Table S1. Definitions of the equation symbols

Symbols	meaning	
V	membrane potential	
$V_{0.5}$	half (in)activation constant	
V_h	holding potential	
V_s	voltage steps	
A_c	cell surface area	
V_c	cell volume	
$C_{ m m}$	specific membrane capacitance	
R	the universal gas constant	
F	the Faraday constant	
${ m T}$	absolute temperature	
Q_{10}	Temperature coefficient	
ΔT	Temperature change	
Ca^{2+}	calcium ion	
Na^{+}	sodium ion	
K^{+}	potassium ion	
Cl^-	chloride ion	
Mg^{2+}	magnesium ion	
Cs^+	cesium ion	
NMGD	N-methyl-D-glucamine	
z_{Na}	Na ⁺ valency	
z_{Ca}	Ca ²⁺ valency	
z_K	K ⁺ valency	
β	Proportion of free Ca ²⁺ ions	
[X]i	intracellular concentration of ion X	
[X]o	extracellular concentration of ion X	
$[\mathrm{Ca}^{2+}]_{\mathrm{i}}$	intracellular calcium	
$[\mathrm{Ca^{2+}}]_{\mathrm{o}}$	extracellular calcium	
$[Na^+]_i$	intracellular sodium	
$[Na^+]_o$	extracellular sodium	
$[K^+]_i$	intracellular potassium	
$[K^+]_o$	extracellular potassium	
$[Cl^-]_i$	intracellular chloride	
$[Cl^-]_o$	extracellular chloride	
$[\mathrm{Mg}^{2+}]_{\mathrm{o}}$	extracellular magnesium	
$[\mathrm{Cs}^+]_{\mathrm{i}}$	intracellular cesium	
$[Cs^+]_o$	extracellular cesium	
[NMGD]	concentration of NMGD	
$E_{\rm rev}$	reversal potential	
$E_{\rm CaL}$	reversal potential of I_{CaL}	
$E_{\rm CaT}$	reversal potential of I_{CaT}	
E_{Na}	reversal potential of $I_{\rm Na}$	
$E_{ m h}$	reversal potential of $I_{\rm h}$	
$E_{ m K}$	reversal potential of potassium currents	
$E_{\rm Cl}$	reversal potential of $I_{\text{Cl(Ca)}}$	
$E_{\rm NS}$	reversal potential of $I_{\rm NSCC}$	
→N2	10 versual potential of 1NSCC	Continued on next

Continued on next page

Table S1 – continued from previous page

Symbols meaning		
$\overline{P_{\mathrm{Ca}}}$	Permeability of calcium, ratio of flux concentration with respect to cesium	
P'_{Ca}	Permeability of calcium, corrected with the effect of the electric field	
$P_{ m Na}$	Permeability of sodium	
P_{K}	Permeability of potassium	
P_{Cs}	Permeability of cesium	
$P_{ m NMGD}$	Permeability of NMGD	
I	current	
I_{ion}	total membrane ionic currents	
I_{CaL}	L-type Ca ²⁺ current	
I_{CaT}	T-type Ca ²⁺ current	
$I_{ m Na}$	fast inward Na ⁺ current	
$I_{ m h}$	hyperpolarization-activated current	
$I_{ m K1}$	voltage-gated K ⁺ current, inactivate with $V_h \ge -40 \text{ mV}$	
$I_{ m K2}$	voltage-gated K ⁺ current, inactivate with $V_h \ge 0 \text{ mV}$	
$I_{ m Ka}$	A-type transient K ⁺ current	
$I_{\mathrm{K(Ca)}}$	total Ca ²⁺ -activated K ⁺ current	
I_{α}	$I_{\rm K(Ca)}$ subtype, consists of only α subunits	
$I_{\alpha\beta 1}$	$I_{\mathrm{K(Ca)}}$ subtype, consists of α and $\beta 1$ subunits	
$I_{ m b}$	background K ⁺ current	
$I_{\rm Cl(Ca)}$	Ca ²⁺ -activated Cl ⁻ currents	
$I_{ m NSCC}$	non-specific cation current	
$I_{ m NSCC,Ca}$	calcium component of $I_{\rm NSCC}$	
$I_{ m NaK}$	Na ⁺ -K ⁺ pump current	
$I_{ m NaCa}$	Na ⁺ -Ca ²⁺ exchanger current	
J	Ca ²⁺ flux	
$J_{\mathrm{Ca,mem}}$	Ca ²⁺ flux <i>via</i> membrane Ca ²⁺ currents	
J_{PMCA}	Ca ²⁺ flux <i>via</i> plasma membrane Ca ²⁺ -ATPase	
$J_{ m NaCa}$	Ca ²⁺ flux via Na ⁺ -Ca ²⁺ exchanger	
$ar{J}_{ ext{PMCA}}$	maximal $J_{ m PMCA}$	
$ar{J}_{ m NaCa}$	$_{ m Maximal} J_{ m NaCa}$	
$ar{g}$	maximum conductance	
$ar{g}_{ ext{CaL}}$	maximum conductance of I_{CaL}	
$ar{g}_{ ext{CaT}}$	maximum conductance of $I_{\rm CaT}$	
$ar{g}_{ ext{Na}}$	maximum conductance of I_{Na}	
$ar{g}_{ m h}$	maximum conductance of $I_{\rm h}$	
\bar{g}_{K1}	maximum conductance of $I_{\rm K1}$	
\bar{g}_{K2}	maximum conductance of I_{K1}	
$\bar{g}_{ m Ka}$	maximum conductance of I_{Ka}	
$ar{g}_{ ext{K(Ca)}}$	maximum conductance of I_{Ka}	
$ar{g}_{ m b}$	maximum conductance of $I_{\rm b}$	
$ar{g}_{ ext{Cl(Ca)}}$	maximum conductance of $I_{\text{Cl(Ca)}}$	
$ar{g}_{ ext{NS}}$	maximum conductance of $I_{\rm NSCC}$	
$ar{g}_{ m L}$	maximum conductance of the leak component in I_{NSCC}	
$ar{g}_{ ext{NaK}}$	maximum conductance of the leak component in $T_{\rm NSCC}$	
g_{NS}	conductance of I_{NSCC}	
BNO	Continued on next pa	

