- Author:
- pmr2.import <nobody@models.cellml.org>
- Date:
- 2009-06-17 14:14:09+12:00
- Desc:
- committing version01 of fridlyand_tamarina_philipson_2003
- Permanent Source URI:
- https://models.cellml.org/workspace/fridlyand_tamarina_philipson_2003/rawfile/4f36f7fb799a7cbe4b727683e2801feca451f0aa/fridlyand_tamarina_philipson_2003.cellml
<?xml version='1.0' encoding='utf-8'?>
<!-- FILE : fridlyand_model_2003.xml
CREATED : 14th November 2002
LAST MODIFIED : 14th November 2003
AUTHOR : Catherine Lloyd
The Bioengineering Institute
The University of Auckland
MODEL STATUS : This model conforms to the CellML 1.0 Specification released on
10th August 2001, and the CellML Metadata 1.0 Specification released on 16th
January, 2002.
DESCRIPTION : This file contains a CellML description of Fridlyand et al's 2003 mathematical model of Ca2+ fluxes in pancreatic beta-cells.
CHANGES:
--><model xmlns="http://www.cellml.org/cellml/1.0#" xmlns:cmeta="http://www.cellml.org/metadata/1.0#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bqs="http://www.cellml.org/bqs/1.0#" xmlns:cellml="http://www.cellml.org/cellml/1.0#" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:vCard="http://www.w3.org/2001/vcard-rdf/3.0#" cmeta:id="fridlyand_tamarina_philipson_2003_version01" name="fridlyand_tamarina_philipson_2003_version01">
<documentation xmlns="http://cellml.org/tmp-documentation">
<article>
<articleinfo>
<title>Modelling Ca2+ Flux in Pancreatic Beta-cells</title>
<author>
<firstname>Catherine</firstname>
<surname>Lloyd</surname>
<affiliation>
<shortaffil>Bioengineering Institute, University of Auckland</shortaffil>
</affiliation>
</author>
</articleinfo>
<section id="sec_status">
<title>Model Status</title>
<para>
This is the original unchecked version of the model imported from the previous
CellML model repository, 24-Jan-2006.
</para>
</section>
<sect1 id="sec_structure">
<title>Model Structure</title>
<para>
An increase in the concentration of intracellular free calcium ([Ca<superscript>2+</superscript>]<subscript>i</subscript>) is an essential signal for the initiation of insulin secretion in pancreatic beta-cells. This increase is primarily due to the opening of Ca<superscript>2+</superscript> channels in the plasma membrane in response to glucose. Glucose metabolism leads to an increase in the cytosolic ATP:ADP ratio, which in turn causes the ATP-sensitive potassium channels to close. The beta-cell membrane becomes depolarised, Ca<superscript>2+</superscript> channels open, and Ca<superscript>2+</superscript> enters the cell. These events underlie the glucose-induced electrical activity, which in pancreatic islets, consists of Ca<superscript>2+</superscript>-dependent action potentials.
</para>
<para>
There is an abundance of literature that describes beta-cell electrical activity and its relationship to [Ca<superscript>2+</superscript>]<subscript>i</subscript>. Complex and cyclic spike-burst activity, and corresponding [Ca<superscript>2+</superscript>]<subscript>i</subscript> oscillations in pancreatic islets and beta-cell clusters are induced in response to a rise in extracellular glucose concentration. Intermediate glucose concentrations induce both fast and slow oscillations. The authors of this current study: Fridlyand, Tamarina and Philipson, have previously studied slow and fast [Ca<superscript>2+</superscript>]<subscript>i</subscript> oscillations in islets in response to a variety of conditions. However, the experimental results were complex, and precise understanding was limited by the large number of channels and pumps in the beta-cell plasma membrane that were simultaneously working.
</para>
<para>
In order to better understand the molecular mechanisms underlying this behaviour, in this publication Fridlyand <emphasis>et al.</emphasis> have developed a mathematical model of the Ca<superscript>2+</superscript> fluxes in pancreatic beta-cells. Several other mathematical models of glucose-induced insulin secretion, with corresponding descriptions of glucose transport, metabolism and ion regulation, have been published. These include:
</para>
<itemizedlist>
<listitem>
<para>
<ulink url="${HTML_EXMPL_CHAY_MODEL97}">Extracellular and Intracellular Calcium Effects on Pancreatic Beta Cells, Chay, 1997</ulink>;</para>
</listitem>
<listitem>
<para>
<ulink url="${HTML_EXMPL_GALL_MODEL}">Na<superscript>+</superscript>/Ca<superscript>2+</superscript> Exchange in Models for Pancreatic Beta-Cells, Gall and Susa, 1999</ulink>; and</para>
</listitem>
<listitem>
<para>
<ulink url="${HTML_EXMPL_BERTRAM_MODEL}">The Phantom Burster Model for Pancreatic Beta-Cells, Bertram <emphasis>et al.</emphasis>, 2000</ulink>.</para>
</listitem>
</itemizedlist>
<para>
However, most of these models are focused on describing one specific phenomenon. They only include a very limited set of channels and pumps, and therefore it is difficult to apply them to a another situation. In addition, since their publication, new experimental data has become available, and these new findings should be included in a theoretical model. For this reason Fridlyand <emphasis>et al.</emphasis> have developed the new mathematical model described here (see the raw CellML description of the Fridlyand <emphasis>et al.</emphasis> 2003 model in <xref linkend="sec_download_this_model"/>). They have adopted the more complex style of modelling that has previously been used successfully to describe the electrophysiology of cardiac myocytes and other cell types (for example in <ulink url="${HTML_EXMPL_NYGREN_ATRIAL_MODEL}">Human Atrial Cell Model, Nygren <emphasis>et al.</emphasis> 1998</ulink> and in <ulink url="${HTML_EXMPL_RICE_MODEL2}">Modelling Interval-Force Relations in Cardiac Muscle, Rice <emphasis>et al.</emphasis>, 2000</ulink>). </para>
<para>
Their new model includes a wider range of channels and pumps, as well as endoplasmic reticulum (ER) Ca<superscript>2+</superscript> sequestration mechanisms (see <xref linkend="fig_cell_diagram"/> below). Using this model they were able to simulate whole cell electrical activity and [Ca<superscript>2+</superscript>]<subscript>i</subscript>, free calcium in the ER ([Ca<superscript>2+</superscript>]<subscript>ER</subscript>), intracellular Na<superscript> +</superscript> ([Na<superscript>+</superscript>]<subscript>i</subscript>), cytosolic ATP ([ATP]<subscript>i</subscript>), and inositol triphosphate ([IP<subscript>3</subscript>]<subscript>i</subscript>) concentrations. However, they acknowledge that this model does not consider metabolic processes or insulin secretion.
