# Model Mathematics

### Component: membrane

$dd time V =- i_NaP + i_Na + i_K + i_L + i_tonic_e + i_syn_e + i_app C$

### Component: fast_sodium_current

$i_Na = g_Na ⁢ m_infinity 3.0 ⁢ 1.0 - n ⁢ V - E_Na$

### Component: fast_sodium_current_m_gate

$m_infinity = 1.0 1.0 +ⅇ V - theta_m sigma_m$

### Component: fast_sodium_current_n_gate

$dd time n = n_infinity - n tau_n n_infinity = 1.0 1.0 +ⅇ V - theta_n sigma_n tau_n = tau_n_max cosh⁡ V - theta_n 2.0 ⁢ sigma_n$

### Component: potassium_current

$i_K = g_K ⁢ n 4.0 ⁢ V - E_K$

### Component: potassium_current_n_gate

$dd time n = n_infinity - n tau_n n_infinity = 1.0 1.0 +ⅇ V - theta_n sigma_n tau_n = tau_n_max cosh⁡ V - theta_n 2.0 ⁢ sigma_n$

### Component: persistent_sodium_current

$i_NaP = g_NaP ⁢ m_infinity ⁢ h ⁢ V - E_Na$

### Component: persistent_sodium_current_m_gate

$m_infinity = 1.0 1.0 +ⅇ V - theta_m sigma_m$

### Component: persistent_sodium_current_h_gate

$dd time h = h_infinity - h tau_h h_infinity = 1.0 1.0 +ⅇ V - theta_h sigma_h tau_h = tau_h_max cosh⁡ V - theta_h 2.0 ⁢ sigma_h$

### Component: leakage_current

$i_L = g_L ⁢ V - E_L$

### Component: tonic_current

$i_tonic_e = g_tonic_e ⁢ V - E_syn_e$

### Component: synaptic_input

$i_syn_e=sum_g_syn_e_s⁢V-E_syn_es_infinity=11+ⅇV-theta_ssigma_sddtimes=1-s⁢s_infinity--kr⁢stau_sV_public=V$

### Component: synaptic_coupling

$sum_g_syn_e_s=g_syn_e_1_2⁢s1+g_syn_e_1_3⁢s1+g_syn_e_1_4⁢s1+g_syn_e_1_5⁢s1$
Source
Derived from workspace Butera, Rinzel, Smith II 1999 at changeset 0ee3337d0ae2.
This exposure was expired.
Collaboration
To begin collaborating on this work, please use your git client and issue this command: