- Author:
- Shelley Fong <s.fong@auckland.ac.nz>
- Date:
- 2022-03-02 16:59:14+13:00
- Desc:
- Rename matlab file
- Permanent Source URI:
- https://models.cellml.org/workspace/82b/rawfile/1492d6a74a5c166444f718562f16e78f527c4abe/matlab_parameter_fitting/K_kappa_simplechannel.m
% finding K, kappa for simple non gated channels like Na_background.
% Steps:
% 1. find alpha and beta rate constants for entry/exit of ion
% 2. use PSO to fit kf and kr to alpha and beta (assume zf and zr = 1) for
% GATES
% 3. Convert G_GHK to Permeability
% 3. Solve Ln(k) = M.Ln(lambda) where
% lambda = [kappa ; K ]
V = -120:60;
W_i = 25.8;
W_e = 3.5182;
z = 1; % for Ca, z is 2
N_A = 6.022e23;
x_Kp_channel = 725/N_A*1e15; % unit fmol
x_Nab_channel = x_Kp_channel; % number of channels in myocyte [=] fmol
F = 96485;
load('nab_G_GHK.mat');
% P_GHK = []; % 1/mM.s
%% 1
alpha = 10;
beta = 0;
%% 2
if false
error_func_alpha = @(params) square_error(alpha - calc_alpha_simple(params,V/1000,z)); % fit to alpha - k.exp(zFV/RT) : do lsqminerror.
error_func_beta = @(params) square_error(beta - calc_beta_simple(params,V/1000,z));
error_func = @(params) error_func_alpha(params) + error_func_beta(params); % + error_func_gss(params) + error_func_tau(params);
A = [];
b = [];
Aeq = [];
beq = [];
lb = [0; -10; 0; -10];
ub = [Inf; 10; Inf; 10];
options_unc = optimoptions('fminunc','MaxFunEvals',10000);
options_ps = optimoptions('particleswarm','UseParallel',false,'HybridFcn',@fmincon);
[params_vec,fval,exitflag,output] = particleswarm(error_func,2,lb,ub,options_ps);
end
%% 3 convert to permeability
P_Nab = G_GHK/F * 1e12; % Unit pL/s
channel_k = P_Nab/x_Nab_channel;
%% 4
% stoichiometric matrices
% include kf and kr in matrices
N_f = [1; 0]; % [Nai, Nao]
N_r = [0; 1];
N_fT = transpose(N_f);
N_rT = transpose(N_r);
N = N_r - N_f;
num_cols = size(N,2); % number of reactions
I = eye(num_cols);
M = [I N_fT; I N_rT];
% solve lambda
% don't need params_vec: only add more reactions if they are present e.g.
% gate. Cab does not have a gate.
kf = [ channel_k];
kr = [ channel_k];
k = [kf;kr];
W = [1;W_i;W_e];
lambdaW = exp(pinv(M)*log(k));
lambda = lambdaW./W;
kappa = lambda(1:size(N,2));
K = lambda(size(N,2)+1:end);
save(['K_kappa.mat'],'kappa','K');
% Checks for kappa and K
N_rref = rref(N);
R_mat = null(N,'r');
K_eq = kf./kr;
zero_est = R_mat'*K_eq;
k_est = exp(M*log(lambdaW));
diff = sum(abs((k-k_est)./k));