</para>
<para>
The complete original paper reference is cited below:
</para>
<para>
<ulink url="http://ajpendo.physiology.org/cgi/content/abstract/285/1/E138">Modeling of Ca<superscript>2+</superscript> flux in pancreatic beta-cells: role of the plasma membrane and intracellular stores</ulink>, Leonid E. Fridlyand, Natalia Tamarina, and Louis H. Philipson, 2003, <ulink url="http://ajpendo.physiology.org/">
<emphasis>American Journal of Physiology</emphasis>
</ulink>, 285, E138-E154. (<ulink url="http://ajpendo.physiology.org/cgi/content/full/285/1/E138">Full text (HTML)</ulink> and <ulink url="http://ajpendo.physiology.org/cgi/reprint/285/1/E138.pdf">PDF</ulink> versions of the article are available on the <emphasis>American Jounal of Physiology</emphasis> website.) <ulink url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12644446&dopt=Abstract">PubMed ID: 12644446</ulink>
</para>
<informalfigure float="0" id="fig_cell_diagram">
<mediaobject>
<imageobject>
<objectinfo>
<title>cell diagram</title>
</objectinfo>
<imagedata fileref="fridlyand_2003.png"/>
</imageobject>
</mediaobject>
<caption>Schematic representation of currents and ion fluxes, through the plasma membrane and the endoplasmic reticulum membrane, which have been included in the whole beta-cell mathematical model.</caption>
</informalfigure>
</sect1>
</article>
</documentation>
<units name="millisecond">
<unit units="second" prefix="milli"/>
</units>
<units name="first_order_rate_constant">
<unit units="millisecond" exponent="-1"/>
</units>
<units name="second_order_rate_constant">
<unit units="micromolar" exponent="-1"/>
<unit units="millisecond" exponent="-1"/>
</units>
<units name="third_order_rate_constant">
<unit units="micromolar" exponent="-2"/>
<unit units="millisecond" exponent="-1"/>
</units>
<units name="forth_order_rate_constant">
<unit units="micromolar" exponent="-3"/>
<unit units="millisecond" exponent="-1"/>
</units>
<units name="flux">
<unit units="micromolar"/>
<unit units="millisecond" exponent="-1"/>
</units>
<units name="millivolt">
<unit units="volt" prefix="milli"/>
</units>
<units name="picoS_per_millivolt">
<unit units="picoS"/>
<unit units="millivolt" exponent="-1"/>
</units>
<units name="per_millivolt_millisecond">
<unit units="millivolt" exponent="-1"/>
<unit units="millisecond" exponent="-1"/>
</units>
<units name="picoS">
<unit units="siemens" prefix="pico"/>
</units>
<units name="picol">
<unit units="litre" prefix="pico"/>
</units>
<units name="picol_per_ms">
<unit units="picol"/>
<unit units="millisecond" exponent="-1"/>
</units>
<units name="femtoA">
<unit units="ampere" prefix="femto"/>
</units>
<units name="femtoF">
<unit units="farad" prefix="femto"/>
</units>
<units name="millimolar">
<unit units="mole" prefix="micro"/>
<unit units="litre" exponent="-1"/>
</units>
<units name="micromolar">
<unit units="mole" prefix="micro"/>
<unit units="litre" exponent="-1"/>
</units>
<units name="joule_per_kilomole_kelvin">
<unit units="joule"/>
<unit units="mole" prefix="kilo" exponent="-1"/>
<unit units="kelvin" exponent="-1"/>
</units>
<units name="coulomb_per_mole">
<unit units="coulomb"/>
<unit units="mole" exponent="-1"/>
</units>
<component name="environment">
<variable units="millisecond" public_interface="out" name="time"/>
</component>
<component name="membrane">
<variable units="millivolt" public_interface="out" name="V" initial_value="-84.624"/>
<variable units="femtoF" name="Cm" initial_value="6158.0"/>
<variable units="millisecond" public_interface="in" name="time"/>
<variable units="femtoA" public_interface="in" name="i_VCa"/>
<variable units="femtoA" public_interface="in" name="i_Ca_pump"/>
<variable units="femtoA" public_interface="in" name="i_NaCa"/>
<variable units="femtoA" public_interface="in" name="i_CRAN"/>
<variable units="femtoA" public_interface="in" name="i_Na"/>
<variable units="femtoA" public_interface="in" name="i_NaK"/>
<variable units="femtoA" public_interface="in" name="i_KDr"/>
<variable units="femtoA" public_interface="in" name="i_KCa"/>
<variable units="femtoA" public_interface="in" name="i_KATP"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="membrane_voltage_diff_eq">
<eq/>
<apply>
<diff/>
<bvar>
<ci> time </ci>
</bvar>
<ci> V </ci>
</apply>
<apply>
<divide/>
<apply>
<plus/>
<ci> i_VCa </ci>
<ci> i_Ca_pump </ci>
<ci> i_NaCa </ci>
<ci> i_CRAN </ci>
<ci> i_Na </ci>
<ci> i_NaK </ci>
<ci> i_KDr </ci>
<ci> i_KCa </ci>
<ci> i_KATP </ci>
</apply>
<apply>
<minus/>
<ci> Cm </ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="whole_cell_calcium_current">
<variable units="femtoA" public_interface="out" name="i_VCa"/>
<variable units="millivolt" name="V_Ca"/>
<variable units="picoS" name="gm_VCa" initial_value="770.0"/>
<variable units="millivolt" public_interface="in" private_interface="out" name="V"/>
<variable units="joule_per_kilomole_kelvin" public_interface="in" name="R"/>
<variable units="coulomb_per_mole" public_interface="in" name="F"/>
<variable units="kelvin" public_interface="in" name="T"/>
<variable units="micromolar" public_interface="in" name="Cai"/>
<variable units="micromolar" public_interface="in" name="Cao"/>
<variable units="dimensionless" private_interface="in" name="p_VCa"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="i_VCa_calculation">
<eq/>
<ci> i_VCa </ci>
<apply>
<times/>
<ci> gm_VCa </ci>
<ci> p_VCa </ci>
<apply>
<minus/>
<ci> V </ci>
<ci> V_Ca </ci>
</apply>
</apply>
</apply>
<apply id="V_Ca_calculation">
<eq/>
<ci> V_Ca </ci>
<apply>
<times/>
<apply>
<divide/>
<apply>
<times/>
<ci> R </ci>
<ci> T </ci>
</apply>
<apply>
<times/>
<cn cellml:units="dimensionless"> 2.0 </cn>
<ci> F </ci>
</apply>
</apply>
<apply>
<ln/>
<apply>
<divide/>
<ci> Cao </ci>
<ci> Cai </ci>
</apply>
</apply>
</apply>
</apply>
</math>
</component>
<component name="whole_cell_calcium_current_p_VCa_gate">
<variable units="dimensionless" public_interface="out" name="p_VCa"/>
<variable units="millivolt" name="V_Cah" initial_value="-19.0"/>
<variable units="millivolt" name="K_Cah" initial_value="9.5"/>
<variable units="millivolt" public_interface="in" name="V"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="p_VCa_calculation">
<eq/>
<ci> p_VCa </ci>
<apply>
<divide/>
<cn cellml:units="dimensionless"> 1.0 </cn>
<apply>
<plus/>
<cn cellml:units="dimensionless"> 1.0 </cn>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<minus/>
<ci> V_Cah </ci>
<ci> V </ci>
</apply>
<ci> K_Cah </ci>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
</component>
<component name="PM_calcium_pumps">
<variable units="femtoA" public_interface="out" name="i_Ca_pump"/>
<variable units="femtoA" name="Pm_Cap" initial_value="2000.0"/>
<variable units="micromolar" name="K_Cap" initial_value="0.1"/>
<variable units="micromolar" public_interface="in" name="Cai"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="i_Ca_pump_calculation">
<eq/>
<ci> i_Ca_pump </ci>
<apply>
<times/>
<ci> Pm_Cap </ci>
<apply>
<divide/>
<apply>
<power/>
<ci> Cai </ci>
<cn cellml:units="dimensionless"> 2.0 </cn>
</apply>
<apply>
<plus/>
<apply>
<power/>
<ci> K_Cap </ci>
<cn cellml:units="dimensionless"> 2.0 </cn>