Table S1 – continued from previous page

	Table S1 – continued from previous page		
Symbols	meaning		
g_s	numerical constant, used for normalizing dependency of extracellular ions or		
	the conductance of $I_{\rm NSCC}$		
$n_{ m K}$	Hill coefficient of $[K^+]_o$ dependency of I_{NaK}		
$n_{ m Na}$	Hill coefficient of $[\mathrm{Na}^+]_{\mathrm{i}}$ dependency of I_{NaK}		
$n_{\rm PMCA}$	Hill coefficient of plasma membrane Ca ²⁺ -ATPase		
$n_{ m Allo}$	Hill coefficient of allosteric regulation of Na ⁺ -Ca ²⁺ exchanger		
$n_{ m F}$	Hill coefficient of the steady-state of calcium-dependent active force		
f_{Ca}	Calcium inhibition of I_{CaL}		
f_{Mg}	Magnesium inhibition of $I_{\rm NSCC}$		
f_{NaK}	Voltage-dependency of $I_{\rm NaK}$		
n_{NaK}	$[\mathrm{Na}^+]_{\mathrm{i}}$ dependency of I_{NaK}		
k_{NaK}	$[\mathrm{K}^+]_{\mathrm{o}}$ dependency of I_{NaK}		
k_{sat}	Saturation factor for Na ⁺ -Ca ²⁺ exchanger at very negative potential		
$f_{1,NaCa}$	Potential dependency of $J_{\rm NaCa}$		
$f_{2,NaCa}$	Potential dependency of $J_{\rm NaCa}$		
f_{allo}	Allosteric regulation by $[Ca^{2+}]_i$ of Na^+ - Ca^{2+} exchanger		
γ	Partition parameter of J_{NaCa}		
p_a	proportion of I_{α} in $I_{\mathrm{K(Ca)}}$		
p_b	proportion of $I_{\alpha\beta 1}$ in $I_{\rm K(Ca)}$		
$K_{1,Cl}$	Equilibrium constant for the calcium-binding property of c_{∞} of $I_{\text{Cl(Ca)}}$		
$K_{2,Cl}$	Equilibrium constant for the voltage-dependency of c_{∞} of $I_{\text{Cl(Ca)}}$		
$K_{d,CaL}$	Half-saturation concentration for $[Ca^{2+}]_i$ inhibition of I_{CaL}		
$K_{d,Mg}$	Half-saturation concentration for $[Mg^{2+}]_0$ inhibition of I_{NSCC}		
$K_{m,K}$	Half-saturation concentration for $[K^+]_o$ dependency of I_{NaK}		
$K_{m,Na}$	Half-saturation concentration for $[Na^+]_i$ dependency of I_{NaK}		
$K_{m,PMCA}$	Half-saturation concentration for $[Ca^{2+}]_i$ association of plasma membrane Ca^{2+} -ATPase		
$K_{m,Allo}$	Half-saturation concentration for $[Ca^{2+}]_i$ allosteric factor of Na^+ - Ca^{2+} exchanger		
$K_{m,Cai}$	Dissociation constant for $[Ca^{2+}]_i$ of Na^+ - Ca^{2+} exchanger		
$K_{m,Cao}$	Dissociation constant for [Ca ²⁺] _o of Na ⁺ -Ca ²⁺ exchanger		
$K_{m,Nai}$	Dissociation constant for [Na ⁺] _i of Na ⁺ -Ca ²⁺ exchanger		
$K_{m,Nao}$	Dissociation constant for [Na ⁺] _o of Na ⁺ -Ca ²⁺ exchanger		
$K_{m,F}$	Apparent affinity constant for [Ca ²⁺] _i of contraction		
b	Activation gate of I_{CaT}		
c	Activation gate of $I_{\mathrm{Cl(Ca)}}$		
d	Activation gate of I_{CaL}		
f_1	Fast inactivation gate of $I_{\rm CaL}$		
f_2	Slow inactivation gate of I_{CaL}		
g	Inactivation gate of I_{CaT}		
$\overset{\circ}{h}$	Inactivation gate of $I_{ m Na}$		
m	Activation gate of I_{Na}		
p	Activation gate of $I_{\rm K2}$		
k_1	Fast inactivation gate of $I_{\rm K2}$		
k_2	Slow inactivation gate of $I_{\rm K2}$		
162			

