<?xml version='1.0' encoding='utf-8'?>
<!-- FILE : bertram_model_2004.xml
CREATED : 2nd September 2004
LAST MODIFIED : 2nd September 2004
AUTHOR : Catherine Lloyd
Bioengineering Institute
The University of Auckland
MODEL STATUS : This model conforms to the CellML 1.0 Specification released on
10th August 2001, and the 16/01/2002 CellML Metadata 1.0 Specification.
DESCRIPTION : This file contains a CellML description of Bertram and Sherman's
calcium-based phantom bursting model for pancreatic islets.
CHANGES:
--><model xmlns="http://www.cellml.org/cellml/1.0#" xmlns:cmeta="http://www.cellml.org/metadata/1.0#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bqs="http://www.cellml.org/bqs/1.0#" xmlns:cellml="http://www.cellml.org/cellml/1.0#" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:vCard="http://www.w3.org/2001/vcard-rdf/3.0#" name="bertram_sherman_2004_version01" cmeta:id="bertram_sherman_2004_version01">
<documentation xmlns="http://cellml.org/tmp-documentation">
<article>
<articleinfo>
<title>A Calcium-based Phantom Bursting Model for Pancreatic Islets</title>
<author>
<firstname>Catherine</firstname>
<surname>Lloyd</surname>
<affiliation>
<shortaffil>Bioengineering Institute, University of Auckland</shortaffil>
</affiliation>
</author>
</articleinfo>
<section id="sec_status">
<title>Model Status</title>
<para>
This model is has consistent units and has been verified as valid CellML by ValidateCellML. It is currently unsuitably constrained and can not be solved.
</para>
</section>
<sect1 id="sec_structure">
<title>Model Structure</title>
<para>
Pancreatic beta-cells are located in clusters within the pancreas called the islets of Langerhans. Beta-cells secrete the hormone insulin in response to elevated blood glucose levels, and in doing so, they play an essential role in glucose homeostasis. When beta-cells fail to function properly, this can lead to pathologies such as type II diabetes.
</para>
<para>
Insulin secretion is oscillatory, and it is in-phase with oscillations in the free cytosolic calcium concentration ([Ca<superscript>2+</superscript>]<subscript>i</subscript>), and theses Ca<superscript>2+</superscript> oscillations reflect a bursting pattern in the beta-cell electrical activity. Electrical bursting consists of periodic active phases of cell firing (excitation) followed by silent phases of hyperpolarisation (rest). These oscillations can be divided into three categories:
</para>
<itemizedlist>
<listitem>
<para>
<emphasis>Fast bursting</emphasis>, which has a period between 2 and 5 seconds and which often occurs in single cells and in islets where acetylcholine is present;</para>
</listitem>
<listitem>
<para>
<emphasis>Medium bursting</emphasis>, which has a period of 10 to 60 seconds and which occurs in islets where there is a stimulatory glucose concentration; and</para>
</listitem>
<listitem>
<para>
<emphasis>Slow bursting</emphasis>, which has a period of 2 to 4 minutes and which occurs in single cells and in islets.</para>
</listitem>
</itemizedlist>
<para>
The first mathematical models of beta-cells were developed to describe medium bursting, and the first models to address the variability in beta-cell oscillations were developed by Chay in 1995 and 1997 (see <ulink url="${HTML_EXMPL_CHAY_MODEL97}">Extracellular and Intracellular Calcium Effects on Pancreatic Beta Cells, Chay, 1997</ulink> for more details). In these models the main mechanism for oscillations was variation in the Ca<superscript>2+</superscript> concentration in the ER, which directly or indirectly modulates one or more Ca<superscript>2+</superscript>-dependent channels. In the Bertram and Sherman model described here the authors analyse in detail how the ER exerts its affects using a phantom bursting model (see <xref linkend="fig_cell_diagram"/> below).
</para>
<para>
The phantom bursting model is a general paradigm for temporal plasticity in bursting in beta-cells in which bursting is driven by the interaction of two slow variables with disparate time constants (see <ulink url="${HTML_EXMPL_BERTRAM_MODEL}">The Phantom Burster Model for Pancreatic Beta-Cells, 2000</ulink> for more details). There are three potential slow variables which could drive the phantom bursting <emphasis>in vivo</emphasis>:
</para>
<itemizedlist>
<listitem>
<para>cytosolic Ca<superscript>2+</superscript> concentration;</para>
</listitem>
<listitem>
<para>ER Ca<superscript>2+</superscript> concentration;</para>
</listitem>
<listitem>
<para>and the ADP to ATP ratio.</para>
</listitem>
</itemizedlist>
<para>
The model has been described here in CellML (the raw CellML description of the Bertram and Sherman 2004 model can be downloaded in various formats as described in <xref linkend="sec_download_this_model"/>).