</apply>
<apply>
<power/>
<ci> Cai </ci>
<cn cellml:units="dimensionless"> 2.0 </cn>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
</component>
<component name="sodium_calcium_exchanger">
<variable units="femtoA" public_interface="out" name="i_NaCa"/>
<variable units="millivolt" name="V_NaCa"/>
<variable units="picoS" name="g_NaCa" initial_value="271.0"/>
<variable units="micromolar" name="K_NaCa" initial_value="0.75"/>
<variable units="millivolt" public_interface="in" name="V"/>
<variable units="joule_per_kilomole_kelvin" public_interface="in" name="R"/>
<variable units="coulomb_per_mole" public_interface="in" name="F"/>
<variable units="kelvin" public_interface="in" name="T"/>
<variable units="micromolar" public_interface="in" name="Cai"/>
<variable units="micromolar" public_interface="in" name="Cao"/>
<variable units="micromolar" public_interface="in" name="Nai"/>
<variable units="micromolar" public_interface="in" name="Nao"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="i_NaCa_calculation">
<eq/>
<ci> i_NaCa </ci>
<apply>
<times/>
<ci> g_NaCa </ci>
<apply>
<divide/>
<apply>
<power/>
<ci> Cai </ci>
<cn cellml:units="dimensionless"> 5.0 </cn>
</apply>
<apply>
<plus/>
<apply>
<power/>
<ci> Cai </ci>
<cn cellml:units="dimensionless"> 5.0 </cn>
</apply>
<apply>
<power/>
<ci> K_NaCa </ci>
<cn cellml:units="dimensionless"> 5.0 </cn>
</apply>
</apply>
</apply>
<apply>
<minus/>
<ci> V </ci>
<ci> V_NaCa </ci>
</apply>
</apply>
</apply>
<apply id="V_NaCa_calculation">
<eq/>
<ci> V_NaCa </ci>
<apply>
<times/>
<apply>
<divide/>
<apply>
<times/>
<ci> R </ci>
<ci> T </ci>
</apply>
<ci> F </ci>
</apply>
<apply>
<minus/>
<apply>
<times/>
<cn cellml:units="dimensionless"> 3.0 </cn>
<apply>
<ln/>
<apply>
<divide/>
<ci> Nao </ci>
<ci> Nai </ci>
</apply>
</apply>
</apply>
<apply>
<ln/>
<apply>
<divide/>
<ci> Cao </ci>
<ci> Cai </ci>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
</component>
<component name="nonselective_cation_current">
<variable units="femtoA" public_interface="out" name="i_CRAN"/>
<variable units="millivolt" name="V_CRAN" initial_value="0.0"/>
<variable units="picoS_per_millivolt" name="gm_CRAN" initial_value="0.7"/>
<variable units="micromolar" name="K_Car" initial_value="200.0"/>
<variable units="dimensionless" name="f_CRAN"/>
<variable units="millivolt" name="P_CRAN"/>
<variable units="millivolt" public_interface="in" name="V"/>
<variable units="millivolt" public_interface="in" name="V_Na"/>
<variable units="micromolar" public_interface="in" name="CaER"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="i_CRAN_calculation">
<eq/>
<ci> i_CRAN </ci>
<apply>
<times/>
<ci> f_CRAN </ci>
<ci> P_CRAN </ci>
<apply>
<minus/>
<ci> V </ci>
<ci> V_Na </ci>
</apply>
</apply>
</apply>
<apply id="f_CRAN_calculation">
<eq/>
<ci> f_CRAN </ci>
<apply>
<divide/>
<apply>
<minus/>
<ci> gm_CRAN </ci>
</apply>
<apply>
<plus/>
<cn cellml:units="dimensionless"> 1.0 </cn>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<minus/>
<ci> CaER </ci>
<ci> K_Car </ci>
</apply>
<cn cellml:units="dimensionless"> 3.0 </cn>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply id="P_CRAN_calculation">
<eq/>
<ci> P_CRAN </ci>
<apply>
<minus/>
<ci> V </ci>
<ci> V_CRAN </ci>
</apply>
</apply>
</math>
</component>
<component name="sodium_current">
<variable units="femtoA" public_interface="out" name="i_Na"/>
<variable units="millivolt" public_interface="out" name="V_Na"/>
<variable units="picoS" name="gm_Na" initial_value="1200.0"/>
<variable units="millivolt" public_interface="in" private_interface="out" name="V"/>
<variable units="joule_per_kilomole_kelvin" public_interface="in" name="R"/>
<variable units="coulomb_per_mole" public_interface="in" name="F"/>
<variable units="kelvin" public_interface="in" name="T"/>
<variable units="micromolar" public_interface="in" name="Nai"/>
<variable units="micromolar" public_interface="in" name="Nao"/>
<variable units="dimensionless" private_interface="in" name="p_Na"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="i_Na_calculation">
<eq/>
<ci> i_Na </ci>
<apply>
<times/>
<ci> gm_Na </ci>
<ci> p_Na </ci>
<apply>
<minus/>
<ci> V </ci>
<ci> V_Na </ci>
</apply>
</apply>
</apply>
<apply id="V_Na_calculation">
<eq/>
<ci> V_Na </ci>
<apply>
<times/>
<apply>
<divide/>
<apply>
<times/>
<ci> R </ci>
<ci> T </ci>
</apply>
<ci> F </ci>
</apply>
<apply>
<ln/>
<apply>
<divide/>
<ci> Nao </ci>
<ci> Nai </ci>
</apply>
</apply>
</apply>
</apply>
</math>
</component>
<component name="sodium_current_p_Na_gate">
<variable units="dimensionless" public_interface="out" name="p_Na"/>
<variable units="millivolt" public_interface="in" name="V"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="p_Na_calculation">
<eq/>
<ci> p_Na </ci>
<apply>
<divide/>
<cn cellml:units="dimensionless"> 1.0 </cn>
<apply>
<plus/>
<cn cellml:units="dimensionless"> 1.0 </cn>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<plus/>
<cn cellml:units="millivolt"> 104.0 </cn>
<ci> V </ci>
</apply>
<cn cellml:units="millivolt"> 8.0 </cn>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
</component>
<component name="sodium_potassium_active_transport">
<variable units="femtoA" public_interface="out" name="i_NaK"/>
<variable units="femtoA" name="P_NaK" initial_value="600.0"/>
<variable units="micromolar" name="P" initial_value="4950.0"/>
<variable units="micromolar" name="K_supi"/>
<variable units="first_order_rate_constant" name="F1"/>
<variable units="first_order_rate_constant" name="F4"/>
<variable units="first_order_rate_constant" name="F5"/>
<variable units="forth_order_rate_constant" name="f1" initial_value="2.5E-10"/>
<variable units="first_order_rate_constant" name="f2" initial_value="10.0"/>
<variable units="first_order_rate_constant" name="f3" initial_value="0.172"/>
<variable units="third_order_rate_constant" name="f4" initial_value="1.5E-8"/>
<variable units="second_order_rate_constant" name="f5_" initial_value="0.002"/>
<variable units="second_order_rate_constant" name="f5"/>
<variable units="first_order_rate_constant" name="f6" initial_value="11.5"/>
<variable units="first_order_rate_constant" name="b1" initial_value="100.0"/>
<variable units="second_order_rate_constant" name="b2" initial_value="0.0001"/>
<variable units="forth_order_rate_constant" name="b3" initial_value="1.72E-17"/>
<variable units="second_order_rate_constant" name="b4" initial_value="0.0002"/>
<variable units="first_order_rate_constant" name="b5_" initial_value="0.03"/>
<variable units="first_order_rate_constant" name="b5"/>
<variable units="second_order_rate_constant" name="b6" initial_value="6.0E-7"/>
<variable units="first_order_rate_constant" name="B2"/>
<variable units="first_order_rate_constant" name="B3"/>
<variable units="first_order_rate_constant" name="B4"/>
<variable units="first_order_rate_constant" name="B6"/>
<variable units="dimensionless" name="D"/>
<variable units="millivolt" public_interface="in" name="V"/>
<variable units="joule_per_kilomole_kelvin" public_interface="in" name="R"/>
<variable units="coulomb_per_mole" public_interface="in" name="F"/>
