Generated Code
The following is matlab code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction() % This is the "main function". In Matlab, things work best if you rename this function to match the filename. [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel(); end function [algebraicVariableCount] = getAlgebraicVariableCount() % Used later when setting a global variable with the number of algebraic variables. % Note: This is not the "main method". algebraicVariableCount =6; end % There are a total of 1 entries in each of the rate and state variable arrays. % There are a total of 25 entries in the constant variable array. % function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel() % Create ALGEBRAIC of correct size global algebraicVariableCount; algebraicVariableCount = getAlgebraicVariableCount(); % Initialise constants and state variables [INIT_STATES, CONSTANTS] = initConsts; % Set timespan to solve over tspan = [0, 10]; % Set numerical accuracy options for ODE solver options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1); % Solve model with ODE solver [VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options); % Compute algebraic variables [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS); ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI); % Plot state variables against variable of integration [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends(); figure(); plot(VOI, STATES); xlabel(LEGEND_VOI); l = legend(LEGEND_STATES); set(l,'Interpreter','none'); end function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends() LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = ''; LEGEND_VOI = strpad('time in component environment (second)'); LEGEND_STATES(:,1) = strpad('Na_ext in component concentrations (mM)'); LEGEND_CONSTANTS(:,1) = strpad('Na_int in component concentrations (mM)'); LEGEND_CONSTANTS(:,2) = strpad('H_ext in component concentrations (mM)'); LEGEND_CONSTANTS(:,3) = strpad('H_int in component concentrations (mM)'); LEGEND_CONSTANTS(:,4) = strpad('NH4_ext in component concentrations (mM)'); LEGEND_CONSTANTS(:,5) = strpad('NH4_int in component concentrations (mM)'); LEGEND_ALGEBRAIC(:,3) = strpad('J_NHE3_Na in component NHE3 (mM_per_s)'); LEGEND_ALGEBRAIC(:,4) = strpad('J_NHE3_H in component NHE3 (mM_per_s)'); LEGEND_ALGEBRAIC(:,5) = strpad('J_NHE3_NH4 in component NHE3 (mM_per_s)'); LEGEND_CONSTANTS(:,23) = strpad('J_NHE3_Na_Max in component NHE3 (mM_per_s)'); LEGEND_ALGEBRAIC(:,6) = strpad('plot in component fluxes (dimensionless)'); LEGEND_CONSTANTS(:,6) = strpad('x_T in component NHE3 (mM)'); LEGEND_ALGEBRAIC(:,2) = strpad('sigma in component NHE3 (per_s)'); LEGEND_CONSTANTS(:,21) = strpad('P_Na in component NHE3 (per_s)'); LEGEND_CONSTANTS(:,22) = strpad('P_H in component NHE3 (per_s)'); LEGEND_CONSTANTS(:,24) = strpad('P_NH4 in component NHE3 (per_s)'); LEGEND_CONSTANTS(:,7) = strpad('P0_Na in component NHE3 (per_s)'); LEGEND_CONSTANTS(:,8) = strpad('P0_H in component NHE3 (per_s)'); LEGEND_CONSTANTS(:,9) = strpad('P0_NH4 in component NHE3 (per_s)'); LEGEND_CONSTANTS(:,10) = strpad('K_Na in component NHE3 (mM)'); LEGEND_CONSTANTS(:,11) = strpad('K_H in component NHE3 (mM)'); LEGEND_CONSTANTS(:,12) = strpad('K_NH4 in component NHE3 (mM)'); LEGEND_CONSTANTS(:,13) = strpad('K_I in component NHE3 (mM)'); LEGEND_CONSTANTS(:,14) = strpad('f_m in component NHE3 (dimensionless)'); LEGEND_CONSTANTS(:,15) = strpad('f_M in component NHE3 (dimensionless)'); LEGEND_ALGEBRAIC(:,1) = strpad('alpha_ext_Na in component NHE3 (dimensionless)'); LEGEND_CONSTANTS(:,16) = strpad('alpha_int_Na in component NHE3 (dimensionless)'); LEGEND_CONSTANTS(:,17) = strpad('beta_ext_H in component NHE3 (dimensionless)'); LEGEND_CONSTANTS(:,18) = strpad('beta_int_H in component NHE3 (dimensionless)'); LEGEND_CONSTANTS(:,19) = strpad('gamma_ext_NH4 in component NHE3 (dimensionless)'); LEGEND_CONSTANTS(:,20) = strpad('gamma_int_NH4 in component NHE3 (dimensionless)'); LEGEND_RATES(:,1) = strpad('d/dt Na_ext in component concentrations (mM)'); LEGEND_STATES = LEGEND_STATES'; LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC'; LEGEND_RATES = LEGEND_RATES'; LEGEND_CONSTANTS = LEGEND_CONSTANTS'; end function [STATES, CONSTANTS] = initConsts() VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = []; STATES(:,1) = 1.0; CONSTANTS(:,1) = 0.0; CONSTANTS(:,2) = 2.51189e-4; CONSTANTS(:,3) = 1.0e-3; CONSTANTS(:,4) = 0.0; CONSTANTS(:,5) = 0.0; CONSTANTS(:,6) = 1.0; CONSTANTS(:,7) = 1.6e-3; CONSTANTS(:,8) = 0.48e-3; CONSTANTS(:,9) = 1.6e-3; CONSTANTS(:,10) = 30.0; CONSTANTS(:,11) = 72e-6; CONSTANTS(:,12) = 27.0; CONSTANTS(:,13) = 1.0e-6; CONSTANTS(:,14) = 0.0; CONSTANTS(:,15) = 2.0; CONSTANTS(:,16) = CONSTANTS(:,1)./CONSTANTS(:,10); CONSTANTS(:,24) = 100.000; CONSTANTS(:,17) = CONSTANTS(:,2)./CONSTANTS(:,11); CONSTANTS(:,18) = CONSTANTS(:,3)./CONSTANTS(:,11); CONSTANTS(:,19) = CONSTANTS(:,4)./CONSTANTS(:,12); CONSTANTS(:,20) = CONSTANTS(:,5)./CONSTANTS(:,12); CONSTANTS(:,21) = ( CONSTANTS(:,7).*( CONSTANTS(:,15).*CONSTANTS(:,3)+ CONSTANTS(:,14).*CONSTANTS(:,13)))./(CONSTANTS(:,3)+CONSTANTS(:,13)); CONSTANTS(:,22) = ( CONSTANTS(:,8).*( CONSTANTS(:,15).*CONSTANTS(:,3)+ CONSTANTS(:,14).*CONSTANTS(:,13)))./(CONSTANTS(:,3)+CONSTANTS(:,13)); CONSTANTS(:,23) = ( CONSTANTS(:,6).*CONSTANTS(:,21).*CONSTANTS(:,22))./(CONSTANTS(:,21)+CONSTANTS(:,22)); CONSTANTS(:,24) = ( CONSTANTS(:,9).*( CONSTANTS(:,15).*CONSTANTS(:,3)+ CONSTANTS(:,14).*CONSTANTS(:,13)))./(CONSTANTS(:,3)+CONSTANTS(:,13)); if (isempty(STATES)), warning('Initial values for states not set');, end end function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS) global algebraicVariableCount; statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; ALGEBRAIC = zeros(1, algebraicVariableCount); utilOnes = 1; else statesRowCount = statesSize(1); ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount); RATES = zeros(statesRowCount, statesColumnCount); utilOnes = ones(statesRowCount, 1); end RATES(:,1) = CONSTANTS(:,24); RATES = RATES'; end % Calculate algebraic variables function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI) statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; utilOnes = 1; else statesRowCount = statesSize(1); utilOnes = ones(statesRowCount, 1); end ALGEBRAIC(:,1) = STATES(:,1)./CONSTANTS(:,10); ALGEBRAIC(:,2) = (1.00000+ALGEBRAIC(:,1)+CONSTANTS(:,17)+CONSTANTS(:,19)).*( CONSTANTS(:,21).*CONSTANTS(:,16)+ CONSTANTS(:,22).*CONSTANTS(:,18)+ CONSTANTS(:,24).*CONSTANTS(:,20))+ (1.00000+CONSTANTS(:,16)+CONSTANTS(:,18)+CONSTANTS(:,20)).*( CONSTANTS(:,21).*ALGEBRAIC(:,1)+ CONSTANTS(:,22).*CONSTANTS(:,17)+ CONSTANTS(:,24).*CONSTANTS(:,19)); ALGEBRAIC(:,3) = (CONSTANTS(:,6)./ALGEBRAIC(:,2)).*( CONSTANTS(:,21).*CONSTANTS(:,22).*( CONSTANTS(:,16).*CONSTANTS(:,17) - ALGEBRAIC(:,1).*CONSTANTS(:,18))+ CONSTANTS(:,21).*CONSTANTS(:,24).*( CONSTANTS(:,16).*CONSTANTS(:,19) - ALGEBRAIC(:,1).*CONSTANTS(:,20))); ALGEBRAIC(:,4) = (CONSTANTS(:,6)./ALGEBRAIC(:,2)).*( CONSTANTS(:,21).*CONSTANTS(:,22).*( ALGEBRAIC(:,1).*CONSTANTS(:,18) - CONSTANTS(:,16).*CONSTANTS(:,17))+ CONSTANTS(:,22).*CONSTANTS(:,24).*( CONSTANTS(:,18).*CONSTANTS(:,19) - CONSTANTS(:,17).*CONSTANTS(:,20))); ALGEBRAIC(:,5) = (CONSTANTS(:,6)./ALGEBRAIC(:,2)).*( CONSTANTS(:,21).*CONSTANTS(:,24).*( ALGEBRAIC(:,1).*CONSTANTS(:,20) - CONSTANTS(:,16).*CONSTANTS(:,19))+ CONSTANTS(:,22).*CONSTANTS(:,24).*( CONSTANTS(:,17).*CONSTANTS(:,20) - CONSTANTS(:,19).*CONSTANTS(:,18))); ALGEBRAIC(:,6) = - STATES(:,1)./(ALGEBRAIC(:,3)./CONSTANTS(:,23)); end % Pad out or shorten strings to a set length function strout = strpad(strin) req_length = 160; insize = size(strin,2); if insize > req_length strout = strin(1:req_length); else strout = [strin, blanks(req_length - insize)]; end end