</para>
<para>
The complete original paper reference is cited below:
</para>
<para>
<ulink url="http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WC7-4BS4GC2-1&_user=140507&_coverDate=09%2F30%2F2004&_alid=197872630&_rdoc=1&_fmt=summary&_orig=search&_qd=1&_cdi=6731&_sort=d&_docanchor=&view=c&_acct=C000011498&_version=1&_urlVersion=0&_userid=140507&md5=e1fdd19a27b1c7938c1d568e59a560e0">A Calcium-based Phantom Bursting Model for Pancreatic Islets</ulink>, Richard Bertram and Arthur Sherman, 2004, <ulink url="http://www.molbiolcell.org/">
<emphasis>Bulletin of Mathematical Biology</emphasis>
</ulink>, 66, 1313-1344. (<ulink url="http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WC7-4BS4GC2-1&_coverDate=09%2F30%2F2004&_alid=197872630&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=6731&_sort=d&view=c&_acct=C000011498&_version=1&_urlVersion=0&_userid=140507&md5=b34962c344ab1a8911383073cd53016f">Full text (HTML)</ulink> and <ulink url="http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6WC7-4BS4GC2-1-3Y&_cdi=6731&_orig=search&_coverDate=09%2F30%2F2004&_qd=1&_sk=999339994&view=c&wchp=dGLbVzz-zSkWz&_acct=C000011498&_version=1&_userid=140507&md5=4f701b4338556df3136f0c4815596563&ie=f.pdf">PDF</ulink> versions of the article are available to subscribers on the <emphasis>Bulletin of Mathematical Biology</emphasis> website.) <ulink url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15294427&dopt=Abstract">PubMed ID: 15294427</ulink>
</para>
<informalfigure float="0" id="fig_cell_diagram">
<mediaobject>
<imageobject>
<objectinfo>
<title>cell diagram</title>
</objectinfo>
<imagedata fileref="bertram_2004.png"/>
</imageobject>
</mediaobject>
<caption>A schematic diagram of the ionic currents and fluxes across the ER and the cell surface membranes, which are described by the mathematical model.</caption>
</informalfigure>
</sect1>
</article>
</documentation>
<units name="millisecond">
<unit units="second" prefix="milli"/>
</units>
<units name="millivolt">
<unit units="volt" prefix="milli"/>
</units>
<units name="micromolar">
<unit units="mole" prefix="micro"/>
<unit units="litre" exponent="-1"/>
</units>
<units name="picoS">
<unit units="siemens" prefix="pico"/>
</units>
<units name="femtoF">
<unit units="farad" prefix="femto"/>
</units>
<units name="femtoA">
<unit units="ampere" prefix="femto"/>
</units>
<units name="first_order_rate_constant">
<unit units="millisecond" exponent="-1"/>
</units>
<units name="micromolar_per_femtoA_millisecond">
<unit units="micromolar"/>
<unit units="femtoA" exponent="-1"/>
<unit units="millisecond" exponent="-1"/>
</units>
<units name="flux">
<unit units="micromolar"/>
<unit units="millisecond" exponent="-1"/>
</units>
<component name="environment">
<variable units="millisecond" public_interface="out" name="time"/>
</component>
<component name="membrane">
<variable units="millivolt" public_interface="out" name="V"/>
<variable units="femtoF" name="Cm" initial_value="5300.0"/>
<variable units="millisecond" public_interface="in" name="time"/>
<variable units="femtoA" public_interface="in" name="i_Ca"/>
<variable units="femtoA" public_interface="in" name="i_K"/>
<variable units="femtoA" public_interface="in" name="i_K_Ca"/>
<variable units="femtoA" public_interface="in" name="i_K_ATP"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="membrane_voltage_diff_eq">
<eq/>
<apply>
<diff/>
<bvar>
<ci> time </ci>
</bvar>
<ci> V </ci>
</apply>
<apply>
<divide/>
<apply>
<minus/>
<apply>
<plus/>
<ci> i_Ca </ci>
<ci> i_K </ci>
<ci> i_K_Ca </ci>
<ci> i_K_ATP </ci>
</apply>
</apply>
<ci> Cm </ci>
</apply>
</apply>
</math>
</component>
<component name="calcium_current">
<variable units="femtoA" public_interface="out" name="i_Ca"/>
<variable units="picoS" name="g_Ca" initial_value="1200.0"/>
<variable units="millivolt" name="V_Ca" initial_value="25.0"/>
<variable units="millivolt" public_interface="in" private_interface="out" name="V"/>
<variable units="millisecond" public_interface="in" private_interface="out" name="time"/>
<variable units="dimensionless" private_interface="in" name="m_infinity"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="i_Ca_calculation">
<eq/>
<ci> i_Ca </ci>
<apply>
<times/>
<ci> g_Ca </ci>
<ci> m_infinity </ci>
<apply>
<minus/>
<ci> V </ci>
<ci> V_Ca </ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="calcium_current_m_gate">
<variable units="dimensionless" public_interface="out" name="m_infinity"/>
<variable units="millivolt" name="vm" initial_value="-20.0"/>
<variable units="millivolt" name="sm" initial_value="12.0"/>
<variable units="millivolt" public_interface="in" name="V"/>
<variable units="millisecond" public_interface="in" name="time"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="m_infinity_calculation">
<eq/>
<ci> m_infinity </ci>
<apply>
<power/>
<apply>
<plus/>
<cn cellml:units="dimensionless"> 1.0 </cn>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<minus/>
<ci> vm </ci>
<ci> V </ci>
</apply>
<ci> sm </ci>
</apply>
</apply>
</apply>
<cn cellml:units="dimensionless"> -1.0 </cn>
</apply>
</apply>
</math>
</component>
<component name="delayed_rectifier_potassium_current">
<variable units="femtoA" public_interface="out" name="i_K"/>
<variable units="millivolt" public_interface="out" name="V_K" initial_value="-75.0"/>
<variable units="picoS" name="g_K" initial_value="3000.0"/>
<variable units="millivolt" public_interface="in" private_interface="out" name="V"/>
<variable units="millisecond" public_interface="in" private_interface="out" name="time"/>
<variable units="dimensionless" private_interface="in" name="n"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="i_K_calculation">
<eq/>
<ci> i_K </ci>
<apply>
<times/>
<ci> g_K </ci>
<ci> n </ci>
<apply>
<minus/>
<ci> V </ci>
<ci> V_K </ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="delayed_rectifier_potassium_current_n_gate">
<variable units="dimensionless" public_interface="out" name="n"/>
<variable units="millisecond" name="tau_n" initial_value="16.0"/>
<variable units="dimensionless" name="n_infinity"/>
<variable units="millivolt" name="vn" initial_value="-16.0"/>
<variable units="millivolt" name="sn" initial_value="5.0"/>
<variable units="millivolt" public_interface="in" name="V"/>
<variable units="millisecond" public_interface="in" name="time"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="n_diff_eq">
<eq/>
<apply>
<diff/>
<bvar>
<ci> time </ci>
</bvar>
<ci> n </ci>
</apply>
<apply>
<divide/>
<apply>
<minus/>
<ci> n_infinity </ci>
<ci> n </ci>
</apply>
<ci> tau_n </ci>
</apply>
</apply>
<apply id="n_infinity_calculation">
<eq/>
<ci> n_infinity </ci>
<apply>
<power/>
<apply>
<plus/>
<cn cellml:units="dimensionless"> 1.0 </cn>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<minus/>
<ci> vn </ci>
<ci> V </ci>
</apply>
<ci> sn </ci>
</apply>
</apply>
</apply>
<cn cellml:units="dimensionless"> -1.0 </cn>
</apply>
</apply>
</math>
</component>
<component name="calcium_dependent_potassium_current">
<variable units="femtoA" public_interface="out" name="i_K_Ca"/>
<variable units="picoS" name="g_K_Ca" initial_value="300.0"/>
<variable units="millivolt" public_interface="in" name="V_K"/>
<variable units="millivolt" public_interface="in" name="V"/>
<variable units="micromolar" public_interface="in" private_interface="out" name="c"/>
<variable units="millisecond" public_interface="in" name="time"/>
<variable units="dimensionless" private_interface="in" name="omega"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="i_K_Ca_calculation">
<eq/>
<ci> i_K_Ca </ci>
<apply>
<times/>
<ci> g_K_Ca </ci>
<ci> omega </ci>
<apply>
<minus/>
<ci> V </ci>
<ci> V_K </ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="calcium_dependent_potassium_current_omega_gate">