<variable units="kelvin" public_interface="in" name="T"/>
<variable units="micromolar" public_interface="in" name="Nai"/>
<variable units="micromolar" public_interface="in" name="Nao"/>
<variable units="micromolar" public_interface="in" name="ATPi"/>
<variable units="micromolar" public_interface="in" name="ADPi"/>
<variable units="micromolar" public_interface="in" name="Ko"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="i_NaK_calculation">
<eq/>
<ci> i_NaK </ci>
<apply>
<times/>
<ci> P_NaK </ci>
<apply>
<divide/>
<apply>
<minus/>
<apply>
<times/>
<ci> F1 </ci>
<ci> f2 </ci>
<ci> f3 </ci>
<ci> F4 </ci>
<ci> F5 </ci>
<ci> f6 </ci>
</apply>
<apply>
<times/>
<ci> b1 </ci>
<ci> B2 </ci>
<ci> B3 </ci>
<ci> B4 </ci>
<ci> b5 </ci>
<ci> B6 </ci>
</apply>
</apply>
<ci> D </ci>
</apply>
</apply>
</apply>
<apply id="D_calculation">
<eq/>
<ci> D </ci>
<apply>
<plus/>
<apply>
<times/>
<ci> f2 </ci>
<ci> f3 </ci>
<ci> F4 </ci>
<ci> F5 </ci>
<ci> f6 </ci>
</apply>
<apply>
<times/>
<ci> b1 </ci>
<ci> f3 </ci>
<ci> F4 </ci>
<ci> F5 </ci>
<ci> f6 </ci>
</apply>
<apply>
<times/>
<ci> b1 </ci>
<ci> B2 </ci>
<ci> F4 </ci>
<ci> F5 </ci>
<ci> f6 </ci>
</apply>
<apply>
<times/>
<ci> b1 </ci>
<ci> B2 </ci>
<ci> B3 </ci>
<ci> F5 </ci>
<ci> f6 </ci>
</apply>
<apply>
<times/>
<ci> b1 </ci>
<ci> B2 </ci>
<ci> B3 </ci>
<ci> B4 </ci>
<ci> f6 </ci>
</apply>
<apply>
<times/>
<ci> b1 </ci>
<ci> B2 </ci>
<ci> B3 </ci>
<ci> B4 </ci>
<ci> b5 </ci>
</apply>
</apply>
</apply>
<apply id="F1_calculation">
<eq/>
<ci> F1 </ci>
<apply>
<times/>
<ci> f1 </ci>
<apply>
<power/>
<ci> Nai </ci>
<cn cellml:units="dimensionless"> 3.0 </cn>
</apply>
</apply>
</apply>
<apply id="F4_calculation">
<eq/>
<ci> F4 </ci>
<apply>
<times/>
<ci> f4 </ci>
<apply>
<power/>
<ci> Ko </ci>
<cn cellml:units="dimensionless"> 2.0 </cn>
</apply>
</apply>
</apply>
<apply id="F5_calculation">
<eq/>
<ci> F5 </ci>
<apply>
<times/>
<ci> f5 </ci>
<ci> ATPi </ci>
</apply>
</apply>
<apply id="f5_calculation">
<eq/>
<ci> f5 </ci>
<apply>
<times/>
<ci> f5_ </ci>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<times/>
<ci> V </ci>
<ci> F </ci>
</apply>
<apply>
<times/>
<cn cellml:units="dimensionless"> 2.0 </cn>
<ci> R </ci>
<ci> T </ci>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply id="B2_calculation">
<eq/>
<ci> B2 </ci>
<apply>
<times/>
<ci> b2 </ci>
<ci> ATPi </ci>
</apply>
</apply>
<apply id="B3_calculation">
<eq/>
<ci> B3 </ci>
<apply>
<times/>
<ci> b3 </ci>
<apply>
<power/>
<ci> Nai </ci>
<cn cellml:units="dimensionless"> 3.0 </cn>
</apply>
</apply>
</apply>
<apply id="B4_calculation">
<eq/>
<ci> B4 </ci>
<apply>
<times/>
<ci> b4 </ci>
<ci> P </ci>
</apply>
</apply>
<apply id="B6_calculation">
<eq/>
<ci> B6 </ci>
<apply>
<times/>
<ci> b6 </ci>
<apply>
<power/>
<ci> K_supi </ci>
<cn cellml:units="dimensionless"> 2.0 </cn>
</apply>
</apply>
</apply>
<apply id="b5_calculation">
<eq/>
<ci> b5 </ci>
<apply>
<times/>
<ci> b5_ </ci>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<minus/>
<apply>
<times/>
<ci> V </ci>
<ci> F </ci>
</apply>
</apply>
<apply>
<times/>
<cn cellml:units="dimensionless"> 2.0 </cn>
<ci> R </ci>
<ci> T </ci>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
</component>
<component name="voltage_dependent_potassium_current">
<variable units="femtoA" public_interface="out" name="i_KDr"/>
<variable units="millivolt" public_interface="out" name="V_K"/>
<variable units="picoS" name="gm_KDr" initial_value="3000.0"/>
<variable units="millisecond" public_interface="in" private_interface="out" name="time"/>
<variable units="millivolt" public_interface="in" private_interface="out" name="V"/>
<variable units="joule_per_kilomole_kelvin" public_interface="in" name="R"/>
<variable units="coulomb_per_mole" public_interface="in" name="F"/>
<variable units="kelvin" public_interface="in" name="T"/>
<variable units="micromolar" public_interface="in" name="Ki"/>
<variable units="micromolar" public_interface="in" name="Ko"/>
<variable units="dimensionless" private_interface="in" name="n"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="i_KDr_calculation">
<eq/>
<ci> i_KDr </ci>
<apply>
<times/>
<ci> gm_KDr </ci>
<ci> n </ci>
<apply>
<minus/>
<ci> V </ci>
<ci> V_K </ci>
</apply>
</apply>
</apply>
<apply id="V_K_calculation">
<eq/>
<ci> V_K </ci>
<apply>
<times/>
<apply>
<divide/>
<apply>
<times/>
<ci> R </ci>
<ci> T </ci>
</apply>
<ci> F </ci>
</apply>
<apply>
<ln/>
<apply>
<divide/>
<ci> Ko </ci>
<ci> Ki </ci>
</apply>
</apply>
</apply>
</apply>
</math>
</component>
<component name="voltage_dependent_potassium_current_n_gate">
<variable units="dimensionless" public_interface="out" name="n" initial_value="0.00123"/>
<variable units="dimensionless" name="tau_n"/>
<variable units="dimensionless" name="n_infinity"/>
<variable units="millivolt" name="Vn" initial_value="-14.0"/>
<variable units="millivolt" name="Vtau" initial_value="-75.0"/>
<variable units="millivolt" name="Sn" initial_value="7.0"/>
<variable units="millivolt" name="a" initial_value="65.0"/>
<variable units="millivolt" name="b" initial_value="20.0"/>
<variable units="millisecond" name="c" initial_value="20.0"/>
<variable units="millivolt" public_interface="in" name="V"/>
<variable units="millisecond" public_interface="in" name="time"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="n_diff_eq">
<eq/>
<apply>
<diff/>
<bvar>
<ci> time </ci>
</bvar>
<ci> n </ci>
</apply>
<apply>
<divide/>
<apply>
<minus/>
<ci> n_infinity </ci>
<ci> n </ci>
</apply>
<ci> tau_n </ci>
</apply>
</apply>
<apply id="n_infinity_calculation">
<eq/>
<ci> n_infinity </ci>
<apply>
<divide/>
<cn cellml:units="dimensionless"> 1.0 </cn>
<apply>
<plus/>
<cn cellml:units="dimensionless"> 1.0 </cn>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<minus/>
<ci> Vn </ci>
<ci> V </ci>
</apply>
<ci> Sn </ci>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply id="tau_n_calculation">
<eq/>
<ci> tau_n </ci>
<apply>
<divide/>
<ci> c </ci>
<apply>
<plus/>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<minus/>
<ci> V </ci>
<ci> Vtau </ci>
</apply>
<ci> a </ci>
</apply>
</apply>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<minus/>
<ci> Vtau </ci>
<ci> V </ci>
</apply>
<ci> b </ci>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
</component>
<component name="calcium_dependent_potassium_current">
<variable units="femtoA" public_interface="out" name="i_KCa"/>
<variable units="picoS" name="gm_KCa" initial_value="130.0"/>
<variable units="millivolt" public_interface="in" name="V_K"/>
<variable units="millivolt" public_interface="in" name="V"/>
<variable units="micromolar" public_interface="in" private_interface="out" name="Cai"/>
<variable units="dimensionless" private_interface="in" name="fCa"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="i_KCa_calculation">
<eq/>
<ci> i_KCa </ci>
<apply>
<times/>
<ci> gm_KCa </ci>
<ci> fCa </ci>
<apply>
<minus/>
<ci> V </ci>
<ci> V_K </ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="calcium_dependent_potassium_current_fCa_gate">
<variable units="dimensionless" public_interface="out" name="fCa"/>
<variable units="micromolar" name="K_KCa" initial_value="0.1"/>
