$\mathrm{kappa_L1}=\begin{cases}0.000005 & \text{if (\mathrm{time}\ge 0)\land (\mathrm{time}< 40)}\\ 0.00002 & \text{otherwise}\end{cases}\mathrm{kappa_L2}=\mathrm{kappa_L2_0}+\frac{\mathrm{kappa_L2_1}}{1+\left(\frac{1000\mathrm{Kd_Ca}}{\mathrm{Ca_i}}\right)^{n}}\mathrm{Kd_Ca}=\begin{cases}1 & \text{if (\mathrm{time}\ge 0)\land (\mathrm{time}< 80)}\\ 0.5 & \text{otherwise}\end{cases}$ $\frac{d \mathrm{Ca_i}}{d \mathrm{time}}}=\mathrm{kappa_L1}+\mathrm{kappa_P1}+\mathrm{gamma}(\mathrm{kappa_L2}+\mathrm{kappa_P2})\mathrm{Ca_i}+\mathrm{gamma}\mathrm{kappa_L2}\mathrm{Ca_s}+\mathrm{kappa_L1}\mathrm{Ca_o}\mathrm{Ca_i_ss}=\frac{\mathrm{Ca_o}}{1.0+\frac{\mathrm{kappa_P1}}{\mathrm{kappa_L1}}}$ $\frac{d \mathrm{Ca_s}}{d \mathrm{time}}}=(\mathrm{kappa_L2}+\mathrm{kappa_P2})\mathrm{Ca_i}-\mathrm{kappa_L2}\mathrm{Ca_s}\mathrm{Ca_s_ss}=\mathrm{Ca_i_ss}(1.0+\frac{\mathrm{kappa_P2}}{\mathrm{kappa_L2}})$ CuellarAutumnABiophysical Journal Added more metadata. 1995-052002-07-22neurobiologysympatheticelectrophysiologyneuroncalcium dynamics This is the CellML description of David Friel's 1995 model of calcium oscillations in sympathetic neurons. FrielDavidDLloydCatherineMayCatherine Lloydc.lloyd@auckland.ac.nz2003-04-09Sympathetic Neuron A Model Of Calcium Oscillations in Sympathetic Neurons keyword0.02truebdf154000.0210000true Added publication date information. LloydCatherineMay2002-04-02The University of AucklandAuckland Bioengineering Institute The University of Auckland, Auckland Bioengineering Institute 1752176668 [Ca2+]i oscillations in sympathetic neurons: an experimental test of a theoretical model 7612818