Location: Guyton, Capillary, Dynamics, 2008 @ 847300383156 / guyton_capillary_dynamics_2008.cellml

Author:
pmr2.import <nobody@models.cellml.org>
Date:
2008-04-03 00:37:57+13:00
Desc:
committing version01 of guyton_capillary_dynamics_2008
Permanent Source URI:
https://models.cellml.org/workspace/guyton_capillary_dynamics_2008/rawfile/8473003831569cc611e25906ac45805a7e7da6c3/guyton_capillary_dynamics_2008.cellml

<?xml version='1.0' encoding='utf-8'?>
<model xmlns="http://www.cellml.org/cellml/1.0#" xmlns:cellml="http://www.cellml.org/cellml/1.0#" xmlns:cmeta="http://www.cellml.org/metadata/1.0#" xmlns:xlink="http://www.w3.org/1999/xlink" name="capillary_dynamics_CellML1_0_model" cmeta:id="capillary_dynamics_CellML1_0_model">

<!-- =============================================	DOCUMENTATION		================================================= -->
<documentation xmlns="http://cellml.org/tmp-documentation">
<article>
  <articleinfo>
  <title>Guyton Model: Capillary Dynamics</title>
  <author>
    <firstname>Catherine</firstname>
          <surname>Lloyd</surname>
    <affiliation>
      <shortaffil>Bioengineering Institute, University of Auckland</shortaffil>
    </affiliation>
  </author>
</articleinfo>
  <section id="sec_status">
    <title>Model Status</title>
    <para>
        This CellML model has not been validated. The equations in this file may contain errors and the output from the model may not conform to the results from the MODSIM program. Due to the differences between procedural code (in this case C-code) and declarative languages (CellML), some aspects of the original model were not able to be encapsulated by the CellML model (such as the damping of variables). Work is underway to fix these omissions and validate the CellML model. We also anticipate that many of these problems will be fixed when the CellML 1.0 models are combined in a CellML 1.1 format.
          </para>
  </section>
  <sect1 id="sec_structure">
  <title>Model Structure</title>

<para>
Arthur Guyton (1919-2003) was an American physiologist who became famous for his 1950s experiments in which he studied the physiology of cardiac output and its relationship with the peripheral circulation.  The results of these experiments challenged the conventional wisdom that it was the heart itself that controlled cardiac output.  Instead Guyton demonstrated that it was the need of the body tissues for oxygen which was the real regulator of cardiac output.  The "Guyton Curves" describe the relationship between right atrial pressures and cardiac output, and they form a foundation for understanding the physiology of circulation. 
</para>

<para>
The Guyton model of fluid, electrolyte, and circulatory regulation is an extensive mathematical model of human circulatory physiology, capable of simulating a variety of experimental conditions, and contains a number of linked subsystems relating to circulation and its neuroendocrine control.
</para>

<para>
This is a CellML translation of the Guyton model of the regulation of the circulatory system.  The complete model consists of separate modules each of which characterise a separate physiological subsystems.  The Circulation Dynamics is the primary system, to which other modules/blocks are connected.  The other modules characterise the dynamics of the kidney, electrolytes and cell water, thirst and drinking, hormone regulation, autonomic regulation, cardiovascular system etc, and these feedback on the central circulation model.  The CellML code in these modules is based on the C code from the programme C-MODSIM created by Dr Jean-Pierre Montani.
</para>

<para>
This particular CellML model describes the the movement of fluid and protein through the capillary membrane.  It also calculates the volumes of fluid in the free fluid space of the interstitium and in the gel fluid space.  It calculates the pressures in both of these fluids as well as the so-called solid tissue pressure caused by the compression of solid elements against other portions of the interstitium.  In addition, the quantities of proteins and their concentrations in both the free fluid and the gel fluid are calculated. And, finally, the flow of both fluid and proteins in the lymph system are computed, as well as the overall body protein balance.
</para>

<informalfigure float="0" id="full_diagram">
<mediaobject>
  <imageobject>
    <objectinfo>
      <title>model diagram</title>
    </objectinfo>
    <imagedata fileref="full_model.png"/>
  </imageobject>
</mediaobject>
<caption>A systems analysis diagram for the full Guyton model describing circulation regulation.</caption>
</informalfigure>


<informalfigure float="0" id="capillary_dynamics_diagram">
<mediaobject>
  <imageobject>
    <objectinfo>
      <title>model diagram</title>
    </objectinfo>
    <imagedata fileref="capillary_dynamics.png"/>
  </imageobject>
</mediaobject>
<caption>A schematic diagram of the components and processes described in the current CellML model.</caption>
</informalfigure> 

<para>
There are several publications referring to the Guyton model. One of these papers is cited below:
</para>

<para>
<ulink url="http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.ph.34.030172.000305">Circulation: Overall Regulation</ulink>,  A.C. Guyton, T.G. Coleman, and H.J. Granger, 1972, <ulink url="http://www.biophysj.org/">
            <emphasis>Annual Review of Physiology</emphasis>
          </ulink>, 34, 13-44.  (A <ulink url="http://arjournals.annualreviews.org/doi/pdf/10.1146/annurev.ph.34.030172.000305?cookieSet=1">PDF</ulink> version of the article are available to journal subscribers on the <emphasis>Annual Review of Physiology</emphasis> website.)  <ulink url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&amp;cmd=Retrieve&amp;dopt=AbstractPlus&amp;list_uids=4334846&amp;query_hl=1&amp;itool=pubmed_docsum">PubMed ID: 4334846</ulink>
</para>

</sect1>
</article>
</documentation> 

<!-- ===================================================================================================================== -->


	<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
		<rdf:Description rdf:about="#capillary_dynamics_CellML1_0_model">
			<rdf:value>
			CAPILLARY DYNAMICS, TISSUE FLUID, AND TISSUE PROTEIN

			This portion of the model calculates the movement of fluid and protein through the
			capillary membrane.  It also calculates the volumes of fluid in the free fluid space 
			of the interstitium and in the gel fluid space.  It calculates the pressures in both 
			of these fluids as well as the so-called solid tissue pressure caused by the compression 
			of solid elements against other portions of the interstitium.  In addition, the quantities 
			of proteins and their concentrations in both the free fluid and the gel fluid are calculated. 
			And, finally, the flow of both fluid and proteins in the lymph system are computed, as well 
			as the overall body protein balance.
			</rdf:value>
		</rdf:Description>
	</rdf:RDF>

<!-- ========================================	ENVIRONMENT COMPONENT	============================================= -->
   <component name="environment">
      <variable name="time" units="second" private_interface="none" public_interface="out"/>
   </component>


<!-- ========================================	CAPILLARY DYNAMICS TOP-LEVEL COMPONENT	============================================= -->
	<component name="capillary_dynamics" cmeta:id="capillary_dynamics">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#capillary_dynamics">
				<rdf:value>
				Encapsulation grouping component containing all the components in the Capillary Dynamics Model. The inputs and 
				outputs of the Capillary Dynamics Model must be passed by this component.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

		<variable name="time" units="second" private_interface="out" public_interface="in"/>

<!-- Inputs from components in other models -->
		<variable name="VEC" initial_value="14.8548" units="dimensionless" private_interface="out" public_interface="none"/>
		<variable name="PPD" initial_value="4.4805e-06" units="dimensionless" private_interface="out" public_interface="none"/>
		<variable name="RVS" initial_value="2.77751" units="dimensionless" private_interface="out" public_interface="none"/>
		<variable name="DFP" initial_value="-4.078e-07" units="dimensionless" private_interface="out" public_interface="none"/>
		<variable name="VPF" initial_value="0.0123238" units="dimensionless" private_interface="out" public_interface="none"/>
		<variable name="BFN" initial_value="2.79521" units="dimensionless" private_interface="out" public_interface="none"/>
		<variable name="PVS" initial_value="3.71612" units="dimensionless" private_interface="out" public_interface="none"/>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="capillary_dynamics" component_2="environment"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- ========================================	CAPILLARY MEMBRANE DYNAMICS	============================================= -->
	<component name="capillary_membrane_dynamics" cmeta:id="capillary_membrane_dynamics">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#capillary_membrane_dynamics">
				<rdf:value>
				Containment grouping component for "capillary_pressure" and 
				"rate_of_fluid_out_of_capillaries".
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
	</component>

<!-- ========================================	CAPILLARY PRESSURE		============================================= -->
	<component name="capillary_pressure" cmeta:id="capillary_pressure">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#capillary_pressure">
				<rdf:value>
				CP1 and CP2:  
				The capillary pressure (PC) is equal to the resistance to blood flow in the
				small veins (RVS) times the blood flow in the small veins (BFN), times a constant 
				to represent the additional normal flow through the muscles and kidneys, plus
				the pressure in the large vein circulation.  The value of the capillary pressure (PC)
				is assumed to be the same in all tissues of the body.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="RVS" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="BFN" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="PVS" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="time" units="second" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="PC" initial_value="16.9144" units="dimensionless" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP1_and_CP2">
                <eq/>
                <apply>
                    <diff/>
                    <bvar>
                        <ci>time</ci>
                    </bvar>
                    <ci>PC</ci>
                </apply>
				<apply>
					<plus/>
					<apply>
						<times/>
						<ci>RVS</ci>
						<cn cellml:units="dimensionless">1.7</cn>
						<ci>BFN</ci>
					</apply>
					<ci>PVS</ci>
				</apply>
            </apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="capillary_pressure" component_2="capillary_dynamics"/>
		<map_variables variable_1="RVS" variable_2="RVS"/>
		<map_variables variable_1="BFN" variable_2="BFN"/>
		<map_variables variable_1="PVS" variable_2="PVS"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- ========================================	RATE OF FLUID OUT OF CAPILLARIES	============================================= -->
	<component name="rate_of_fluid_out_of_capillaries" cmeta:id="rate_of_fluid_out_of_capillaries">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#rate_of_fluid_out_of_capillaries">
				<rdf:value>
				CP3:  
				The pressure gradient for filtration of fluid across the capillary membranes (PCGR) 
				is equal to the capillary pressure (PC), plus the colloid osmotic pressure of the 
				tissue gel (PTC), minus the plasma colloid osmotic pressure (PPC), minus the hydrostatic
				pressure of the gel (PGH).