<variable units="micromolar" public_interface="in" name="Cai"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="fCa_calculation">
<eq/>
<ci> fCa </ci>
<apply>
<divide/>
<apply>
<power/>
<ci> Cai </ci>
<cn cellml:units="dimensionless"> 4.0 </cn>
</apply>
<apply>
<plus/>
<apply>
<power/>
<ci> Cai </ci>
<cn cellml:units="dimensionless"> 4.0 </cn>
</apply>
<apply>
<power/>
<ci> K_KCa </ci>
<cn cellml:units="dimensionless"> 4.0 </cn>
</apply>
</apply>
</apply>
</apply>
</math>
</component>
<component name="ATP_dependent_potassium_current">
<variable units="femtoA" public_interface="out" name="i_KATP"/>
<variable units="picoS" name="gm_KATP" initial_value="24000.0"/>
<variable units="dimensionless" name="O_KATP"/>
<variable units="micromolar" name="Kdd" initial_value="17.0"/>
<variable units="micromolar" name="Ktd" initial_value="26.0"/>
<variable units="micromolar" name="Ktt" initial_value="1.0"/>
<variable units="millivolt" public_interface="in" name="V"/>
<variable units="millivolt" public_interface="in" name="V_K"/>
<variable units="micromolar" public_interface="in" name="ADPi"/>
<variable units="micromolar" public_interface="in" name="ATPi"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="i_KATP_calculation">
<eq/>
<ci> i_KATP </ci>
<apply>
<times/>
<ci> gm_KATP </ci>
<ci> O_KATP </ci>
<apply>
<minus/>
<ci> V </ci>
<ci> V_K </ci>
</apply>
</apply>
</apply>
<apply id="O_KATP_calculation">
<eq/>
<ci> O_KATP </ci>
<apply>
<divide/>
<apply>
<plus/>
<apply>
<times/>
<cn cellml:units="dimensionless"> 0.08 </cn>
<apply>
<plus/>
<cn cellml:units="dimensionless"> 1.0 </cn>
<apply>
<divide/>
<apply>
<times/>
<cn cellml:units="dimensionless"> 0.33 </cn>
<ci> ADPi </ci>
</apply>
<ci> Kdd </ci>
</apply>
</apply>
</apply>
<apply>
<times/>
<cn cellml:units="dimensionless"> 0.89 </cn>
<apply>
<power/>
<apply>
<plus/>
<cn cellml:units="dimensionless"> 0.165 </cn>
<apply>
<divide/>
<ci> ADPi </ci>
<ci> Kdd </ci>
</apply>
</apply>
<cn cellml:units="dimensionless"> 2.0 </cn>
</apply>
</apply>
</apply>
<apply>
<times/>
<apply>
<power/>
<apply>
<plus/>
<cn cellml:units="dimensionless"> 0.165 </cn>
<apply>
<divide/>
<ci> ADPi </ci>
<ci> Kdd </ci>
</apply>
</apply>
<cn cellml:units="dimensionless"> 2.0 </cn>
</apply>
<apply>
<plus/>
<cn cellml:units="dimensionless"> 1.0 </cn>
<apply>
<divide/>
<apply>
<times/>
<cn cellml:units="dimensionless"> 0.135 </cn>
<ci> ADPi </ci>
</apply>
<ci> Ktd </ci>
</apply>
<apply>
<divide/>
<apply>
<times/>
<cn cellml:units="dimensionless"> 0.05 </cn>
<ci> ATPi </ci>
</apply>
<ci> Ktt </ci>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
</component>
<component name="SERCA_pump">
<variable units="flux" public_interface="out" name="Jer_p"/>
<variable units="flux" name="P_CaER" initial_value="0.105"/>
<variable units="micromolar" name="K_Carp" initial_value="0.5"/>
<variable units="micromolar" public_interface="in" name="Cai"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="Jer_p_calculation">
<eq/>
<ci> Jer_p </ci>
<apply>
<times/>
<ci> P_CaER </ci>
<apply>
<divide/>
<apply>
<power/>
<ci> Cai </ci>
<cn cellml:units="dimensionless"> 2.0 </cn>
</apply>
<apply>
<plus/>
<apply>
<power/>
<ci> Cai </ci>
<cn cellml:units="dimensionless"> 2.0 </cn>
</apply>
<apply>
<power/>
<ci> K_Carp </ci>
<cn cellml:units="dimensionless"> 2.0 </cn>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
</component>
<component name="IP3_metabolism">
<variable units="micromolar" public_interface="out" name="IP3i" initial_value="0.33"/>
<variable units="flux" name="kIP" initial_value="0.0003"/>
<variable units="first_order_rate_constant" name="kdIP" initial_value="0.00004"/>
<variable units="micromolar" name="K_IPCa" initial_value="0.4"/>
<variable units="micromolar" public_interface="in" name="Cai"/>
<variable units="millisecond" public_interface="in" name="time"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="IP3_diff_eq">
<eq/>
<apply>
<diff/>
<bvar>
<ci> time </ci>
</bvar>
<ci> IP3i </ci>
</apply>
<apply>
<minus/>
<apply>
<times/>
<ci> kIP </ci>
<apply>
<divide/>
<apply>
<power/>
<ci> Cai </ci>
<cn cellml:units="dimensionless"> 2.0 </cn>
</apply>
<apply>
<plus/>
<apply>
<power/>
<ci> Cai </ci>
<cn cellml:units="dimensionless"> 2.0 </cn>
</apply>
<apply>
<power/>
<ci> K_IPCa </ci>
<cn cellml:units="dimensionless"> 2.0 </cn>
</apply>
</apply>
</apply>
</apply>
<apply>
<times/>
<ci> kdIP </ci>
<ci> IP3i </ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="CaER_mobilisation">
<variable units="flux" public_interface="out" name="J_out"/>
<variable units="picol_per_ms" name="P_leak" initial_value="0.0001"/>
<variable units="picol_per_ms" name="P_IP3" initial_value="0.0012"/>
<variable units="dimensionless" name="O_infinity"/>
<variable units="micromolar" name="K_RCa" initial_value="3.2"/>
<variable units="micromolar" name="K_IP3" initial_value="0.077"/>
<variable units="micromolar" public_interface="in" name="IP3i"/>
<variable units="micromolar" public_interface="in" name="Cai"/>
<variable units="micromolar" public_interface="in" name="CaER"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<ci> J_out </ci>
<apply>
<times/>
<apply>
<plus/>
<ci> P_leak </ci>
<apply>
<times/>
<ci> P_IP3 </ci>
<ci> O_infinity </ci>
</apply>
</apply>
<apply>
<minus/>
<ci> CaER </ci>
<ci> Cai </ci>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci> O_infinity </ci>
<apply>
<times/>
<apply>
<divide/>
<ci> Cai </ci>
<apply>
<plus/>
<ci> Cai </ci>
<ci> K_RCa </ci>
</apply>
</apply>
<apply>
<divide/>
<apply>
<power/>
<ci> IP3i </ci>
<cn cellml:units="dimensionless"> 3.0 </cn>
</apply>
<apply>
<plus/>
<apply>
<power/>
<ci> IP3i </ci>
<cn cellml:units="dimensionless"> 3.0 </cn>
</apply>
<apply>
<power/>
<ci> K_IP3 </ci>
<cn cellml:units="dimensionless"> 3.0 </cn>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
</component>
<component name="calcium_and_sodium_dynamics">
<variable units="micromolar" public_interface="out" name="Cai" initial_value="0.085"/>
<variable units="micromolar" public_interface="out" name="CaER" initial_value="22.8"/>
<variable units="micromolar" public_interface="out" name="Nai" initial_value="9858.0"/>
<variable units="dimensionless" name="fi" initial_value="0.01"/>
<variable units="dimensionless" name="fer" initial_value="0.03"/>
<variable units="first_order_rate_constant" name="ksg" initial_value="0.0001"/>
<variable units="picol" name="Ver" initial_value="0.280"/>
<variable units="picol" public_interface="in" name="Vi"/>
<variable units="femtoA" public_interface="in" name="i_VCa"/>
<variable units="femtoA" public_interface="in" name="i_NaCa"/>
<variable units="femtoA" public_interface="in" name="i_Ca_pump"/>
<variable units="femtoA" public_interface="in" name="i_NaK"/>
<variable units="femtoA" public_interface="in" name="i_Na"/>
<variable units="femtoA" public_interface="in" name="i_CRAN"/>
<variable units="coulomb_per_mole" public_interface="in" name="F"/>
<variable units="flux" public_interface="in" name="J_out"/>
<variable units="flux" public_interface="in" name="Jer_p"/>
<variable units="millisecond" public_interface="in" name="time"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="Cai_diff_eq">