<variable units="dimensionless" public_interface="out" name="omega"/>
<variable units="micromolar" name="kD" initial_value="0.3"/>
<variable units="micromolar" public_interface="in" name="c"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="omega_eq">
<eq/>
<ci> omega </ci>
<apply>
<divide/>
<apply>
<power/>
<ci> c </ci>
<cn cellml:units="dimensionless"> 5.0 </cn>
</apply>
<apply>
<plus/>
<apply>
<power/>
<ci> c </ci>
<cn cellml:units="dimensionless"> 5.0 </cn>
</apply>
<apply>
<power/>
<ci> kD </ci>
<cn cellml:units="dimensionless"> 5.0 </cn>
</apply>
</apply>
</apply>
</apply>
</math>
</component>
<component name="nucleotide_sensitive_potassium_current">
<variable units="femtoA" public_interface="out" name="i_K_ATP"/>
<variable units="picoS" name="g_K_ATP" initial_value="500.0"/>
<variable units="millivolt" public_interface="in" name="V_K"/>
<variable units="millivolt" public_interface="in" name="V"/>
<variable units="micromolar" public_interface="in" private_interface="out" name="c"/>
<variable units="millisecond" public_interface="in" private_interface="out" name="time"/>
<variable units="dimensionless" private_interface="in" name="a"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="i_K_ATP_calculation">
<eq/>
<ci> i_K_ATP </ci>
<apply>
<times/>
<ci> g_K_ATP </ci>
<ci> a </ci>
<apply>
<minus/>
<ci> V </ci>
<ci> V_K </ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="nucleotide_sensitive_potassium_current_a_gate">
<variable units="dimensionless" public_interface="out" name="a"/>
<variable units="millisecond" name="tau_a" initial_value="300000.0"/>
<variable units="dimensionless" name="a_infinity"/>
<variable units="micromolar" name="sa" initial_value="0.1"/>
<variable units="micromolar" name="r" initial_value="0.14"/>
<variable units="micromolar" public_interface="in" name="c"/>
<variable units="millisecond" public_interface="in" name="time"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="a_diff_eq">
<eq/>
<apply>
<diff/>
<bvar>
<ci> time </ci>
</bvar>
<ci> a </ci>
</apply>
<apply>
<divide/>
<apply>
<minus/>
<ci> a_infinity </ci>
<ci> a </ci>
</apply>
<ci> tau_a </ci>
</apply>
</apply>
<apply id="a_infinity_calculation">
<eq/>
<ci> a_infinity </ci>
<apply>
<power/>
<apply>
<plus/>
<cn cellml:units="dimensionless"> 1.0 </cn>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<minus/>
<ci> r </ci>
<ci> c </ci>
</apply>
<ci> sa </ci>
</apply>
</apply>
</apply>
<cn cellml:units="dimensionless"> -1.0 </cn>
</apply>
</apply>
</math>
</component>
<component name="cytosolic_free_calcium_concentration">
<variable units="micromolar" public_interface="out" name="c"/>
<variable units="dimensionless" name="fcyt" initial_value="0.01"/>
<variable units="flux" public_interface="in" name="Jmem"/>
<variable units="flux" public_interface="in" name="Jer"/>
<variable units="millisecond" public_interface="in" name="time"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="c_diff_eq">
<eq/>
<apply>
<diff/>
<bvar>
<ci> time </ci>
</bvar>
<ci> c </ci>
</apply>
<apply>
<times/>
<ci> fcyt </ci>
<apply>
<plus/>
<ci> Jmem </ci>
<ci> Jer </ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="ER_calcium_concentration">
<variable units="micromolar" public_interface="out" name="c_er"/>
<variable units="dimensionless" name="fer" initial_value="0.01"/>
<variable units="dimensionless" name="Vcyt_Ver" initial_value="5.0"/>
<variable units="flux" public_interface="in" name="Jer"/>
<variable units="millisecond" public_interface="in" name="time"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="c_er_diff_eq">
<eq/>
<apply>
<diff/>
<bvar>
<ci> time </ci>
</bvar>
<ci> c_er </ci>
</apply>
<apply>
<times/>
<apply>
<minus/>
<ci> fer </ci>
</apply>
<ci> Vcyt_Ver </ci>
<ci> Jer </ci>
</apply>
</apply>
</math>
</component>
<component name="calcium_flux_through_the_membrane">
<variable units="flux" public_interface="out" name="Jmem"/>