				CP4:  
				The rate of filtration of fluid out of the capillaries of the systemic circulation (CFILTR)
				is equal to the pressure gradient across the capillary membranes (PCGR) times the capillary
				filtration coefficient (CFC).

				CP5:  
				The total rate of movement of fluid out of all the systemic capillaries of the body (VTC) is
				equal to the rate of filtration from the systemic capillaries (CFILTR) plus the rate of 
				leakage of whole plasma though leaky capillaries (VTCPL).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PC" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="PGH" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="PTC" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="PPC" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="VTCPL" units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="VTC" units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="CFC" units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP3_to_CP5">
				<eq/>
				<ci>VTC</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<apply>
							<plus/>
							<apply>
								<minus/>
								<apply>
									<minus/>
									<ci>PC</ci>
									<ci>PPC</ci>
								</apply>
								<ci>PGH</ci>
							</apply>
							<ci>PTC</ci>
						</apply>
						<ci>CFC</ci>
					</apply>
					<ci>VTCPL</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="rate_of_fluid_out_of_capillaries" component_2="capillary_pressure"/>
		<map_variables variable_1="PC" variable_2="PC"/>
	</connection>
	<connection>
		<map_components component_1="rate_of_fluid_out_of_capillaries" component_2="hydrostatic_pressure_of_tissue_gel"/>
		<map_variables variable_1="PGH" variable_2="PGH"/>
	</connection>
	<connection>
		<map_components component_1="rate_of_fluid_out_of_capillaries" component_2="total_osmotic_pressure_of_tissue_gel"/>
		<map_variables variable_1="PTC" variable_2="PTC"/>
	</connection>
	<connection>
		<map_components component_1="rate_of_fluid_out_of_capillaries" component_2="plasma_colloid_osmotic_pressure"/>
		<map_variables variable_1="PPC" variable_2="PPC"/>
	</connection>
	<connection>
		<map_components component_1="rate_of_fluid_out_of_capillaries" component_2="plasma_leakage"/>
		<map_variables variable_1="VTCPL" variable_2="VTCPL"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="rate_of_fluid_out_of_capillaries" component_2="parameter_values"/>
		<map_variables variable_1="CFC" variable_2="CFC"/>
	</connection>

<!-- ========================================	PLASMA VOLUME AND PROTEIN	============================================= -->
	<component name="plasma_volume_and_protein" cmeta:id="plasma_volume_and_protein">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#plasma_volume_and_protein">
				<rdf:value>
				Containment grouping component for "plasma_volume", "plasma_protein_concentration",
				"protein_destruction_and_formation", "plasma_leakage", "protein_influx_into_interstitium",
				"total_plasma_protein" and "plasma_colloid_osmotic_pressure".
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
	</component>

<!-- ========================================	PLASMA VOLUME	============================================= -->
	<component name="plasma_volume" cmeta:id="plasma_volume">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#plasma_volume">
				<rdf:value>
				CP10:  
				The rate of change of plasma volume (VPD) is equal to the rate of inflow of 
				fluid into the plasma by way of the lymph (VTL) minus the rate of loss of 
				fluid from the systemic tissue capillaries (VTC), minus the rate of loss of 
				fluid from the pulmonary capillaries (DFP), and plus any rate of transfusion 
				of plasma into the circulation.

				CP11:  
				The plasma volume (VP) is determined by integrating the rate of change of the 
				plasma volume (VPD) with respect to time.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="DFP" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="VTC" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="VTL" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="time" units="second" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="VP" initial_value="3.00449" units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="TRPL" units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="VPD" units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP10">
				<eq/>
				<ci>VPD</ci>
				<apply>
					<plus/>
					<apply>
						<minus/>
						<apply>
							<minus/>
							<ci>VTL</ci>
							<ci>VTC</ci>
						</apply>
						<ci>DFP</ci>
					</apply>
					<ci>TRPL</ci>
				</apply>
			</apply>
			<apply id="CP11">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>VP</ci>
				</apply>
				<ci>VPD</ci>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="plasma_volume" component_2="capillary_dynamics"/>
		<map_variables variable_1="DFP" variable_2="DFP"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>
	<connection>
		<map_components component_1="plasma_volume" component_2="rate_of_fluid_out_of_capillaries"/>
		<map_variables variable_1="VTC" variable_2="VTC"/>
	</connection>
	<connection>
		<map_components component_1="plasma_volume" component_2="lymph_flow"/>
		<map_variables variable_1="VTL" variable_2="VTL"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="plasma_volume" component_2="parameter_values"/>
		<map_variables variable_1="TRPL" variable_2="TRPL"/>
	</connection>

<!-- ========================================	PLASMA PROTEIN CONCENTRATION	============================================= -->
	<component name="plasma_protein_concentration" cmeta:id="plasma_protein_concentration">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#plasma_protein_concentration">
				<rdf:value>
				CP35:  
				The concentration of protein in the plasma (CPP) is equal to the total quantity 
				of protein in the plasma (RPR) divided by the plasma volume (VP).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PRP" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="VP" units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="CPP" units="dimensionless" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP35">
				<eq/>
				<ci>CPP</ci>
				<apply>
					<divide/>
					<ci>PRP</ci>
					<ci>VP</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="plasma_protein_concentration" component_2="total_plasma_protein"/>
		<map_variables variable_1="PRP" variable_2="PRP"/>
	</connection>
	<connection>
		<map_components component_1="plasma_protein_concentration" component_2="plasma_volume"/>
		<map_variables variable_1="VP" variable_2="VP"/>
	</connection>

<!-- ========================================	PROTEIN DESTRUCTION AND FORMATION	============================================= -->
	<component name="protein_destruction_and_formation" cmeta:id="protein_destruction_and_formation">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#protein_destruction_and_formation">
				<rdf:value>
				CP37 and CP38:  
				A factor related to the rate of destruction of protein by the liver (CPPD) is 
				equal to plasma protein concentration CPP) minus a critical protein limiting value (CPR). 
				Block CP38 limits the rate of destruction of protein by the liver to a lower limit of zero.

				CP39 and CP40:  
				Curve-fitting blocks to calculate the rate of destruction of protein by the 
				liver (LPPRDS) from the factor (CPPD) calculated in Block 37.  The curve-fitting 
				constants are LPDE and LPK.

				CP41:  
				Net rate of protein exchange between the liver and the plasma (DLP) is equal to the 
				rate of production of protein by the liver (LPPR) minus the rate of destruction of 
				protein by the liver (LPPRDS).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="CPP" units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="DLP" units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="CPR" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="LPPR" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="LPDE" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="LPK" units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="CPPD" units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP37_and_CP38">
				<eq/>
				<ci>CPPD</ci>
				<piecewise>
					<piece>
						<cn cellml:units="dimensionless">0</cn>
						<apply>
							<lt/>
							<apply>
								<minus/>
								<ci>CPP</ci>
								<ci>CPR</ci>
							</apply>
							<cn cellml:units="dimensionless">0</cn>
						</apply>
					</piece>
					<otherwise>
						<apply>
							<minus/>
							<ci>CPP</ci>
							<ci>CPR</ci>
						</apply>
					</otherwise>
				</piecewise>
			</apply>
			<apply id="CP39_to_CP41">
				<eq/>
				<ci>DLP</ci>
				<apply>
					<minus/>
					<ci>LPPR</ci>
					<apply>
						<times/>
						<apply>
							<power/>
							<ci>CPPD</ci>
							<ci>LPDE</ci>
						</apply>
						<ci>LPK</ci>
					</apply>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="protein_destruction_and_formation" component_2="plasma_protein_concentration"/>
		<map_variables variable_1="CPP" variable_2="CPP"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="protein_destruction_and_formation" component_2="parameter_values"/>
		<map_variables variable_1="CPR" variable_2="CPR"/>
		<map_variables variable_1="LPPR" variable_2="LPPR"/>
		<map_variables variable_1="LPDE" variable_2="LPDE"/>
		<map_variables variable_1="LPK" variable_2="LPK"/>
	</connection>

<!-- ========================================	PLASMA LEAKAGE	============================================= -->
	<component name="plasma_leakage" cmeta:id="plasma_leakage">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#plasma_leakage">
				<rdf:value>
				CP25 and CP26:  
				Calculation of a pressure gradient to cause whole plasma leakage through the 
				capillary membranes (PRCD), calculated by adding the capillary pressure (PC) and
				subtracting a critical capillary pressure (PCR) below which no whole plasma will leak.
				Block CP26 limits the rate of plasma leakage (PRCD) to a lower level of zero.

