf:Description>
</semsim:isComputationalComponentFor>
<dcterms:description>presteady state current is given by the sum of all translocation steps involving the transfer of a net charge in the cell membrane of SGLT2 model</dcterms:description>
</rdf:Description>
<rdf:Description rdf:about="#mackenzie_1996" semsim:modelName="mackenzie_1996" dcterms:keyword="SGLT2">
<ro:located_in rdf:resource="http://purl.obolibrary.org/obo/FMA_17716" />
<dcterms:abstract>The Na-dependent, low affinity glucose transporter SGLT2 cloned from pig kidney is 76% identical (at the amino acid level) to its high affinity homologue SGLT1. Using two-microelectrode voltage clamp, we have characterized the presteady-state and steady-state kinetics of SGLT2 expressed in Xenopus oocytes. The kinetic properties of the steady-state sugar-evoked currents as a function of external Na and a-methyl-D-glucopyranoside (aMG) concentrations were consistent with an ordered, simultaneous transport model in which Na binds first. Na binding was voltage-dependent and saturated with hyperpolarizing voltages. Phlorizin was a potent inhibitor of the sugar-evoked currents (Ki ~10 mM) and blocked an inward Na current in the absence of sugar. SGLT2 exhibited Na-dependent presteadystate currents with time constants 3-7 ms. Charge movements were described by Boltzmann relations with apparent valence ~1 and maximal charge transfer ~11 nC, and were reduced by the addition of sugar or phlorizin. The differences between SGLT1 and SGLT2 were that (i) the apparent affinity constant (K0.5) for aMG (~3 mM) was an order of magnitude higher for SGLT2; (ii) SGLT2 excluded galactose, suggesting discrete sugar binding; (iii) K0.5 for Na was lower in SGLT2; and (iv) the Hill coefficient for Na was 1 for SGLT2 but 2 for SGLT1. Simulations of the six-state kinetic model previously proposed for SGLT1 indicated that many of the kinetic properties observed in SGLT2 are expected by simply reducing the Na/glucose coupling from 2 to 1.</dcterms:abstract>
<vCard:FN>Mariana Panayotova-Heiermann</vCard:FN>
<semsim:unknown>The Na-dependent, low affinity glucose transporter SGLT2 cloned from pig kidney is 76% identical (at the amino acid level) to its high affinity homologue SGLT1. Using two-microelectrode voltage clamp, we have characterized the presteady-state and steady-state kinetics of SGLT2 expressed in Xenopus oocytes. The kinetic properties of the steady-state sugar-evoked currents as a function of external Na and a-methyl-D-glucopyranoside (aMG) concentrations were consistent with an ordered, simultaneous transport model in which Na binds first. Na binding was voltage-dependent and saturated with hyperpolarizing voltages. Phlorizin was a potent inhibitor of the sugar-evoked currents (Ki ~10 mM) and blocked an inward Na current in the absence of sugar. SGLT2 exhibited Na-dependent presteadystate currents with time constants 3-7 ms. Charge movements were described by Boltzmann relations with apparent valence ~1 and maximal charge transfer ~11 nC, and were reduced by the addition of sugar or phlorizin. The differences between SGLT1 and SGLT2 were that (i) the apparent affinity constant (K0.5) for aMG (~3 mM) was an order of magnitude higher for SGLT2; (ii) SGLT2 excluded galactose, suggesting discrete sugar binding; (iii) K0.5 for Na was lower in SGLT2; and (iv) the Hill coefficient for Na was 1 for SGLT2 but 2 for SGLT1. Simulations of the six-state kinetic model previously proposed for SGLT1 indicated that many of the kinetic properties observed in SGLT2 are expected by simply reducing the Na/glucose coupling from 2 to 1.</semsim:unknown>
<vCard:FN>Ernest M. Wright</vCard:FN>
<dcterms:title>Biophysical Characteristics of the Pig Kidney Na+/Glucose Cotransporter SGLT2 Reveal a Common Mechanism for SGLT1 and SGLT2</dcterms:title>
<vCard:FN>Bryan Mackenzie</vCard:FN>
<bqmodel:isDescribedBy rdf:resource="https://dx.doi.org/10.1074/jbc.271.51.32678" />
<semsim:unknown>pig</semsim:unknown>
<semsim:unknown>low affinity glucose transporter</semsim:unknown>
<semsim:unknown>Bryan Mackenzie</semsim:unknown>
<ro:located_in rdf:resource="http://purl.obolibrary.org/obo/FMA_84666" />
<ro:compartmentOf rdf:resource="http://purl.obolibrary.org/obo/FMA_280787" />
<bqmodel:isDescribedBy>8955098</bqmodel:isDescribedBy>
<semsim:unknown>Ernest M. Wright</semsim:unknown>
<semsim:unknown>mackenzie_1996</semsim:unknown>
<semsim:unknown>8955098</semsim:unknown>
<ro:located_in rdf:resource="http://purl.obolibrary.org/obo/FMA_70973" />
<vCard:FN>Donald D. F. Loo</vCard:FN>
<ro:located_in rdf:resource="http://purl.obolibrary.org/obo/FMA_17693" />
<semsim:unknown>SGLT2</semsim:unknown>
<ro:compartmentOf rdf:resource="http://purl.obolibrary.org/obo/FMA_66836" />
<semsim:unknown>Donald D. F. Loo</semsim:unknown>
<ro:compartmentOf rdf:resource="http://purl.obolibrary.org/obo/FMA_84666" />
<dcterms:keyword>pig</dcterms:keyword>
<semsim:unknown>Mariana Panayotova-Heiermann</semsim:unknown>
<dcterms:keyword>low affinity glucose transporter</dcterms:keyword>
<ro:modelOf rdf:resource="http://purl.obolibrary.org/obo/PR_P31636" />
<semsim:unknown>Biophysical Characteristics of the Pig Kidney Na+/Glucose Cotransporter SGLT2 Reveal a Common Mechanism for SGLT1 and SGLT2</semsim:unknown>
</rdf:Description>
<rdf:Description rdf:about="#rate_constants.Na_i">
<semsim:isComputationalComponentFor>
<rdf:Description rdf:about="#property_4">
<semsim:physicalPropertyOf rdf:resource="#entity_1" />
<semsim:hasPhysicalDefinition rdf:resource="http://identifiers.org/opb/OPB_00340" />
</rdf:Description>
</semsim:isComputationalComponentFor>
<dcterms:description>Concentration of Na+ in the portion of cytosol in epithelial cell of proximal tubule compartment</dcterms:description>
</rdf:Description>
<rdf:Description rdf:about="#environment.time" dcterms:description="Time">
<bqbiol:is rdf:resource="http://identifiers.org/opb/OPB_01023" />
</rdf:Description>
<rdf:Description rdf:about="#ion_concentrations.time" dcterms:description="Time">
<bqbiol:is rdf:resource="http://identifiers.org/opb/OPB_01023" />
</rdf:Description>
</rdf:RDF>
</model>