<variable units="micromolar_per_femtoA_millisecond" name="alpha" initial_value="4.5E-6"/>
<variable units="first_order_rate_constant" name="kPMCA" initial_value="0.2"/>
<variable units="micromolar" public_interface="in" name="c"/>
<variable units="femtoA" public_interface="in" name="i_Ca"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="Jmem_eq">
<eq/>
<ci> Jmem </ci>
<apply>
<minus/>
<apply>
<plus/>
<apply>
<times/>
<ci> alpha </ci>
<ci> i_Ca </ci>
</apply>
<apply>
<times/>
<ci> kPMCA </ci>
<ci> c </ci>
</apply>
</apply>
</apply>
</apply>
</math>
</component>
<component name="calcium_influx_into_the_ER">
<variable units="flux" public_interface="out" name="J_SERCA"/>
<variable units="first_order_rate_constant" name="kSERCA" initial_value="0.4"/>
<variable units="micromolar" public_interface="in" name="c"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="J_SERCA_eq">
<eq/>
<ci> J_SERCA </ci>
<apply>
<times/>
<ci> kSERCA </ci>
<ci> c </ci>
</apply>
</apply>
</math>
</component>
<component name="calcium_leak_out_of_the_ER">
<variable units="flux" public_interface="out" name="Jleak"/>
<variable units="first_order_rate_constant" name="pleak" initial_value="0.0005"/>
<variable units="micromolar" public_interface="in" name="c"/>
<variable units="micromolar" public_interface="in" name="c_er"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="Jleak_eq">
<eq/>
<ci> Jleak </ci>
<apply>
<times/>
<ci> pleak </ci>
<apply>
<minus/>
<ci> c_er </ci>
<ci> c </ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="calcium_efflux_through_the_IP3R">
<variable units="flux" public_interface="out" name="JIP3"/>
<variable units="first_order_rate_constant" name="O_infinity"/>
<variable units="micromolar" name="d_act" initial_value="0.35"/>
<variable units="micromolar" name="d_IP3" initial_value="0.5"/>
<variable units="micromolar" name="d_inact" initial_value="0.4"/>
<variable units="micromolar" name="IP3"/>
<variable units="micromolar" public_interface="in" name="c"/>
<variable units="micromolar" public_interface="in" name="c_er"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="JIP3_eq">
<eq/>
<ci> JIP3 </ci>
<apply>
<times/>
<ci> O_infinity </ci>
<apply>
<minus/>
<ci> c_er </ci>
<ci> c </ci>
</apply>
</apply>
</apply>
<apply id="O_infinity_eq">
<eq/>
<ci>O_infinity</ci>
<apply>
<times/>
<apply>
<power/>
<apply>
<divide/>
<ci>c</ci>
<apply>
<plus/>
<ci>d_act</ci>
<ci>c</ci>
</apply>
</apply>
<cn cellml:units="dimensionless">3</cn>
</apply>
<apply>
<power/>
<apply>
<divide/>
<ci>IP3</ci>
<apply>
<plus/>
<ci>d_IP3</ci>
<ci>IP3</ci>
</apply>
</apply>
<cn cellml:units="dimensionless">3</cn>
</apply>
<apply>
<power/>
<apply>
<divide/>
<ci>c</ci>
<apply>
<plus/>
<ci>d_inact</ci>
<ci>c</ci>
</apply>
</apply>
<cn cellml:units="dimensionless">3</cn>
</apply>
<cn cellml:units="first_order_rate_constant">1</cn>
</apply>
</apply>
</math>
</component>
<component name="net_calcium_efflux_out_of_the_ER">
<variable units="flux" public_interface="out" name="Jer"/>
<variable units="flux" public_interface="in" name="Jleak"/>
<variable units="flux" public_interface="in" name="JIP3"/>
<variable units="flux" public_interface="in" name="J_SERCA"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="Jer_eq">
<eq/>
<ci> Jer </ci>
<apply>
<minus/>
<apply>
<plus/>
<ci> Jleak </ci>
<ci> JIP3 </ci>
</apply>
<ci> J_SERCA </ci>
</apply>
</apply>
</math>
</component>
<group>
<relationship_ref relationship="containment"/>
<component_ref component="membrane">
<component_ref component="calcium_current">
<component_ref component="calcium_current_m_gate"/>
</component_ref>
<component_ref component="delayed_rectifier_potassium_current">
<component_ref component="delayed_rectifier_potassium_current_n_gate"/>
</component_ref>
<component_ref component="calcium_dependent_potassium_current">
<component_ref component="calcium_dependent_potassium_current_omega_gate"/>