				CP27 and CP28:  
				The rate of leakage of whole plasma through the capillary membrane (VTCPL) is equal 
				to the pressure gradient for leakage of plasma (PRCD) times a constant (CPK) and this 
				product raised to a power (PCE).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PC" units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="VTCPL" units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="PCR" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="CPK" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="PCE" units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="PRCD" units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP25_and_CP26">
				<eq/>
				<ci>PRCD</ci>
				<piecewise>
					<piece>
						<cn cellml:units="dimensionless">0</cn>
						<apply>
							<lt/>
							<apply>
								<minus/>
								<ci>PC</ci>
								<ci>PCR</ci>
							</apply>
							<cn cellml:units="dimensionless">0</cn>
						</apply>
					</piece>
					<otherwise>
						<apply>
							<minus/>
							<ci>PC</ci>
							<ci>PCR</ci>
						</apply>
					</otherwise>
				</piecewise>
			</apply>
			<apply id="CP27_and_CP28">
				<eq/>
				<ci>VTCPL</ci>
				<apply>
					<power/>
					<apply>
						<times/>
						<ci>PRCD</ci>
						<ci>CPK</ci>
					</apply>
					<ci>PCE</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="plasma_leakage" component_2="capillary_pressure"/>
		<map_variables variable_1="PC" variable_2="PC"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="plasma_leakage" component_2="parameter_values"/>
		<map_variables variable_1="PCR" variable_2="PCR"/>
		<map_variables variable_1="CPK" variable_2="CPK"/>
		<map_variables variable_1="PCE" variable_2="PCE"/>
	</connection>

<!-- ========================================	PROTEIN INFLUX INTO INTERSTITIUM	============================================= -->
	<component name="protein_influx_into_interstitium" cmeta:id="protein_influx_into_interstitium">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#protein_influx_into_interstitium">
				<rdf:value>
				CP29:  
				Rate of leakage of plasma protein in the leaking whole plasma into the interstitium 
				from the circulating plasma (TVCPL) equals the volume of plasma leaking (VTCPL) 
				times the concentration of protein in the plasma (CPP).

				CP30 and CP31:  
				The rate of diffusion of protein through the capillary pores (PLPRDF) is equal 
				to the difference between plasma concentration of protein (CPP) minus the concentration 
				of protein in the interstitial free fluid (CPI) times a constant in Block CP31.

				CP32:  
				Rate of influx of protein into the interstitium from the plasma in the capillaries (DPC)
				is equal to the rate of protein leaking in the whole plasma (VTCPL) plus the rate of 
				diffusion of protein through the capillary pores (PLPRDF).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="VTCPL" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="CPP" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="CPI" units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="DPC" units="dimensionless" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP29_to_CP32">
				<eq/>
				<ci>DPC</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<ci>VTCPL</ci>
						<ci>CPP</ci>
					</apply>
					<apply>
						<times/>
						<apply>
							<minus/>
							<ci>CPP</ci>
							<ci>CPI</ci>
						</apply>
						<cn cellml:units="dimensionless">0.00104</cn>
					</apply>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="protein_influx_into_interstitium" component_2="plasma_leakage"/>
		<map_variables variable_1="VTCPL" variable_2="VTCPL"/>
	</connection>
	<connection>
		<map_components component_1="protein_influx_into_interstitium" component_2="plasma_protein_concentration"/>
		<map_variables variable_1="CPP" variable_2="CPP"/>
	</connection>
	<connection>
		<map_components component_1="protein_influx_into_interstitium" component_2="interstitial_protein_concentration"/>
		<map_variables variable_1="CPI" variable_2="CPI"/>
	</connection>

<!-- ========================================	TOTAL PLASMA PROTEIN	============================================= -->
	<component name="total_plasma_protein" cmeta:id="total_plasma_protein">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#total_plasma_protein">
				<rdf:value>
				CP33:  The rate of change of the quantity of protein in the plasma (DPP) 
				is equal to the net rate of formation of protein by the liver (DLP), plus 
				the rate of return of protein to the circulation in the lymph (DPL), minus 
				the loss of protein from the circulation into the systemic interstitium (DPC), 
				minus the rate of loss of protein through the pulmonary capillary membranes (PPD).

				CP34:  
				The total quantity of protein in the plasma (PRP) is determined by integrating 
				the rate of change of the protein in the plasma (DPP) with respect to time.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="DPC" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="PPD" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="DPL" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="DLP" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="time" units="second" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="PRP" initial_value="216.243" units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="TRPL" units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="DPP" units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP33">
				<eq/>
				<ci>DPP</ci>
				<apply>
					<plus/>
					<apply>
						<minus/>
						<apply>
							<minus/>
							<apply>
								<plus/>
								<ci>DLP</ci>
								<ci>DPL</ci>
							</apply>
							<ci>DPC</ci>
						</apply>
						<ci>PPD</ci>
					</apply>
					<apply>
						<times/>
						<ci>TRPL</ci>
						<cn cellml:units="dimensionless">72</cn>
					</apply>
				</apply>
			</apply>
			<apply id="CP34">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>PRP</ci>
				</apply>
				<ci>DPP</ci>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="total_plasma_protein" component_2="protein_influx_into_interstitium"/>
		<map_variables variable_1="DPC" variable_2="DPC"/>
	</connection>
	<connection>
		<map_components component_1="total_plasma_protein" component_2="lymph_protein_flow"/>
		<map_variables variable_1="DPL" variable_2="DPL"/>
	</connection>
	<connection>
		<map_components component_1="total_plasma_protein" component_2="protein_destruction_and_formation"/>
		<map_variables variable_1="DLP" variable_2="DLP"/>
	</connection>
	<connection>
		<map_components component_1="total_plasma_protein" component_2="capillary_dynamics"/>
		<map_variables variable_1="PPD" variable_2="PPD"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="total_plasma_protein" component_2="parameter_values"/>
		<map_variables variable_1="TRPL" variable_2="TRPL"/>
	</connection>

<!-- ========================================	PLASMA COLLOID OSMOTIC PRESSURE		============================================= -->
	<component name="plasma_colloid_osmotic_pressure" cmeta:id="plasma_colloid_osmotic_pressure">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#plasma_colloid_osmotic_pressure">
				<rdf:value>
				CP36:  
				The plasma colloid osmotic pressure (PPC) is calculated in this block from 
				the concentration of protein in the plasma (CPP).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="CPP" units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="PPC" units="dimensionless" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP36">
				<eq/>
				<ci>PPC</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<cn cellml:units="dimensionless">0.28</cn>
						<ci>CPP</ci>
					</apply>
					<apply>
						<times/>
						<cn cellml:units="dimensionless">0.0019</cn>
						<apply>
							<power/>
							<ci>CPP</ci>
							<cn cellml:units="dimensionless">2</cn>
						</apply>
					</apply>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="plasma_colloid_osmotic_pressure" component_2="plasma_protein_concentration"/>
		<map_variables variable_1="CPP" variable_2="CPP"/>
	</connection>

<!-- ========================================	SYSTEMIC TISSUE FLUID VOLUME AND PROTEIN	============================================= -->
	<component name="systemic_tissue_fluid_volume_and_protein" cmeta:id="systemic_tissue_fluid_volume_and_protein">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#systemic_tissue_fluid_volume_and_protein">
				<rdf:value>
				Containment grouping component for "total_systemic_fluid_volume",
				"interstitial_fluid_volume", "total_interstitial_protein",
				"interstitial_protein_concentration", "interstitial_colloid_osmotic_pressure"
				and "lymph_protein_flow".
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
	</component>