<eq/>
<apply>
<diff/>
<bvar>
<ci> time </ci>
</bvar>
<ci> Cai </ci>
</apply>
<apply>
<minus/>
<apply>
<times/>
<ci> fi </ci>
<apply>
<plus/>
<apply>
<minus/>
<apply>
<divide/>
<apply>
<minus/>
<apply>
<plus/>
<apply>
<minus/>
<ci> i_VCa </ci>
</apply>
<apply>
<times/>
<ci> i_NaCa </ci>
<cn cellml:units="dimensionless"> 2.0 </cn>
</apply>
</apply>
<apply>
<times/>
<ci> i_Ca_pump </ci>
<cn cellml:units="dimensionless"> 2.0 </cn>
</apply>
</apply>
<apply>
<times/>
<cn cellml:units="dimensionless"> 2.0 </cn>
<ci> F </ci>
<ci> Vi </ci>
</apply>
</apply>
<ci> Jer_p </ci>
</apply>
<apply>
<divide/>
<ci> J_out </ci>
<ci> Vi </ci>
</apply>
</apply>
</apply>
<apply>
<times/>
<ci> ksg </ci>
<ci> Cai </ci>
</apply>
</apply>
</apply>
<apply id="CaER_diff_eq">
<eq/>
<apply>
<diff/>
<bvar>
<ci> time </ci>
</bvar>
<ci> CaER </ci>
</apply>
<apply>
<times/>
<apply>
<divide/>
<ci> fer </ci>
<ci> Ver </ci>
</apply>
<apply>
<minus/>
<apply>
<times/>
<ci> Jer_p </ci>
<ci> Vi </ci>
</apply>
<ci> J_out </ci>
</apply>
</apply>
</apply>
<apply id="Nai_diff_eq">
<eq/>
<apply>
<diff/>
<bvar>
<ci> time </ci>
</bvar>
<ci> Nai </ci>
</apply>
<apply>
<divide/>
<apply>
<minus/>
<apply>
<plus/>
<apply>
<times/>
<cn cellml:units="dimensionless"> 3.0 </cn>
<ci> i_NaCa </ci>
</apply>
<apply>
<times/>
<cn cellml:units="dimensionless"> 3.0 </cn>
<ci> i_NaK </ci>
</apply>
<ci> i_Na </ci>
<ci> i_CRAN </ci>
</apply>
</apply>
<apply>
<times/>
<ci> Vi </ci>
<ci> F </ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="ATP_homeostasis">
<variable units="micromolar" public_interface="out" name="ATPi" initial_value="932.1"/>
<variable units="millimolar" public_interface="out" name="ADPi"/>
<variable units="first_order_rate_constant" name="k_ADP"/>
<variable units="first_order_rate_constant" name="k_ATP" initial_value="0.00005"/>
<variable units="second_order_rate_constant" name="k_ATP_Ca" initial_value="0.00005"/>
<variable units="micromolar" name="Ao" initial_value="4000.0"/>
<variable units="picol" public_interface="in" name="Vi"/>
<variable units="micromolar" public_interface="in" name="Cai"/>
<variable units="femtoA" public_interface="in" name="i_Ca_pump"/>
<variable units="femtoA" public_interface="in" name="i_CRAN"/>
<variable units="femtoA" public_interface="in" name="i_NaK"/>
<variable units="coulomb_per_mole" public_interface="in" name="F"/>
<variable units="flux" public_interface="in" name="Jer_p"/>
<variable units="millisecond" public_interface="in" name="time"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="ATPi_diff_eq">
<eq/>
<apply>
<diff/>
<bvar>
<ci> time </ci>
</bvar>
<ci> ATPi </ci>
</apply>
<apply>
<minus/>
<apply>
<times/>
<ci> k_ADP </ci>
<ci> ADPi </ci>
</apply>
<apply>
<plus/>
<apply>
<divide/>
<apply>
<plus/>
<ci> i_NaK </ci>
<ci> i_CRAN </ci>
</apply>
<apply>
<times/>
<ci> Vi </ci>
<ci> F </ci>
</apply>
</apply>
<apply>
<divide/>
<ci> Jer_p </ci>
<cn cellml:units="dimensionless"> 2.0 </cn>
</apply>
<apply>
<times/>
<apply>
<plus/>
<apply>
<times/>
<ci> k_ATP_Ca </ci>
<ci> Cai </ci>
</apply>
<ci> k_ATP </ci>
</apply>
<ci> ATPi </ci>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci> ADPi </ci>
<apply>
<minus/>
<ci> Ao </ci>
<ci> ATPi </ci>
</apply>
</apply>
</math>
</component>
<component name="cell_and_external_parameters">
<variable units="millimolar" public_interface="out" name="Cao" initial_value="2.6"/>
<variable units="millimolar" public_interface="out" name="Nao" initial_value="140.0"/>
<variable units="millimolar" public_interface="out" name="Ko" initial_value="8.0"/>
<variable units="millimolar" public_interface="out" name="Ki" initial_value="132.4"/>
<variable units="joule_per_kilomole_kelvin" public_interface="out" name="R" initial_value="8314.0"/>
<variable units="kelvin" public_interface="out" name="T" initial_value="310.0"/>
<variable units="coulomb_per_mole" public_interface="out" name="F" initial_value="96500.0"/>
<variable units="picol" public_interface="out" name="Vi" initial_value="0.764"/>
</component>
<group>
<relationship_ref relationship="containment"/>
<component_ref component="membrane">
<component_ref component="whole_cell_calcium_current">
<component_ref component="whole_cell_calcium_current_p_VCa_gate"/>
</component_ref>
<component_ref component="PM_calcium_pumps"/>
<component_ref component="sodium_calcium_exchanger"/>
<component_ref component="nonselective_cation_current"/>
<component_ref component="sodium_current">
<component_ref component="sodium_current_p_Na_gate"/>
</component_ref>
<component_ref component="voltage_dependent_potassium_current">
<component_ref component="voltage_dependent_potassium_current_n_gate"/>
</component_ref>
<component_ref component="calcium_dependent_potassium_current">
<component_ref component="calcium_dependent_potassium_current_fCa_gate"/>
</component_ref>
<component_ref component="sodium_potassium_active_transport"/>
<component_ref component="ATP_dependent_potassium_current"/>
<component_ref component="SERCA_pump"/>
<component_ref component="IP3_metabolism"/>
<component_ref component="CaER_mobilisation"/>
<component_ref component="calcium_and_sodium_dynamics"/>
<component_ref component="ATP_homeostasis"/>
<component_ref component="cell_and_external_parameters"/>
</component_ref>
</group>
<group>
<relationship_ref relationship="encapsulation"/>
<component_ref component="whole_cell_calcium_current">
<component_ref component="whole_cell_calcium_current_p_VCa_gate"/>
</component_ref>
<component_ref component="sodium_current">
<component_ref component="sodium_current_p_Na_gate"/>
</component_ref>
<component_ref component="voltage_dependent_potassium_current">
<component_ref component="voltage_dependent_potassium_current_n_gate"/>
</component_ref>
<component_ref component="calcium_dependent_potassium_current">
<component_ref component="calcium_dependent_potassium_current_fCa_gate"/>
</component_ref>
</group>
<connection>
<map_components component_2="environment" component_1="membrane"/>
<map_variables variable_2="time" variable_1="time"/>
</connection>
<connection>
<map_components component_2="environment" component_1="IP3_metabolism"/>
<map_variables variable_2="time" variable_1="time"/>
</connection>
<connection>
<map_components component_2="environment" component_1="calcium_and_sodium_dynamics"/>
<map_variables variable_2="time" variable_1="time"/>
</connection>
<connection>
<map_components component_2="environment" component_1="ATP_homeostasis"/>
<map_variables variable_2="time" variable_1="time"/>
</connection>
<connection>
<map_components component_2="environment" component_1="voltage_dependent_potassium_current"/>
<map_variables variable_2="time" variable_1="time"/>
</connection>
<connection>
<map_components component_2="whole_cell_calcium_current" component_1="membrane"/>
<map_variables variable_2="i_VCa" variable_1="i_VCa"/>
<map_variables variable_2="V" variable_1="V"/>
</connection>
<connection>
<map_components component_2="PM_calcium_pumps" component_1="membrane"/>
<map_variables variable_2="i_Ca_pump" variable_1="i_Ca_pump"/>
</connection>
<connection>
