Carbon dioxide pH BG model

The formation of bicarobonate $\left(\mathrm{HCO}_{3}^{-}\right)$from CO_{2} is given by $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \underset{k_{2}}{\stackrel{k_{1}}{\rightleftharpoons}} \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+}$.
The Bond Graph equivalent of this reaction can be represented as

Figure 1: Bond Graph representation of the above reaction (Taken from Peter's Acid-Base notes)
where

$$
\begin{align*}
& q_{1}=\left[C O_{2}\right]=s p_{C O_{2}} \tag{1}\\
& q_{2}=\left[H C O_{3}^{-}\right] \tag{2}\\
& q_{3}=\left[H^{+}\right]=10^{-p H} \tag{3}
\end{align*}
$$

The bond graph system of equations are:

$$
\begin{align*}
& v_{1}=-\kappa_{1} K_{1} q_{1}+\kappa_{1} K_{2} K_{3} q_{2} q_{3} \tag{4}\\
& \dot{q_{1}}=-v_{1} \tag{5}\\
& \dot{q_{2}}=v_{1} \tag{6}\\
& \dot{q_{3}}=v_{1} \tag{7}
\end{align*}
$$

For initial concetrations: $q_{1}=0.00003 \times 40=0.0012 \mathrm{~mol}, q_{2}=0.024 \mathrm{~mol}, q_{3}=10^{-(7.4)}=3.98 e^{-8} \mathrm{~mol}$, we assume at steady state $k_{1}=k_{2}=\frac{q_{2} q_{3}}{q_{1}}$. The bond graph parameters $\kappa_{1}, K_{1}-K_{3}$ can be found by solving the following system

$$
\begin{align*}
k_{1} & =\kappa_{1} K_{1} \tag{8}\\
k_{2} & =\kappa_{1} K_{2} K_{3} \tag{9}\\
1 & =\frac{K_{1}}{K_{2} K_{3}} \tag{10}
\end{align*}
$$

which can be written in matrix form

$$
\ln \left[\begin{array}{c}
k_{1} \tag{11}\\
k_{2} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & -1 & -1
\end{array}\right] \ln \left[\begin{array}{c}
\kappa_{1} \\
K_{1} \\
K_{2} \\
K_{3}
\end{array}\right]
$$

Given the pH of the erythrocyte we can calculate the equivalent pH of the plasma $(p H p)$ as well as the pK values for the erythrocyte $(p K H C O 3)$ and the plasma $(p K H C O 3 \mathrm{p})$ via (or vice versa by re-writing the equations):

$$
\begin{align*}
p H p & =p H-\log (3.094-0.335 p H p) \tag{12}\\
p K H C O 3 & =p H-\log \left(\frac{q_{2}}{q_{1}}\right) \tag{13}\\
p K H C O 3 p & =p K H C O 3 \tag{14}
\end{align*}
$$

We also assume the partial pressures of CO_{2} in the plasma and erythrocyte are equal. By using the definition of the solubility coefficients in plasma $\left(\alpha_{p}=0.225\right)$ and erythrocyte $\left(\alpha_{e}=0.191\right)$, we can calculate the $\left[C O 2_{p}\right]=\frac{\alpha_{p}}{\alpha_{e}}[C O 2]$. Additionally the bicarbonate concentration in the plasma can be found using

$$
\begin{equation*}
\left[H C O 3_{p}\right]=\left[C O 2_{p}\right] 10^{(p H p-p K H C O 3 p)} \tag{15}
\end{equation*}
$$

At normal conditions, the hemoglobin concentrations in plasma ($\mathrm{H} b_{p}=9.3 \mathrm{mmol} / \mathrm{l}$) and erythrocyte $\left(H b_{e}=\right.$ $21 \mathrm{mmol} / l$) gives the total buffer base fraction in the erythrocyte $f_{e}=H b_{p} / H b_{e}$. Given $f_{p}+f_{e}=1$, we can find the total $\mathrm{CO}_{2}\left(\mathrm{CO}_{2 T}\right)$ in both plasma and erthrocyte as

$$
\begin{equation*}
C O_{2 T}=\left(C O 2_{p}+H C O 3_{p}\right) f_{p}+\left(C O_{2}+H C O 3\right) f_{e} \tag{16}
\end{equation*}
$$

This model is largely adapted from [1]

References

[1] Stephen Edward Rees, Steen Andreassen, R Hovorka, and ER Carson. A dynamic model of carbon dioxide transport in the blood. IFAC Proceedings Volumes, 30(2):57-62, 1997.