<!-- ========================================	TOTAL SYSTEMIC FLUID VOLUME		============================================= -->
	<component name="total_systemic_fluid_volume" cmeta:id="total_systemic_fluid_volume">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#total_systemic_fluid_volume">
				<rdf:value>
				CP6:  
				The total fluid volume in the systemic circulation portion of the body (VTS) 
				is equal to the total extracellular fluid volume (VEC) minus plasma volume (VP) 
				and minus pulmonary extracellular fluid volume (VPF).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="VEC" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="VP" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="VPF" units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="VTS" units="dimensionless" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP6">
				<eq/>
				<ci>VTS</ci>
				<apply>
					<minus/>
					<apply>
						<minus/>
						<ci>VEC</ci>
						<ci>VP</ci>
					</apply>
					<ci>VPF</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="total_systemic_fluid_volume" component_2="capillary_dynamics"/>
		<map_variables variable_1="VEC" variable_2="VEC"/>
		<map_variables variable_1="VPF" variable_2="VPF"/>
	</connection>
	<connection>
		<map_components component_1="total_systemic_fluid_volume" component_2="plasma_volume"/>
		<map_variables variable_1="VP" variable_2="VP"/>
	</connection>

<!-- ========================================	INTERSTITIAL FLUID VOLUME	============================================= -->
	<component name="interstitial_fluid_volume" cmeta:id="interstitial_fluid_volume">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#interstitial_fluid_volume">
				<rdf:value>
				CP7, CP7A, CP7B, CP7C, CP7D, and CP7E:  
				Calculation of the effect of tissue space stress relaxation on volume of fluid 
				in the interstitial space (VTS1) after higher or lower than normal volumes
				(VTS greater or lower than 12) have existed in the tissue spaces for prolonged 
				periods of time.  The sensitivity control for the extent of tissue space stress
				relaxation is TSSLML, and the reciprocal of the time constant of the effect 
				is TSSLTC.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="VTS" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="time" units="second" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="VTS1" units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="TSSLML" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="TSSLTC" units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="VTS2" initial_value="0.0" units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP7_to_CP7D">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>VTS2</ci>
				</apply>
				<apply>
					<times/>
					<apply>
						<minus/>
						<apply>
							<times/>
							<apply>
								<minus/>
								<ci>VTS</ci>
								<cn cellml:units="dimensionless">12</cn>
							</apply>
							<ci>TSSLML</ci>
						</apply>
						<ci>VTS2</ci>
					</apply>
					<ci>TSSLTC</ci>
				</apply>
			</apply>
			<apply id="CP7E">
				<eq/>
				<ci>VTS1</ci>
				<apply>
					<minus/>
					<ci>VTS</ci>
					<ci>VTS2</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="interstitial_fluid_volume" component_2="total_systemic_fluid_volume"/>
		<map_variables variable_1="VTS" variable_2="VTS"/>
	</connection>
	<connection>
		<map_components component_1="interstitial_fluid_volume" component_2="capillary_dynamics"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="interstitial_fluid_volume" component_2="parameter_values"/>
		<map_variables variable_1="TSSLML" variable_2="TSSLML"/>
		<map_variables variable_1="TSSLTC" variable_2="TSSLTC"/>
	</connection>

<!-- ========================================	TOTAL INTERSTITIAL PROTEIN	============================================= -->
	<component name="total_interstitial_protein" cmeta:id="total_interstitial_protein">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#total_interstitial_protein">
				<rdf:value>
				CP42:  
				The rate of change of protein in the systemic interstitium (DPI) is equal to 
				the rate of leakage from the plasma of protein through the systemic capillary
				membranes (DPC) minus the rate of return of the protein from the systemic 
				interstitium by way of the lymphatics (DPL).

				CP43:  
				The total tissue protein (TSP) is calculated by integrating the rate of 
				change of protein in the interstitium (DPI) with respect to time.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="DPC" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="DPL" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="time" units="second" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="TSP" initial_value="279.945" units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable name="DPI" units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP42">
				<eq/>
				<ci>DPI</ci>
				<apply>
					<minus/>
					<ci>DPC</ci>
					<ci>DPL</ci>
				</apply>
			</apply>
			<apply id="CP43">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>TSP</ci>
				</apply>
				<ci>DPI</ci>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="total_interstitial_protein" component_2="lymph_protein_flow"/>
		<map_variables variable_1="DPL" variable_2="DPL"/>
	</connection>
	<connection>
		<map_components component_1="total_interstitial_protein" component_2="protein_influx_into_interstitium"/>
		<map_variables variable_1="DPC" variable_2="DPC"/>
	</connection>
	<connection>
		<map_components component_1="total_interstitial_protein" component_2="capillary_dynamics"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- ========================================	INTERSTITIAL PROTEIN CONCENTRATION		============================================= -->
	<component name="interstitial_protein_concentration" cmeta:id="interstitial_protein_concentration">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#interstitial_protein_concentration">
				<rdf:value>
				CP44:  
				The concentration of protein in the interstitium (CPI) is equal to the total 
				quantity of protein in the interstitium (TSP) divided by the total volume of 
				fluid in the systemic interstitium (VTS).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="TSP" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="VTS" units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="CPI" units="dimensionless" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP44">
				<eq/>
				<ci>CPI</ci>
				<apply>
					<divide/>
					<ci>TSP</ci>
					<ci>VTS</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="interstitial_protein_concentration" component_2="total_interstitial_protein"/>
		<map_variables variable_1="TSP" variable_2="TSP"/>
	</connection>
	<connection>
		<map_components component_1="interstitial_protein_concentration" component_2="total_systemic_fluid_volume"/>
		<map_variables variable_1="VTS" variable_2="VTS"/>
	</connection>

<!-- ========================================	INTERSTITIAL COLLOID OSMOTIC PRESSURE	============================================= -->
	<component name="interstitial_colloid_osmotic_pressure" cmeta:id="interstitial_colloid_osmotic_pressure">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#interstitial_colloid_osmotic_pressure">
				<rdf:value>
				CP45:  
				The colloid osmotic pressure of the free fluid in the interstitium (PTCPR) is 
				calculated in this block from the concentration of protein in the interstitium (CPI).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="CPI" units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="PTCPR" units="dimensionless" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP45">
				<eq/>
				<ci>PTCPR</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<cn cellml:units="dimensionless">0.28</cn>
						<ci>CPI</ci>
					</apply>
					<apply>
						<times/>
						<cn cellml:units="dimensionless">0.0019</cn>
						<apply>
							<power/>
							<ci>CPI</ci>
							<cn cellml:units="dimensionless">2</cn>
						</apply>
					</apply>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="interstitial_colloid_osmotic_pressure" component_2="interstitial_protein_concentration"/>
		<map_variables variable_1="CPI" variable_2="CPI"/>
	</connection>

<!-- ========================================	LYMPH PROTEIN FLOW	============================================= -->
	<component name="lymph_protein_flow" cmeta:id="lymph_protein_flow">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#lymph_protein_flow">
				<rdf:value>
				CP46:  
				The rate of return of protein to the circulation by way of the lymph (DPL) is 
				equal to the concentration of protein in the systemic interstitium (CPI) times 
				the rate of lymph flow from the interstitium (VTL).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="CPI" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="VTL" units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="DPL" units="dimensionless" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP46">
				<eq/>
				<ci>DPL</ci>
				<apply>
					<times/>
					<ci>CPI</ci>
					<ci>VTL</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="lymph_protein_flow" component_2="interstitial_protein_concentration"/>
		<map_variables variable_1="CPI" variable_2="CPI"/>
	</connection>
	<connection>
		<map_components component_1="lymph_protein_flow" component_2="lymph_flow"/>
		<map_variables variable_1="VTL" variable_2="VTL"/>
	</connection>

<!-- ========================================	TISSUE GEL AND FLUID, AND LYMPH FLOW	============================================= -->
	<component name="tissue_gel_and_fluid_and_lymph_flow" cmeta:id="tissue_gel_and_fluid_and_lymph_flow">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#tissue_gel_and_fluid_and_lymph_flow">
				<rdf:value>
				Containment grouping component for "hydrostatic_pressure_of_tissue_gel",
				"total_osmotic_pressure_of_tissue_gel", "total_tissue_pressure",
				"interstial_free_fluid_pressure", "interstitial_solid_tissue_pressure",
				"lymph_flow", "interstitial_gel_volume" and "interstitial_free_fluid_volume".
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
	</component>

<!-- ========================================	HYDROSTATIC PRESSURE OF TISSUE GEL	============================================= -->
	<component name="hydrostatic_pressure_of_tissue_gel" cmeta:id="hydrostatic_pressure_of_tissue_gel">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#hydrostatic_pressure_of_tissue_gel">
				<rdf:value>
				CP13 and CP14:  
				Calculation of the concentration of hyaluronic acid in the interstitium (CHY) 
				from the total quantity of hyaluronic acid in the interstitium (HYL) and the 
				total volume of fluid in the interstitium (VTS).  The exponent CMPTSS describes 
				the non-linearity of this effect.