<map_components component_2="sodium_calcium_exchanger" component_1="membrane"/>
<map_variables variable_2="i_NaCa" variable_1="i_NaCa"/>
<map_variables variable_2="V" variable_1="V"/>
</connection>
<connection>
<map_components component_2="sodium_potassium_active_transport" component_1="membrane"/>
<map_variables variable_2="i_NaK" variable_1="i_NaK"/>
<map_variables variable_2="V" variable_1="V"/>
</connection>
<connection>
<map_components component_2="nonselective_cation_current" component_1="membrane"/>
<map_variables variable_2="i_CRAN" variable_1="i_CRAN"/>
<map_variables variable_2="V" variable_1="V"/>
</connection>
<connection>
<map_components component_2="sodium_current" component_1="membrane"/>
<map_variables variable_2="i_Na" variable_1="i_Na"/>
<map_variables variable_2="V" variable_1="V"/>
</connection>
<connection>
<map_components component_2="voltage_dependent_potassium_current" component_1="membrane"/>
<map_variables variable_2="i_KDr" variable_1="i_KDr"/>
<map_variables variable_2="V" variable_1="V"/>
</connection>
<connection>
<map_components component_2="calcium_dependent_potassium_current" component_1="membrane"/>
<map_variables variable_2="i_KCa" variable_1="i_KCa"/>
<map_variables variable_2="V" variable_1="V"/>
</connection>
<connection>
<map_components component_2="ATP_dependent_potassium_current" component_1="membrane"/>
<map_variables variable_2="i_KATP" variable_1="i_KATP"/>
<map_variables variable_2="V" variable_1="V"/>
</connection>
<connection>
<map_components component_2="whole_cell_calcium_current" component_1="calcium_and_sodium_dynamics"/>
<map_variables variable_2="Cai" variable_1="Cai"/>
<map_variables variable_2="i_VCa" variable_1="i_VCa"/>
</connection>
<connection>
<map_components component_2="PM_calcium_pumps" component_1="calcium_and_sodium_dynamics"/>
<map_variables variable_2="Cai" variable_1="Cai"/>
<map_variables variable_2="i_Ca_pump" variable_1="i_Ca_pump"/>
</connection>
<connection>
<map_components component_2="sodium_calcium_exchanger" component_1="calcium_and_sodium_dynamics"/>
<map_variables variable_2="Cai" variable_1="Cai"/>
<map_variables variable_2="Nai" variable_1="Nai"/>
<map_variables variable_2="i_NaCa" variable_1="i_NaCa"/>
</connection>
<connection>
<map_components component_2="sodium_potassium_active_transport" component_1="calcium_and_sodium_dynamics"/>
<map_variables variable_2="Nai" variable_1="Nai"/>
<map_variables variable_2="i_NaK" variable_1="i_NaK"/>
</connection>
<connection>
<map_components component_2="nonselective_cation_current" component_1="calcium_and_sodium_dynamics"/>
<map_variables variable_2="CaER" variable_1="CaER"/>
<map_variables variable_2="i_CRAN" variable_1="i_CRAN"/>
</connection>
<connection>
<map_components component_2="sodium_current" component_1="calcium_and_sodium_dynamics"/>
<map_variables variable_2="Nai" variable_1="Nai"/>
<map_variables variable_2="i_Na" variable_1="i_Na"/>
</connection>
<connection>
<map_components component_2="calcium_dependent_potassium_current" component_1="calcium_and_sodium_dynamics"/>
<map_variables variable_2="Cai" variable_1="Cai"/>
</connection>
<connection>
<map_components component_2="SERCA_pump" component_1="calcium_and_sodium_dynamics"/>
<map_variables variable_2="Cai" variable_1="Cai"/>
<map_variables variable_2="Jer_p" variable_1="Jer_p"/>
</connection>
<connection>
<map_components component_2="IP3_metabolism" component_1="calcium_and_sodium_dynamics"/>
<map_variables variable_2="Cai" variable_1="Cai"/>
</connection>
<connection>
<map_components component_2="CaER_mobilisation" component_1="calcium_and_sodium_dynamics"/>
<map_variables variable_2="CaER" variable_1="CaER"/>
<map_variables variable_2="Cai" variable_1="Cai"/>
<map_variables variable_2="J_out" variable_1="J_out"/>
</connection>
<connection>
<map_components component_2="ATP_homeostasis" component_1="calcium_and_sodium_dynamics"/>
<map_variables variable_2="Cai" variable_1="Cai"/>
</connection>
<connection>
<map_components component_2="whole_cell_calcium_current" component_1="cell_and_external_parameters"/>
<map_variables variable_2="Cao" variable_1="Cao"/>
<map_variables variable_2="R" variable_1="R"/>
<map_variables variable_2="T" variable_1="T"/>
<map_variables variable_2="F" variable_1="F"/>
</connection>
<connection>
<map_components component_2="sodium_calcium_exchanger" component_1="cell_and_external_parameters"/>
<map_variables variable_2="Cao" variable_1="Cao"/>
<map_variables variable_2="Nao" variable_1="Nao"/>
<map_variables variable_2="R" variable_1="R"/>
<map_variables variable_2="T" variable_1="T"/>
<map_variables variable_2="F" variable_1="F"/>
</connection>
<connection>
<map_components component_2="sodium_potassium_active_transport" component_1="cell_and_external_parameters"/>
<map_variables variable_2="Ko" variable_1="Ko"/>
<map_variables variable_2="Nao" variable_1="Nao"/>
<map_variables variable_2="R" variable_1="R"/>
<map_variables variable_2="T" variable_1="T"/>
<map_variables variable_2="F" variable_1="F"/>
</connection>
<connection>
<map_components component_2="sodium_current" component_1="cell_and_external_parameters"/>
<map_variables variable_2="Nao" variable_1="Nao"/>
<map_variables variable_2="R" variable_1="R"/>
<map_variables variable_2="T" variable_1="T"/>
<map_variables variable_2="F" variable_1="F"/>
</connection>
<connection>
<map_components component_2="voltage_dependent_potassium_current" component_1="cell_and_external_parameters"/>
<map_variables variable_2="Ko" variable_1="Ko"/>
<map_variables variable_2="Ki" variable_1="Ki"/>
<map_variables variable_2="R" variable_1="R"/>
<map_variables variable_2="T" variable_1="T"/>
<map_variables variable_2="F" variable_1="F"/>
</connection>
<connection>
<map_components component_2="calcium_and_sodium_dynamics" component_1="cell_and_external_parameters"/>
<map_variables variable_2="F" variable_1="F"/>
<map_variables variable_2="Vi" variable_1="Vi"/>
</connection>
<connection>
<map_components component_2="ATP_homeostasis" component_1="cell_and_external_parameters"/>
<map_variables variable_2="F" variable_1="F"/>
<map_variables variable_2="Vi" variable_1="Vi"/>
</connection>
<connection>
<map_components component_2="sodium_current" component_1="nonselective_cation_current"/>
<map_variables variable_2="V_Na" variable_1="V_Na"/>
</connection>
<connection>
<map_components component_2="calcium_dependent_potassium_current" component_1="voltage_dependent_potassium_current"/>
<map_variables variable_2="V_K" variable_1="V_K"/>
</connection>
<connection>
<map_components component_2="ATP_dependent_potassium_current" component_1="voltage_dependent_potassium_current"/>
<map_variables variable_2="V_K" variable_1="V_K"/>
</connection>
<connection>
<map_components component_2="CaER_mobilisation" component_1="IP3_metabolism"/>
<map_variables variable_2="IP3i" variable_1="IP3i"/>
</connection>
<connection>
<map_components component_2="PM_calcium_pumps" component_1="ATP_homeostasis"/>
<map_variables variable_2="i_Ca_pump" variable_1="i_Ca_pump"/>
</connection>
<connection>
<map_components component_2="sodium_potassium_active_transport" component_1="ATP_homeostasis"/>
