Modelling the Kinetics of Plasma Virus Following the Initiation of Therapy Catherine Lloyd Bioengineering Institute, University of Auckland
Model Status This is the original unchecked version of the model imported from the previous CellML model repository, 24-Jan-2006.
S susceptible cells $\frac{d S}{d \mathrm{time}}}=a-bS+cSV$ I1 infected cell stage 1 $\frac{d \mathrm{I1}}{d \mathrm{time}}}=cSV-k\mathrm{I1}$ I2 infected cell stage 2 $\frac{d \mathrm{I2}}{d \mathrm{time}}}=k(\mathrm{I1}-\mathrm{I2})$ I3 infected cell stage 3 $\frac{d \mathrm{I3}}{d \mathrm{time}}}=k(\mathrm{I2}-\mathrm{I3})$ I4 infected cell stage 4 $\frac{d \mathrm{I4}}{d \mathrm{time}}}=k(\mathrm{I3}-\mathrm{I4})$ I5 infected cell stage 5 $\frac{d \mathrm{I5}}{d \mathrm{time}}}=k(\mathrm{I4}-\mathrm{I5})$ V ambient virus $\frac{d V}{d \mathrm{time}}}=p\mathrm{I5}-qV$ Se steady-state susceptible cells $\mathrm{Se}=\frac{qk}{pc}$ Ve steady-state viral load I1e steady-state infected cell stage 1 $\mathrm{I1e}=\frac{q}{p}\mathrm{Ve}$ I2e steady-state infected cell stage 2 $\mathrm{I2e}=\frac{q}{p}\mathrm{Ve}$ I3e steady-state infected cell stage 1 $\mathrm{I3e}=\frac{q}{p}\mathrm{Ve}$ I4e steady-state infected cell stage 1 $\mathrm{I4e}=\frac{q}{p}\mathrm{Ve}$ I5e steady-state infected cell stage 1 $\mathrm{I5e}=\frac{q}{p}\mathrm{Ve}$ immunology virus dynamics viral dynamics hiv-1 therapy drug combination therapy pathology Catherine Lloyd Dimiter Dimitrov 9818549 Zvi Grossman Vladimir Kuznetsov William Paul 2003-12-04 Immunology Today Grossman et al.'s 1998 mathematical model of plasma virus kinetics following therapy. The University of Auckland, Bioengineering Institute keyword Mark Feinberg Catherine Lloyd May This is the CellML description of Grossman et al.'s 1998 mathematical model of plasma virus kinetics following therapy. c.lloyd@auckland.ac.nz 1998-11-01 HIV infection: how effective is drug combination treatment? 19 528 532 The University of Auckland The Bioengineering Institute