				CP15 and CP16:  
				Calculation of the hydrostatic pressure in the tissue gel (PGH) from the 
				concentration of hyaluronic acid in the interstitium (CHY) and the total 
				tissue pressure (PTT).  (The hyaluronic acid acts as an elastic body that
				expands, and, therefore, creates a negative pressure.)
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="VTS" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="PTT" units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="CHY" units="dimensionless" private_interface="none" public_interface="out"/>
		<variable name="PGH" units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="HYL" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="CMPTSS" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="PGHF" units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP13_and_CP14">
				<eq/>
				<ci>CHY</ci>
				<apply>
					<power/>
					<apply>
						<divide/>
						<apply>
							<divide/>
							<ci>HYL</ci>
							<ci>VTS</ci>
						</apply>
						<cn cellml:units="dimensionless">5</cn>
					</apply>
					<ci>CMPTSS</ci>
				</apply>
			</apply>
			<apply id="CP15_and_CP16">
				<eq/>
				<ci>PGH</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<ci>CHY</ci>
						<ci>PGHF</ci>
					</apply>
					<ci>PTT</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="hydrostatic_pressure_of_tissue_gel" component_2="total_tissue_pressure"/>
		<map_variables variable_1="PTT" variable_2="PTT"/>
	</connection>
	<connection>
		<map_components component_1="hydrostatic_pressure_of_tissue_gel" component_2="total_systemic_fluid_volume"/>
		<map_variables variable_1="VTS" variable_2="VTS"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="hydrostatic_pressure_of_tissue_gel" component_2="parameter_values"/>
		<map_variables variable_1="HYL" variable_2="HYL"/>
		<map_variables variable_1="CMPTSS" variable_2="CMPTSS"/>
		<map_variables variable_1="PGHF" variable_2="PGHF"/>
	</connection>

<!-- ========================================	TOTAL OSMOTIC PRESSURE OF TISSUE GEL	============================================= -->
	<component name="total_osmotic_pressure_of_tissue_gel" cmeta:id="total_osmotic_pressure_of_tissue_gel">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#total_osmotic_pressure_of_tissue_gel">
				<rdf:value>
				CP17:  
				The osmotic pressure caused by the hyaluronic acid in the gel (POSHYL) 
				is equal to the concentration of hyaluronic acid in the gel (CHY) times 
				a constant.

				CP18:  
				The total osmotic pressure of the tissue gel (PTC) is equal to the osmotic 
				pressure caused by the hyaluronic acid in the gel (POSHYL) times the colloid 
				osmotic pressure caused by the plasma protein in the free fluid of the 
				interstitium (PTCPR) times a constant (GCOPF).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="CHY" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="PTCPR" units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="POSHYL" units="dimensionless" private_interface="none" public_interface="out"/>
		<variable name="PTC" units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="GCOPF" units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP17">
				<eq/>
				<ci>POSHYL</ci>
				<apply>
					<times/>
					<ci>CHY</ci>
					<cn cellml:units="dimensionless">2</cn>
				</apply>
			</apply>
			<apply id="CP18">
				<eq/>
				<ci>PTC</ci>
				<apply>
					<times/>
					<ci>POSHYL</ci>
					<ci>PTCPR</ci>
					<ci>GCOPF</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="total_osmotic_pressure_of_tissue_gel" component_2="hydrostatic_pressure_of_tissue_gel"/>
		<map_variables variable_1="CHY" variable_2="CHY"/>
	</connection>
	<connection>
		<map_components component_1="total_osmotic_pressure_of_tissue_gel" component_2="interstitial_colloid_osmotic_pressure"/>
		<map_variables variable_1="PTCPR" variable_2="PTCPR"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="total_osmotic_pressure_of_tissue_gel" component_2="parameter_values"/>
		<map_variables variable_1="GCOPF" variable_2="GCOPF"/>
	</connection>

<!-- ========================================	TOTAL TISSUE PRESSURE	============================================= -->
	<component name="total_tissue_pressure" cmeta:id="total_tissue_pressure">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#total_tissue_pressure">
				<rdf:value>
				CP12:  
				Calculation of the total tissue pressure (PTT) as a function of the total 
				interstitial fluid volume (VTS1).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="VTS1" units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="PTT" units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="VTSF" units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP12">
				<eq/>
				<ci>PTT</ci>
				<apply>
					<power/>
					<apply>
						<divide/>
						<apply>
							<minus/>
							<ci>VTS1</ci>
							<ci>VTSF</ci>
						</apply>
						<ci>VTSF</ci>
					</apply>
					<cn cellml:units="dimensionless">2</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="total_tissue_pressure" component_2="interstitial_fluid_volume"/>
		<map_variables variable_1="VTS1" variable_2="VTS1"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="total_tissue_pressure" component_2="parameter_values"/>
		<map_variables variable_1="VTSF" variable_2="VTSF"/>
	</connection>

<!-- ========================================	INTERSTITIAL FREE FLUID PRESSURE	============================================= -->
	<component name="interstial_free_fluid_pressure" cmeta:id="interstial_free_fluid_pressure">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#interstial_free_fluid_pressure">
				<rdf:value>
				CP19:  
				The pressure in the free interstitial fluid (PIF) is equal to the hydrostatic 
				pressure in the tissue gel (PGH) minus the colloid osmotic pressure of the 
				hyaluronic acid in the tissue gel (POSHYL).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PGH" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="POSHYL" units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="PIF" units="dimensionless" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP19">
				<eq/>
				<ci>PIF</ci>
				<apply>
					<minus/>
					<ci>PGH</ci>
					<ci>POSHYL</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="interstial_free_fluid_pressure" component_2="total_osmotic_pressure_of_tissue_gel"/>
		<map_variables variable_1="POSHYL" variable_2="POSHYL"/>
	</connection>
	<connection>
		<map_components component_1="interstial_free_fluid_pressure" component_2="hydrostatic_pressure_of_tissue_gel"/>
		<map_variables variable_1="PGH" variable_2="PGH"/>
	</connection>

<!-- ========================================	INTERSTITIAL SOLID TISSUE PRESSURE	============================================= -->
	<component name="interstitial_solid_tissue_pressure" cmeta:id="interstitial_solid_tissue_pressure">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#interstitial_solid_tissue_pressure">
				<rdf:value>
				CP20:  
				The solid tissue pressure of the interstitium (PTS) is equal to the total 
				tissue pressure (PTT) minus the pressure in the free fluid of the interstitium (PIF).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PIF" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="PTT" units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="PTS" units="dimensionless" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP20">
				<eq/>
				<ci>PTS</ci>
				<apply>
					<minus/>
					<ci>PTT</ci>
					<ci>PIF</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="interstitial_solid_tissue_pressure" component_2="interstial_free_fluid_pressure"/>
		<map_variables variable_1="PIF" variable_2="PIF"/>
	</connection>
	<connection>
		<map_components component_1="interstitial_solid_tissue_pressure" component_2="total_tissue_pressure"/>
		<map_variables variable_1="PTT" variable_2="PTT"/>
	</connection>

<!-- ========================================	LYMPH FLOW	============================================= -->
	<component name="lymph_flow" cmeta:id="lymph_flow">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#lymph_flow">
				<rdf:value>
				CP21 and CP22:  
				The pressure gradient that promotes lymph flow (PLD) is equal to a constant (PLDF)
				that is determined by the pumping action of the lymphatics plus the interstitial 
				free fluid pressure (PIF), minus the total tissue pressure (PTT).  Block CP22 
				limits the upper level of this pressure gradient.

				CP23 and CP24:  
				The rate of lymph flow (VTL) is equal to the pressure gradient that causes 
				lymph flow (PLD) times a constant representing lymphatic conductance.  
				Block CP24 limits the lower level of lymph flow to zero.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PIF" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="PTT" units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="VTL" units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="PLDF" units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="PLD1" units="dimensionless" private_interface="none" public_interface="none"/>
		<variable name="PLD" units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP21">
				<eq/>
				<ci>PLD1</ci>
				<apply>
					<minus/>
					<apply>
						<plus/>
						<ci>PIF</ci>
						<ci>PLDF</ci>
					</apply>
					<ci>PTT</ci>
				</apply>
			</apply>
			<apply id="CP22">
				<eq/>
				<ci>PLD</ci>
				<piecewise>
					<piece>
						<cn cellml:units="dimensionless">7</cn>
						<apply>
							<gt/>
							<ci>PLD1</ci>
							<cn cellml:units="dimensionless">7</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>PLD1</ci>
					</otherwise>
				</piecewise>
			</apply>
			<apply id="CP23_and_CP24">
				<eq/>
				<ci>VTL</ci>
				<piecewise>
					<piece>
						<cn cellml:units="dimensionless">0</cn>
						<apply>
							<lt/>
							<ci>PLD</ci>
							<cn cellml:units="dimensionless">0</cn>
						</apply>
					</piece>
					<otherwise>
						<apply>
							<times/>
							<ci>PLD</ci>
							<cn cellml:units="dimensionless">0.02</cn>
						</apply>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="lymph_flow" component_2="interstial_free_fluid_pressure"/>
		<map_variables variable_1="PIF" variable_2="PIF"/>
	</connection>
	<connection>
		<map_components component_1="lymph_flow" component_2="total_tissue_pressure"/>
		<map_variables variable_1="PTT" variable_2="PTT"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="lymph_flow" component_2="parameter_values"/>
		<map_variables variable_1="PLDF" variable_2="PLDF"/>
	</connection>

<!-- ========================================	INTERSTITIAL GEL VOLUME	============================================= -->
	<component name="interstitial_gel_volume" cmeta:id="interstitial_gel_volume">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#interstitial_gel_volume">
				<rdf:value>
				CP8:  
				This block gives a function curve that relates the volume of the tissue gel (VG) 
				to the total interstitial fluid volume (VTS).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="VTS" units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="VG" units="dimensionless" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP8">
                <eq/>
                <ci>VG</ci>
                <piecewise>
                    <piece>
                        <cn cellml:units="dimensionless">0</cn>
                        <apply>
                            <leq/>
                            <ci>VTS</ci>
                            <cn cellml:units="dimensionless">0</cn>
                        </apply>
                    </piece>
                    <piece>
                        <apply>
                            <plus/>
                            <cn cellml:units="dimensionless">0</cn>
                            <apply>
                                <divide/>
                                <apply>
                                    <times/>
                                    <apply>
                                        <minus/>
                                        <cn cellml:units="dimensionless">11.4</cn>
                                        <cn cellml:units="dimensionless">0</cn>
                                    </apply>
                                    <apply>
                                        <minus/>
                                        <ci>VTS</ci>
                                        <cn cellml:units="dimensionless">0</cn>
                                    </apply>
                                </apply>
                                <apply>
                                    <minus/>
                                    <cn cellml:units="dimensionless">12</cn>
                                    <cn cellml:units="dimensionless">0</cn>
                                </apply>
                            </apply>
                        </apply>
                        <apply>
                            <and/>
                            <apply>
                                <gt/>
                                <ci>VTS</ci>
                                <cn cellml:units="dimensionless">0</cn>
                            </apply>
                            <apply>
                                <leq/>
                                <ci>VTS</ci>
                                <cn cellml:units="dimensionless">12</cn>
                            </apply>
                        </apply>
                    </piece>
                    <piece>
                        <apply>
                            <plus/>
                            <cn cellml:units="dimensionless">11.4</cn>
                            <apply>
                                <divide/>
                                <apply>
                                    <times/>
                                    <apply>
                                        <minus/>
                                        <cn cellml:units="dimensionless">14</cn>
                                        <cn cellml:units="dimensionless">11.4</cn>
                                    </apply>
                                    <apply>
                                        <minus/>
                                        <ci>VTS</ci>
                                        <cn cellml:units="dimensionless">12</cn>
                                    </apply>
                                </apply>
                                <apply>
                                    <minus/>
                                    <cn cellml:units="dimensionless">15</cn>
                                    <cn cellml:units="dimensionless">12</cn>
                                </apply>
                            </apply>
                        </apply>
                        <apply>
                            <and/>
                            <apply>
                                <gt/>
                                <ci>VTS</ci>
                                <cn cellml:units="dimensionless">12</cn>
                            </apply>
                            <apply>
                                <leq/>
                                <ci>VTS</ci>
                                <cn cellml:units="dimensionless">15</cn>
                            </apply>
                        </apply>
                    </piece>
                    <piece>
                        <apply>
                            <plus/>
                            <cn cellml:units="dimensionless">14</cn>
                            <apply>
                                <divide/>
                                <apply>
                                    <times/>
                                    <apply>
                                        <minus/>
                                        <cn cellml:units="dimensionless">16</cn>
                                        <cn cellml:units="dimensionless">14</cn>
                                    </apply>
                                    <apply>
                                        <minus/>
                                        <ci>VTS</ci>
                                        <cn cellml:units="dimensionless">15</cn>
                                    </apply>
                                </apply>
                                <apply>
                                    <minus/>
                                    <cn cellml:units="dimensionless">18</cn>
                                    <cn cellml:units="dimensionless">15</cn>
                                </apply>
                            </apply>
                        </apply>
                        <apply>
                            <and/>
                            <apply>
                                <gt/>
                                <ci>VTS</ci>
                                <cn cellml:units="dimensionless">15</cn>
                            </apply>
                            <apply>
                                <leq/>
                                <ci>VTS</ci>
                                <cn cellml:units="dimensionless">18</cn>
                            </apply>
                        </apply>
                    </piece>
                    <piece>
                        <apply>
                            <plus/>
                            <cn cellml:units="dimensionless">16</cn>
                            <apply>
                                <divide/>
                                <apply>
                                    <times/>
                                    <apply>
                                        <minus/>
                                        <cn cellml:units="dimensionless">17.3</cn>
                                        <cn cellml:units="dimensionless">16</cn>
                                    </apply>
                                    <apply>
                                        <minus/>
                                        <ci>VTS</ci>
                                        <cn cellml:units="dimensionless">18</cn>
                                    </apply>
                                </apply>
                                <apply>
                                    <minus/>
                                    <cn cellml:units="dimensionless">21</cn>
                                    <cn cellml:units="dimensionless">18</cn>
                                </apply>
                            </apply>
                        </apply>
                        <apply>
                            <and/>
                            <apply>
                                <gt/>
                                <ci>VTS</ci>
                                <cn cellml:units="dimensionless">18</cn>
                            </apply>
                            <apply>
                                <leq/>
                                <ci>VTS</ci>
                                <cn cellml:units="dimensionless">21</cn>
                            </apply>
                        </apply>
                    </piece>
                    <piece>
                        <apply>
                            <plus/>
                            <cn cellml:units="dimensionless">17.3</cn>
                            <apply>
                                <divide/>
                                <apply>
                                    <times/>
                                    <apply>
                                        <minus/>
                                        <cn cellml:units="dimensionless">18</cn>
                                        <cn cellml:units="dimensionless">17.3</cn>
                                    </apply>
                                    <apply>
                                        <minus/>
                                        <ci>VTS</ci>
                                        <cn cellml:units="dimensionless">21</cn>
                                    </apply>
                                </apply>
                                <apply>
                                    <minus/>
                                    <cn cellml:units="dimensionless">24</cn>
                                    <cn cellml:units="dimensionless">21</cn>
                                </apply>
                            </apply>
                        </apply>
                        <apply>
                            <and/>
                            <apply>
                                <gt/>
                                <ci>VTS</ci>
                                <cn cellml:units="dimensionless">21</cn>
                            </apply>
                            <apply>
                                <leq/>
                                <ci>VTS</ci>
                                <cn cellml:units="dimensionless">24</cn>
                            </apply>
                        </apply>
                    </piece>
                    <otherwise>
                        <cn cellml:units="dimensionless">18</cn>
                    </otherwise>
                </piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="interstitial_gel_volume" component_2="total_systemic_fluid_volume"/>
		<map_variables variable_1="VTS" variable_2="VTS"/>
	</connection>

<!-- ========================================	INTERSTITIAL FREE FLUID VOLUME	============================================= -->
	<component name="interstitial_free_fluid_volume" cmeta:id="interstitial_free_fluid_volume">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#interstitial_free_fluid_volume">
				<rdf:value>
				CP9:  
				The volume of free fluid in the interstitium (VIF) is equal to the total 
				interstitial fluid volume (VTS) minus the volume of fluid in the tissue gel (VG).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="VTS" units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="VG" units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="VIF" units="dimensionless" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP9">
				<eq/>
				<ci>VIF</ci>
				<apply>
					<minus/>
					<ci>VTS</ci>
					<ci>VG</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="interstitial_free_fluid_volume" component_2="total_systemic_fluid_volume"/>
		<map_variables variable_1="VTS" variable_2="VTS"/>
	</connection>
	<connection>
		<map_components component_1="interstitial_free_fluid_volume" component_2="interstitial_gel_volume"/>
		<map_variables variable_1="VG" variable_2="VG"/>
	</connection>
	