<map_variables variable_2="i_NaK" variable_1="i_NaK"/>
<map_variables variable_2="ATPi" variable_1="ATPi"/>
<map_variables variable_2="ADPi" variable_1="ADPi"/>
</connection>
<connection>
<map_components component_2="SERCA_pump" component_1="ATP_homeostasis"/>
<map_variables variable_2="Jer_p" variable_1="Jer_p"/>
</connection>
<connection>
<map_components component_2="ATP_dependent_potassium_current" component_1="ATP_homeostasis"/>
<map_variables variable_2="ATPi" variable_1="ATPi"/>
<map_variables variable_2="ADPi" variable_1="ADPi"/>
</connection>
<connection>
<map_components component_2="nonselective_cation_current" component_1="ATP_homeostasis"/>
<map_variables variable_2="i_CRAN" variable_1="i_CRAN"/>
</connection>
<connection>
<map_components component_2="whole_cell_calcium_current_p_VCa_gate" component_1="whole_cell_calcium_current"/>
<map_variables variable_2="p_VCa" variable_1="p_VCa"/>
<map_variables variable_2="V" variable_1="V"/>
</connection>
<connection>
<map_components component_2="sodium_current_p_Na_gate" component_1="sodium_current"/>
<map_variables variable_2="p_Na" variable_1="p_Na"/>
<map_variables variable_2="V" variable_1="V"/>
</connection>
<connection>
<map_components component_2="voltage_dependent_potassium_current_n_gate" component_1="voltage_dependent_potassium_current"/>
<map_variables variable_2="n" variable_1="n"/>
<map_variables variable_2="time" variable_1="time"/>
<map_variables variable_2="V" variable_1="V"/>
</connection>
<connection>
<map_components component_2="calcium_dependent_potassium_current_fCa_gate" component_1="calcium_dependent_potassium_current"/>
<map_variables variable_2="fCa" variable_1="fCa"/>
<map_variables variable_2="Cai" variable_1="Cai"/>
</connection>
<rdf:RDF>
<rdf:Bag rdf:about="rdf:#dd1dfda4-c1d0-452a-b843-e31e97a7b677">
<rdf:li>calcium dynamics</rdf:li>
<rdf:li>electrophysiology</rdf:li>
<rdf:li>beta cell</rdf:li>
<rdf:li>pancreatic beta cell</rdf:li>
<rdf:li>pancreas</rdf:li>
</rdf:Bag>
<rdf:Seq rdf:about="rdf:#3d214aef-f1d3-4663-a8a1-5ff8aec35cb9">
<rdf:li rdf:resource="rdf:#4459212e-f39a-415f-a704-caf709062710"/>
<rdf:li rdf:resource="rdf:#da396c91-d043-4fbb-a5e1-bb737edae218"/>
<rdf:li rdf:resource="rdf:#0b8344cc-5404-4638-8f25-18e0409ac600"/>
</rdf:Seq>
<rdf:Description rdf:about="rdf:#b4558159-a58a-4ac9-a332-50bc32b31e81">
<vCard:Given>Natalia</vCard:Given>
<vCard:Family>Tamarina</vCard:Family>
</rdf:Description>
<rdf:Description rdf:about="rdf:#0a2405bd-7bc1-409c-a11d-2b7b62f3c2e6">
<bqs:Pubmed_id>12644446</bqs:Pubmed_id>
<bqs:JournalArticle rdf:resource="rdf:#6d034770-1489-4d5b-b000-a97e35a7a574"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#b8ac61b3-0839-4662-82eb-44dc3b2fccde">
<dcterms:W3CDTF>2003-03-18</dcterms:W3CDTF>
</rdf:Description>
<rdf:Description rdf:about="rdf:#218bf937-5b2b-456a-85e0-7f0371c6b63e">
<dc:subject rdf:resource="rdf:#202a1dc7-4eb2-404a-8a67-fc26536589a4"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#6445b9ea-1a71-4e97-aaec-9fba49d6411e">
<rdf:type rdf:resource="http://imc.org/vCard/3.0#internet"/>
<rdf:value>c.lloyd@auckland.ac.nz</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#2d2c68c7-b43d-46f3-859e-3079ddf424c6">
<vCard:Given>Leonid</vCard:Given>
<vCard:Family>Fridlyand</vCard:Family>
<vCard:Other>E</vCard:Other>
</rdf:Description>
<rdf:Description rdf:about="">
<dc:publisher>
The University of Auckland, The Bioengineering Institute
</dc:publisher>
<dcterms:created rdf:resource="rdf:#ce72cdf1-fb4b-4c04-bae7-81d21e751775"/>
<dc:creator rdf:resource="rdf:#15c0c71c-34bf-4a5e-95b4-068628b2bb3e"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#aae491fa-5fca-4bee-850c-36bac1a33830">
<vCard:FN>Catherine Lloyd</vCard:FN>
</rdf:Description>
<rdf:Description rdf:about="rdf:#6d034770-1489-4d5b-b000-a97e35a7a574">
<dc:creator rdf:resource="rdf:#3d214aef-f1d3-4663-a8a1-5ff8aec35cb9"/>
<dc:title>
Modeling of Ca2+ flux in pancreatic beta-cells: role of the plasma
membrane and intracellular stores
</dc:title>
<bqs:volume>285</bqs:volume>
<bqs:first_page>E138</bqs:first_page>
<bqs:Journal rdf:resource="rdf:#c1847de6-ce21-4a8b-b8eb-c24bb0766404"/>
<dcterms:issued rdf:resource="rdf:#b8ac61b3-0839-4662-82eb-44dc3b2fccde"/>
<bqs:last_page>E154</bqs:last_page>
</rdf:Description>
<rdf:Description rdf:about="rdf:#531e118a-4e62-4544-809d-98b0406bfb9e">
<vCard:Given>Louis</vCard:Given>
<vCard:Family>Philipson</vCard:Family>
<vCard:Other>H</vCard:Other>
</rdf:Description>
<rdf:Description rdf:about="rdf:#0b8344cc-5404-4638-8f25-18e0409ac600">
<rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person"/>
<vCard:N rdf:resource="rdf:#531e118a-4e62-4544-809d-98b0406bfb9e"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#da396c91-d043-4fbb-a5e1-bb737edae218">
<rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person"/>
<vCard:N rdf:resource="rdf:#b4558159-a58a-4ac9-a332-50bc32b31e81"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#88c729de-71ef-41c6-b2ca-4fd97a8de628">
<vCard:Given>Catherine</vCard:Given>
<vCard:Family>Lloyd</vCard:Family>
<vCard:Other>May</vCard:Other>
</rdf:Description>
<rdf:Description rdf:about="rdf:#202a1dc7-4eb2-404a-8a67-fc26536589a4">
<bqs:subject_type>keyword</bqs:subject_type>
<rdf:value rdf:resource="rdf:#dd1dfda4-c1d0-452a-b843-e31e97a7b677"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#74bfd003-4838-49d0-a064-efa811d7caf9">
<dc:creator rdf:resource="rdf:#aae491fa-5fca-4bee-850c-36bac1a33830"/>
<rdf:value>
This is the CellML description of Fridlyand et al's 2003 mathematical
model of Ca2+ fluxes in pancreatic beta-cells.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#15c0c71c-34bf-4a5e-95b4-068628b2bb3e">
<vCard:ORG rdf:resource="rdf:#12d0dbf4-e909-4e01-824c-7c2d7fcc19fb"/>
<vCard:EMAIL rdf:resource="rdf:#6445b9ea-1a71-4e97-aaec-9fba49d6411e"/>
<vCard:N rdf:resource="rdf:#88c729de-71ef-41c6-b2ca-4fd97a8de628"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#12d0dbf4-e909-4e01-824c-7c2d7fcc19fb">
<vCard:Orgname>The University of Auckland</vCard:Orgname>
<vCard:Orgunit>The Bioengineering Institute</vCard:Orgunit>
</rdf:Description>
<rdf:Description rdf:about="#fridlyand_tamarina_philipson_2003_version01">
<dc:title>
Fridlyand et al's 2003 mathematical model of Ca2+ fluxes in pancreatic
beta-cells.
</dc:title>
<cmeta:bio_entity>Pancreatic Beta-cell</cmeta:bio_entity>
<cmeta:comment rdf:resource="rdf:#74bfd003-4838-49d0-a064-efa811d7caf9"/>
<bqs:reference rdf:resource="rdf:#0a2405bd-7bc1-409c-a11d-2b7b62f3c2e6"/>
<bqs:reference rdf:resource="rdf:#218bf937-5b2b-456a-85e0-7f0371c6b63e"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#c1847de6-ce21-4a8b-b8eb-c24bb0766404">
<dc:title>American Journal of Physiology</dc:title>
</rdf:Description>
<rdf:Description rdf:about="rdf:#4459212e-f39a-415f-a704-caf709062710">
<rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person"/>
<vCard:N rdf:resource="rdf:#2d2c68c7-b43d-46f3-859e-3079ddf424c6"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#ce72cdf1-fb4b-4c04-bae7-81d21e751775">
<dcterms:W3CDTF>2003-11-14</dcterms:W3CDTF>
</rdf:Description>
</rdf:RDF>
</model>