
Airway Functional Tissue Unit (FTU)
Airway wall and smooth muscle layer:
In order to devlop a rudimentry model for the airway FTU, we considered a system of 3 branched conducting
airways (Donovan 2016). This system consists of a parent airway of order 2 (max. radius 0.318mm) and
branched child airways of order 1 (max. radii 0.296mm). Airway-airway coupling via flow through the
conducting airway tree is incorporated such that at the junction conservation of flow

qm = qc1 + qc2 (1)

is maintained. Here qm references the parent airway and qC1and qc2 references the 2 children airways. In
each airway we assume Poiseuille flow

∆pi = αir
−4
i qi (2)

where ∆pi is the pressure difference from the top to the bottom of the ith airway, αi represents the compact
form of the Poiseuille flow co-efficients and ri is the airway luminal radius. We treat the airway wall and
surrounding airway smooth muscle as separate layers. Passive properties of the airway wall determine the
lumen radius in response to tramsmural pressure Ptm, while the active force generated by the airway smooth
muscle layer contributes to the pressure across the aiway wall (Politi et. al 2010).

Ptm = Pi + Pw (3)

where Pi and Pw are the pressures on the luminal and adventitial side of the airway wall. The pressure Pw
at the interface between the airway wall and the smooth muscle layer is computed from the pressure exerted
by the SMC and the parenchymal layer is then given by

Pw = Pm − f
Rm −Rw

rs
(4)

where f is the active circumferential stress exerted by the SMC, Pm is the pressure at the SMC-parenchyma
interface, rs = (rw + rw) /2 is the mean SMC radius, and Rm − Rw is the order dependent SMC layer
thickness at Ptm = 0.

We consider for each airway two regions of parenchyma: the parenchymal continuum, in the organ-level
model, and a layer of parenchya local to each airway, located between rm and rt.

The pressure Pt is calculated from the organ level model and the loacl parenchymal layer is used to
calculate the local increase in tethering force due to airway constriction yielding the pressure Pm. To
account for additional local non-linear effects caused by airway contraction, we find Pm via

Pm = 2µ
[
∆Rm + ν (∆Rm)

2
]

+ Pt (5)

where
∆Rm =

(
R̄m − rm

)
/R̄m (6)

The relation between isometric force and length is characterised by a force-length curve. We take the SMC
tension as f = fLfa where

fa = κ

∫ ∞
−∞

x (AM +AMp) (7)

and fL represents the approximation of expeimental data

fL =

 sin
(

πrs
2rsmax

)3
if rs ≤ 2rrsmax

0 otherwise
. (8)
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The thickness of of the SMC layer and the airway wall are defined by εw = (Rw − Ri)/Ri and εm =
(Rm −Rw)/Ri in the unstressed state (Ptm = 0) respectively, with the radii of the of the different layers

rw = Ri

√
(1 + εw)

2
+

(
ri
Ri

)2

− 1

rm = Ri

√
(εm + εw + 1)

2
+

(
ri
Ri

)2

− 1.

The radial and hoop stress for the SMC layer can then be given by

Pm = σrrm = 2µ
(

∆Rm + ν (∆Rm)
2
)

+ Pt

σθθm = σrrm + fa

(
Rm −Rw
rm + rw

)
and that for the airway wall is

Pw = σrrw = σrrm − fa
(
Rm −Rw

rs

)
σθθw = σrrw + fa

(
Rm −Rw
rm + rw

)

Crossbridge model and contraction velocity
We describe here briefly the kinetic model for the 4 state ODE actin-myosin muscle contraction model as
developed my Hai and Murphy 1988

dM

dt
= −K1(c)M +K2(c)Mp +K7AM

dMp

dt
= K4AMp +K1(c)M − (K2(c) +K3)Mp

dAMp

dt
= K3Mp +K6AM − (K4 +K5)AMp

dAM

dt
= K5AMp − (K7 +K6)AM

where M, Mp represents unphosphorylated, phosphorylated myosin and AM, AMpare the actin-myosin
bound unphophorylated and phosphorylated population respectively. This is subject to the constraint
M + Mp + AMp + AM = 1. Here the rate of the regulatory light chain of myosin phosphorylation and
dephosphorylation of myosin light chain kinease (MLCK) K1(c) are controlled by Ca2+ concentration (c)
and agonist (a),

K1 =
k1ac

4

k41b + c4
(9)