<!-- ============================================================		PARAMETER VALUES		=============================================================== -->
	<component name="parameter_values" cmeta:id="parameter_values">
		<variable name="CFC" units="dimensionless" initial_value="0.01167" private_interface="none" public_interface="out"/>	<!-- capillary filtration coefficient [P] -->
		<variable name="TRPL" units="dimensionless" initial_value="0" private_interface="none" public_interface="out"/>	<!-- transfusion coefficient [P] -->
		<variable name="CPR" units="dimensionless" initial_value="40" private_interface="none" public_interface="out"/>	<!-- critical plasma protein conc for protein destruction [P] -->
		<variable name="LPDE" units="dimensionless" initial_value="8" private_interface="none" public_interface="out"/>	<!-- curve fitting coefficient, liver protein destruction [P] -->
		<variable name="PCE" units="dimensionless" initial_value="1" private_interface="none" public_interface="out"/>	<!-- curve fitting exponent, capillary leakage [P] -->
		<variable name="PCR" units="dimensionless" initial_value="15" private_interface="none" public_interface="out"/>	<!-- critical capillary pressure for protein leakage [P] -->
		<variable name="LPK" units="dimensionless" initial_value="2.728e-14" private_interface="none" public_interface="out"/>	<!-- curve fitting coefficient, liver protein destruction [P] -->
		<variable name="LPPR" units="dimensionless" initial_value="0.03" private_interface="none" public_interface="out"/>	<!-- rate of liver protein production [P] -->
		<variable name="CPK" units="dimensionless" initial_value="0.000253" private_interface="none" public_interface="out"/>	<!-- curve fitting exponent, , capillary leakage [P] -->
		<variable name="TSSLML" units="dimensionless" initial_value="0.15" private_interface="none" public_interface="out"/>	<!-- sensitivity controller of VTS [P] -->
		<variable name="TSSLTC" units="dimensionless" initial_value="0.005" private_interface="none" public_interface="out"/>	<!-- VTS1 time constant [P] -->
		<variable name="HYL" units="dimensionless" initial_value="60" private_interface="none" public_interface="out"/>	<!-- quantity of hyaluronic acid in tissues -->
		<variable name="CMPTSS" units="dimensionless" initial_value="2" private_interface="none" public_interface="out"/>	<!-- curve fitting exponent, calculation of CHY [P] -->
		<variable name="PGHF" units="dimensionless" initial_value="-2" private_interface="none" public_interface="out"/>	<!-- proportionality coefficent, CHY to PGH [P] -->
		<variable name="GCOPF" units="dimensionless" initial_value="0.8092" private_interface="none" public_interface="out"/>	<!-- coefficient, calculation of PTC [P] -->
		<variable name="VTSF" units="dimensionless" initial_value="6" private_interface="none" public_interface="out"/>	<!-- curve fitting coefficient, PTT [P] -->
		<variable name="PLDF" units="dimensionless" initial_value="4.2" private_interface="none" public_interface="out"/>	<!-- constant pressure, computation of PLD [P] -->
	</component>

<!-- ============================================================		GROUPING		=============================================================== -->
   <group>
		<relationship_ref relationship="containment"/>
		<component_ref component="capillary_dynamics">
			<component_ref component="capillary_membrane_dynamics">
				<component_ref component="capillary_pressure"/>
				<component_ref component="rate_of_fluid_out_of_capillaries"/>
			</component_ref>
			<component_ref component="plasma_volume_and_protein">
				<component_ref component="plasma_volume"/>
				<component_ref component="plasma_protein_concentration"/>
				<component_ref component="protein_destruction_and_formation"/>
				<component_ref component="plasma_leakage"/>
				<component_ref component="protein_influx_into_interstitium"/>
				<component_ref component="total_plasma_protein"/>
				<component_ref component="plasma_colloid_osmotic_pressure"/>
			</component_ref>
			<component_ref component="systemic_tissue_fluid_volume_and_protein">
				<component_ref component="total_systemic_fluid_volume"/>
				<component_ref component="interstitial_fluid_volume"/>
				<component_ref component="total_interstitial_protein"/>
				<component_ref component="interstitial_protein_concentration"/>
				<component_ref component="interstitial_colloid_osmotic_pressure"/>
				<component_ref component="lymph_protein_flow"/>
			</component_ref>
			<component_ref component="tissue_gel_and_fluid_and_lymph_flow">
				<component_ref component="hydrostatic_pressure_of_tissue_gel"/>
				<component_ref component="total_osmotic_pressure_of_tissue_gel"/>
				<component_ref component="total_tissue_pressure"/>
				<component_ref component="interstial_free_fluid_pressure"/>
				<component_ref component="interstitial_solid_tissue_pressure"/>
				<component_ref component="lymph_flow"/>
				<component_ref component="interstitial_gel_volume"/>
				<component_ref component="interstitial_free_fluid_volume"/>
			</component_ref>
		</component_ref>
   </group>

   <group>
      <relationship_ref relationship="encapsulation"/>
		<component_ref component="capillary_dynamics">
			<component_ref component="parameter_values"/>
			<component_ref component="capillary_membrane_dynamics"/>
			<component_ref component="capillary_pressure"/>
			<component_ref component="rate_of_fluid_out_of_capillaries"/>
			<component_ref component="plasma_volume_and_protein"/>
			<component_ref component="plasma_volume"/>
			<component_ref component="plasma_protein_concentration"/>
			<component_ref component="protein_destruction_and_formation"/>
			<component_ref component="plasma_leakage"/>
			<component_ref component="protein_influx_into_interstitium"/>
			<component_ref component="total_plasma_protein"/>
			<component_ref component="plasma_colloid_osmotic_pressure"/>
			<component_ref component="systemic_tissue_fluid_volume_and_protein"/>
			<component_ref component="total_systemic_fluid_volume"/>
			<component_ref component="interstitial_fluid_volume"/>
			<component_ref component="total_interstitial_protein"/>
			<component_ref component="interstitial_protein_concentration"/>
			<component_ref component="interstitial_colloid_osmotic_pressure"/>
			<component_ref component="lymph_protein_flow"/>
			<component_ref component="tissue_gel_and_fluid_and_lymph_flow"/>
			<component_ref component="hydrostatic_pressure_of_tissue_gel"/>
			<component_ref component="total_osmotic_pressure_of_tissue_gel"/>
			<component_ref component="total_tissue_pressure"/>
			<component_ref component="interstial_free_fluid_pressure"/>
			<component_ref component="interstitial_solid_tissue_pressure"/>
			<component_ref component="lymph_flow"/>
			<component_ref component="interstitial_gel_volume"/>
			<component_ref component="interstitial_free_fluid_volume"/>
		</component_ref>
   </group>


<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
  <rdf:Description rdf:about="#lymph_protein_flow">
    <rdf:value>
				CP46:  
				The rate of return of protein to the circulation by way of the lymph (DPL) is 
				equal to the concentration of protein in the systemic interstitium (CPI) times 
				the rate of lymph flow from the interstitium (VTL).
				</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#capillary_dynamics_CellML1_0_model">
    <rdf:value>
			CAPILLARY DYNAMICS, TISSUE FLUID, AND TISSUE PROTEIN

			This portion of the model calculates the movement of fluid and protein through the
			capillary membrane.  It also calculates the volumes of fluid in the free fluid space 
			of the interstitium and in the gel fluid space.  It calculates the pressures in both 
			of these fluids as well as the so-called solid tissue pressure caused by the compression 
			of solid elements against other portions of the interstitium.  In addition, the quantities 
			of proteins and their concentrations in both the free fluid and the gel fluid are calculated. 
			And, finally, the flow of both fluid and proteins in the lymph system are computed, as well 
			as the overall body protein balance.
			</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#interstitial_solid_tissue_pressure">
    <rdf:value>
				CP20:  
				The solid tissue pressure of the interstitium (PTS) is equal to the total 
				tissue pressure (PTT) minus the pressure in the free fluid of the interstitium (PIF).
				</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#systemic_tissue_fluid_volume_and_protein">
    <rdf:value>
				Containment grouping component for "total_systemic_fluid_volume",
				"interstitial_fluid_volume", "total_interstitial_protein",
				"interstitial_protein_concentration", "interstitial_colloid_osmotic_pressure"
				and "lymph_protein_flow".
				</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#rate_of_fluid_out_of_capillaries">
    <rdf:value>
				CP3:  
				The pressure gradient for filtration of fluid across the capillary membranes (PCGR) 
				is equal to the capillary pressure (PC), plus the colloid osmotic pressure of the 
				tissue gel (PTC), minus the plasma colloid osmotic pressure (PPC), minus the hydrostatic
				pressure of the gel (PGH).

				CP4:  
				The rate of filtration of fluid out of the capillaries of the systemic circulation (CFILTR)
				is equal to the pressure gradient across the capillary membranes (PCGR) times the capillary
				filtration coefficient (CFC).

				CP5:  
				The total rate of movement of fluid out of all the systemic capillaries of the body (VTC) is
				equal to the rate of filtration from the systemic capillaries (CFILTR) plus the rate of 
				leakage of whole plasma though leaky capillaries (VTCPL).
				</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#protein_destruction_and_formation">
    <rdf:value>
				CP37 and CP38:  
				A factor related to the rate of destruction of protein by the liver (CPPD) is 
				equal to plasma protein concentration CPP) minus a critical protein limiting value (CPR). 
				Block CP38 limits the rate of destruction of protein by the liver to a lower limit of zero.

				CP39 and CP40:  
				Curve-fitting blocks to calculate the rate of destruction of protein by the 
				liver (LPPRDS) from the factor (CPPD) calculated in Block 37.  The curve-fitting 
				constants are LPDE and LPK.

				CP41:  
				Net rate of protein exchange between the liver and the plasma (DLP) is equal to the 
				rate of production of protein by the liver (LPPR) minus the rate of destruction of 
				protein by the liver (LPPRDS).
				</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#lymph_flow">
    <rdf:value>
				CP21 and CP22:  
				The pressure gradient that promotes lymph flow (PLD) is equal to a constant (PLDF)
				that is determined by the pumping action of the lymphatics plus the interstitial 
				free fluid pressure (PIF), minus the total tissue pressure (PTT).  Block CP22 
				limits the upper level of this pressure gradient.