Table S1 – continued from previous page

	Table S1 – continued from previous page	
Symbols	meaning	
r_1	Fast inactivation gate of I_{K1}	
r_2	Slow inactivation gate of I_{K1}	
s	Activation gate of $I_{\rm Ka}$	
x	Inactivation gate of $I_{\rm Ka}$	
$x_{\alpha\beta1}$	Activation gate of $I_{\alpha\beta 1}$	
x_{α}	Activation gate of I_{α}	
y	Activation gate of $I_{\rm h}$	
ω	Activation gate of Force	
b_{∞}	Steady-state of b	
c_{∞}	Steady-state of c	
d_{∞}^{∞}	Steady-state of d	
f_{∞}	Steady-state of f_1 and f_2	
g_{∞}	Steady-state of g	
h_{∞}	Steady-state of h	
k_{∞}	Steady-state of k_1 and k_2	
m_{∞}	Steady-state of m	
p_{∞}	Steady-state of p	
q_{∞}	Steady-state of q	
r_{∞}	Steady-state of r_1 and r_2	
	Steady-state of s	
x_{∞}	Steady-state of x	
y_{∞}	Steady-state of y	
ω_{∞}	Steady-state of φ	
$SS_{\alpha\beta 1}$	Steady-state of $x_{\alpha\beta 1}$	
$SS_{\alpha}^{\alpha\beta 1}$	Steady-state of $x_{\alpha\beta}$ 1 Steady-state of x_{α}	
$V_{0.5,\alpha\beta 1}$	Half activation of $x_{\alpha\beta1}$	
$V_{0.5,\alpha}^{0.5,\alpha\beta}$	Half activation of $x_{\alpha\beta}$ 1	
	Gating charge of $x_{\alpha\beta1}$	
$z_{lphaeta 1}$	Gating charge of $x_{\alpha\beta}$ 1 Gating charge of x_{α}	
z_{lpha}	Time constant of $x_{\alpha\beta1}$	
$ au_{lphaeta 1}$	Time constant of $x_{\alpha\beta}$ 1 Time constant of x_{α}	
$ au_{lpha}$	Time constant of b	
$ au_b$	Time constant of c	
$ au_c$	Time constant of d	
$ au_d$	Time constant of a Time constant of f_1	
$ au_{f1}$	Time constant of f_1 Time constant of f_2	
$ au_{f2}$	v -	
$ au_g$	Time constant of g Time constant of h	
$ au_h$	Time constant of h Time constant of k_1	
$ au_{k1}$		
$ au_{k2}$	Time constant of k_2 Time constant of m	
$ au_m$		
$ au_p$	Time constant of p	
$ au_q$	Time constant of q	
$ au_{r1}$	Time constant of r_1	
$ au_{r2}$	Time constant of r_2	
τ_s	Time constant of s Continued on next page	

Continued on next page

Table S1 - continued from previous page

Symbols	meaning
$ au_x$	Time constant of x
$ au_y$	Time constant of y
$ au_{\omega}$	Time constant of ω
α_y	Rate constant of activation of y
β_y	Rate constant of deactivation of y