Thus MLCK is activateted by an increase in calcium concentration. The dephosphorylation rate depends on
both Ca2+ and agonist concentration (a) (Wang et al 2010):

τp
dP

dt
= kon(c)(1− P )− koff (a)P

K2 = k̄2P
2

kon(c) = kon1 +
c2

k2on2 + c2

koff (a) = koff1 +
koffa

1 + a
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where P is the fraction of activated MLCP and τp is a time constant.
The calcium dynamics model used is the model of Wang et al 2010 as described below:

dc

dt
= Jrelease − Jserca + δ (Jin − Jpm)

dcs
dt

= γ (Jserca − Jrelease)

dy

dt
= Φ1(1− y)− Φ2y

where

Jrelease = (kIPRPIPR + kRyRPRyR + Jer) (cs − c)

Jin = α0 − α1
Ica
2F

+ α2p

Jserca =
Vec

2

K2
e + c2

Jpm =
Vpc

4

K4
p + c4

PIPR =

(
pc(1− y)

(p+K1)(c+K5)

)3

Φ1 =
(k−4K2K1 + k−2K4p) c

K4K2 (K1 + p)

Φ2 =
k−2p+ k−4K3

K3 + p

PRyR =

(
kryr0 +

kryr1c
3

k3ryr2 + c3

)(
c4s

k4ryr3 + c4s

)
Ica = gcam

2Vca

m =
1

1 + c−(V−Vm)/km

Vca =
V
(
c− cee

−2V F
RT

)
1− e−2V F

RT

Parameter values are the same as Wang et al 2010.

Coupled airways
In order to model for a system of 3 coupled airways, we adopted the method used in Donovan 2016, where
the author developed a model which incorporates a conducting airway tree (with arbitrary geometry of N
airways and M junctions.) We summarize the system below:

• The compact form of the Poiseulle flow constants for each airway is given by

αri =
8aµLri
π

(10)

where i = p for the parent airway, and i = r1, r2 for the child airways.

• two types of boundary conditions are assumed:

– pressure-controlled b.c. prescribe both ptop and pbot. Narrowing of the airways by stimulating
ASM will reduce airflow.
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– Flow-controlled b.c. prescribe ptop and qtop = q̂ allowing pbot to vary in order to maintain the
flow despite airway narrowing.

(ptop and pbot represents the pressure at the top and bottom of the airway tree respectively)

• We define the pressure difference from the top to the bottom of wach airway by

∆prp = ptop − p
∆pr1 = ∆pr1 = p− pbot

where p represents the pressure within each airway. p is defined as

p =
q̂ − ptopDαrp

WΛ
(11)

where

Dαrp =
r4p
αrp

W = −
∑
ri

Dαri

Λ = 1− temp

for

temp =
−
(
2
(
D2
αr1

+D2
αr2

))
W−1

λ
(12)

where λ = Dαr1
+Dαr2

. The pressure at the bottom of the airway tree, pbot is given by

pbot =
λp− q̂
λ

. (13)

The airflow, q, through each airway can be calculated via

qp = ptop −Dαrp
p

qr1 = Dαr1
p− pbot

qr2 = qp − qr1.

Airway Dynamics
The equilibria for radii of the airway lumen can be found following the modified form of Lambert et al 1982
as described in Politi et al 2010. Here the airway radius is modeled as a function of transmural pressure
Ptm, where first order dynamics apply.

R (Ptm) =


√
R2
i (1− Ptm/PA)

−nA√
r2imax − (r2imax −R2

i ) (1− Ptm/PB)
−nB

Ptm ≤ 0

Ptm > 0
(14)

where
Ptm (ri) = pmidi −

faRref
ri

+ τ (ri) . (15)

The mid-away pressure Pmid is obtained for each airway is given by

pmidp =
ptop − p

2

pmidr1 =pmidr2 =
pbot + p

2
.
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Finally, τ represents the parenchymal tethering pressure, which arises from the restoring forces generated by
the parenchymal tissue surrounding the airway, and is described by

τ (ri) = 2µ

(
Rref−ri
Rref

+ 1.5

(
Rref−ri
Rref

)2
)

(16)

according to Lai-Fook 1979. Here for the respiratory bronchioles, as in Donovan and Kritter (2015) we use
the local effect that the shear modulus is a function of the local inflation via mean local flow, so that

2µi = 0.7× A

3
(|qp|+ |qr2|+ |qr2|) (17)

where the parameter A represents the coupling strength.
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