				CP23 and CP24:  
				The rate of lymph flow (VTL) is equal to the pressure gradient that causes 
				lymph flow (PLD) times a constant representing lymphatic conductance.  
				Block CP24 limits the lower level of lymph flow to zero.
				</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#plasma_volume_and_protein">
    <rdf:value>
				Containment grouping component for "plasma_volume", "plasma_protein_concentration",
				"protein_destruction_and_formation", "plasma_leakage", "protein_influx_into_interstitium",
				"total_plasma_protein" and "plasma_colloid_osmotic_pressure".
				</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#interstitial_colloid_osmotic_pressure">
    <rdf:value>
				CP45:  
				The colloid osmotic pressure of the free fluid in the interstitium (PTCPR) is 
				calculated in this block from the concentration of protein in the interstitium (CPI).
				</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#total_tissue_pressure">
    <rdf:value>
				CP12:  
				Calculation of the total tissue pressure (PTT) as a function of the total 
				interstitial fluid volume (VTS1).
				</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#interstitial_free_fluid_volume">
    <rdf:value>
				CP9:  
				The volume of free fluid in the interstitium (VIF) is equal to the total 
				interstitial fluid volume (VTS) minus the volume of fluid in the tissue gel (VG).
				</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#tissue_gel_and_fluid_and_lymph_flow">
    <rdf:value>
				Containment grouping component for "hydrostatic_pressure_of_tissue_gel",
				"total_osmotic_pressure_of_tissue_gel", "total_tissue_pressure",
				"interstial_free_fluid_pressure", "interstitial_solid_tissue_pressure",
				"lymph_flow", "interstitial_gel_volume" and "interstitial_free_fluid_volume".
				</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#capillary_dynamics">
    <rdf:value>
				Encapsulation grouping component containing all the components in the Capillary Dynamics Model. The inputs and 
				outputs of the Capillary Dynamics Model must be passed by this component.
				</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#total_interstitial_protein">
    <rdf:value>
				CP42:  
				The rate of change of protein in the systemic interstitium (DPI) is equal to 
				the rate of leakage from the plasma of protein through the systemic capillary
				membranes (DPC) minus the rate of return of the protein from the systemic 
				interstitium by way of the lymphatics (DPL).

				CP43:  
				The total tissue protein (TSP) is calculated by integrating the rate of 
				change of protein in the interstitium (DPI) with respect to time.
				</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#plasma_protein_concentration">
    <rdf:value>
				CP35:  
				The concentration of protein in the plasma (CPP) is equal to the total quantity 
				of protein in the plasma (RPR) divided by the plasma volume (VP).
				</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#total_osmotic_pressure_of_tissue_gel">
    <rdf:value>
				CP17:  
				The osmotic pressure caused by the hyaluronic acid in the gel (POSHYL) 
				is equal to the concentration of hyaluronic acid in the gel (CHY) times 
				a constant.

				CP18:  
				The total osmotic pressure of the tissue gel (PTC) is equal to the osmotic 
				pressure caused by the hyaluronic acid in the gel (POSHYL) times the colloid 
				osmotic pressure caused by the plasma protein in the free fluid of the 
				interstitium (PTCPR) times a constant (GCOPF).
				</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#plasma_volume">
    <rdf:value>
				CP10:  
				The rate of change of plasma volume (VPD) is equal to the rate of inflow of 
				fluid into the plasma by way of the lymph (VTL) minus the rate of loss of 
				fluid from the systemic tissue capillaries (VTC), minus the rate of loss of 
				fluid from the pulmonary capillaries (DFP), and plus any rate of transfusion 
				of plasma into the circulation.

				CP11:  
				The plasma volume (VP) is determined by integrating the rate of change of the 
				plasma volume (VPD) with respect to time.
				</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#total_plasma_protein">
    <rdf:value>
				CP33:  The rate of change of the quantity of protein in the plasma (DPP) 
				is equal to the net rate of formation of protein by the liver (DLP), plus 
				the rate of return of protein to the circulation in the lymph (DPL), minus 
				the loss of protein from the circulation into the systemic interstitium (DPC), 
				minus the rate of loss of protein through the pulmonary capillary membranes (PPD).

				CP34:  
				The total quantity of protein in the plasma (PRP) is determined by integrating 
				the rate of change of the protein in the plasma (DPP) with respect to time.
				</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#total_systemic_fluid_volume">
    <rdf:value>
				CP6:  
				The total fluid volume in the systemic circulation portion of the body (VTS) 
				is equal to the total extracellular fluid volume (VEC) minus plasma volume (VP) 
				and minus pulmonary extracellular fluid volume (VPF).
				</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#protein_influx_into_interstitium">
    <rdf:value>
				CP29:  
				Rate of leakage of plasma protein in the leaking whole plasma into the interstitium 
				from the circulating plasma (TVCPL) equals the volume of plasma leaking (VTCPL) 
				times the concentration of protein in the plasma (CPP).

				CP30 and CP31:  
				The rate of diffusion of protein through the capillary pores (PLPRDF) is equal 
				to the difference between plasma concentration of protein (CPP) minus the concentration 
				of protein in the interstitial free fluid (CPI) times a constant in Block CP31.

				CP32:  
				Rate of influx of protein into the interstitium from the plasma in the capillaries (DPC)
				is equal to the rate of protein leaking in the whole plasma (VTCPL) plus the rate of 
				diffusion of protein through the capillary pores (PLPRDF).
				</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#capillary_membrane_dynamics">
    <rdf:value>
				Containment grouping component for "capillary_pressure" and 
				"rate_of_fluid_out_of_capillaries".
				</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#interstial_free_fluid_pressure">
    <rdf:value>
				CP19:  
				The pressure in the free interstitial fluid (PIF) is equal to the hydrostatic 
				pressure in the tissue gel (PGH) minus the colloid osmotic pressure of the 
				hyaluronic acid in the tissue gel (POSHYL).
				</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#interstitial_protein_concentration">
    <rdf:value>
				CP44:  
				The concentration of protein in the interstitium (CPI) is equal to the total 
				quantity of protein in the interstitium (TSP) divided by the total volume of 
				fluid in the systemic interstitium (VTS).
				</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#plasma_colloid_osmotic_pressure">
    <rdf:value>
				CP36:  
				The plasma colloid osmotic pressure (PPC) is calculated in this block from 
				the concentration of protein in the plasma (CPP).
				</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#capillary_pressure">
    <rdf:value>
				CP1 and CP2:  
				The capillary pressure (PC) is equal to the resistance to blood flow in the
				small veins (RVS) times the blood flow in the small veins (BFN), times a constant 
				to represent the additional normal flow through the muscles and kidneys, plus
				the pressure in the large vein circulation.  The value of the capillary pressure (PC)
				is assumed to be the same in all tissues of the body.
				</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#hydrostatic_pressure_of_tissue_gel">
    <rdf:value>
				CP13 and CP14:  
				Calculation of the concentration of hyaluronic acid in the interstitium (CHY) 
				from the total quantity of hyaluronic acid in the interstitium (HYL) and the 
				total volume of fluid in the interstitium (VTS).  The exponent CMPTSS describes 
				the non-linearity of this effect.

				CP15 and CP16:  
				Calculation of the hydrostatic pressure in the tissue gel (PGH) from the 
				concentration of hyaluronic acid in the interstitium (CHY) and the total 
				tissue pressure (PTT).  (The hyaluronic acid acts as an elastic body that
				expands, and, therefore, creates a negative pressure.)
				</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#interstitial_gel_volume">
    <rdf:value>
				CP8:  
				This block gives a function curve that relates the volume of the tissue gel (VG) 
				to the total interstitial fluid volume (VTS).
				</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#interstitial_fluid_volume">
    <rdf:value>
				CP7, CP7A, CP7B, CP7C, CP7D, and CP7E:  
				Calculation of the effect of tissue space stress relaxation on volume of fluid 
				in the interstitial space (VTS1) after higher or lower than normal volumes
				(VTS greater or lower than 12) have existed in the tissue spaces for prolonged 
				periods of time.  The sensitivity control for the extent of tissue space stress
				relaxation is TSSLML, and the reciprocal of the time constant of the effect 
				is TSSLTC.
				</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#plasma_leakage">
    <rdf:value>
				CP25 and CP26:  
				Calculation of a pressure gradient to cause whole plasma leakage through the 
				capillary membranes (PRCD), calculated by adding the capillary pressure (PC) and
				subtracting a critical capillary pressure (PCR) below which no whole plasma will leak.
				Block CP26 limits the rate of plasma leakage (PRCD) to a lower level of zero.

				CP27 and CP28:  
				The rate of leakage of whole plasma through the capillary membrane (VTCPL) is equal 
				to the pressure gradient for leakage of plasma (PRCD) times a constant (CPK) and this 
				product raised to a power (PCE).
				</rdf:value>
  </rdf:Description>
</rdf:RDF>
</model>