</component_ref>
<component_ref component="nucleotide_sensitive_potassium_current">
<component_ref component="nucleotide_sensitive_potassium_current_a_gate"/>
</component_ref>
<component_ref component="cytosolic_free_calcium_concentration"/>
<component_ref component="calcium_flux_through_the_membrane"/>
<component_ref component="calcium_influx_into_the_ER"/>
<component_ref component="calcium_leak_out_of_the_ER"/>
<component_ref component="calcium_efflux_through_the_IP3R"/>
<component_ref component="net_calcium_efflux_out_of_the_ER"/>
<component_ref component="ER_calcium_concentration"/>
</component_ref>
</group>
<group>
<relationship_ref relationship="encapsulation"/>
<component_ref component="calcium_current">
<component_ref component="calcium_current_m_gate"/>
</component_ref>
<component_ref component="delayed_rectifier_potassium_current">
<component_ref component="delayed_rectifier_potassium_current_n_gate"/>
</component_ref>
<component_ref component="calcium_dependent_potassium_current">
<component_ref component="calcium_dependent_potassium_current_omega_gate"/>
</component_ref>
<component_ref component="nucleotide_sensitive_potassium_current">
<component_ref component="nucleotide_sensitive_potassium_current_a_gate"/>
</component_ref>
</group>
<connection>
<map_components component_2="environment" component_1="membrane"/>
<map_variables variable_2="time" variable_1="time"/>
</connection>
<connection>
<map_components component_2="environment" component_1="calcium_current"/>
<map_variables variable_2="time" variable_1="time"/>
</connection>
<connection>
<map_components component_2="environment" component_1="ER_calcium_concentration"/>
<map_variables variable_2="time" variable_1="time"/>
</connection>
<connection>
<map_components component_2="environment" component_1="delayed_rectifier_potassium_current"/>
<map_variables variable_2="time" variable_1="time"/>
</connection>
<connection>
<map_components component_2="environment" component_1="nucleotide_sensitive_potassium_current"/>
<map_variables variable_2="time" variable_1="time"/>
</connection>
<connection>
<map_components component_2="environment" component_1="calcium_dependent_potassium_current"/>
<map_variables variable_2="time" variable_1="time"/>
</connection>
<connection>
<map_components component_2="environment" component_1="cytosolic_free_calcium_concentration"/>
<map_variables variable_2="time" variable_1="time"/>
</connection>
<connection>
<map_components component_2="membrane" component_1="delayed_rectifier_potassium_current"/>
<map_variables variable_2="V" variable_1="V"/>
<map_variables variable_2="i_K" variable_1="i_K"/>
</connection>
<connection>
<map_components component_2="membrane" component_1="calcium_current"/>
<map_variables variable_2="V" variable_1="V"/>
<map_variables variable_2="i_Ca" variable_1="i_Ca"/>
</connection>
<connection>
<map_components component_2="membrane" component_1="calcium_dependent_potassium_current"/>
<map_variables variable_2="V" variable_1="V"/>
<map_variables variable_2="i_K_Ca" variable_1="i_K_Ca"/>
</connection>
<connection>
<map_components component_2="membrane" component_1="nucleotide_sensitive_potassium_current"/>
<map_variables variable_2="V" variable_1="V"/>
<map_variables variable_2="i_K_ATP" variable_1="i_K_ATP"/>
</connection>
<connection>
<map_components component_2="calcium_flux_through_the_membrane" component_1="cytosolic_free_calcium_concentration"/>
<map_variables variable_2="c" variable_1="c"/>
<map_variables variable_2="Jmem" variable_1="Jmem"/>
</connection>
<connection>
<map_components component_2="nucleotide_sensitive_potassium_current" component_1="cytosolic_free_calcium_concentration"/>
<map_variables variable_2="c" variable_1="c"/>
</connection>
<connection>
<map_components component_2="calcium_dependent_potassium_current" component_1="cytosolic_free_calcium_concentration"/>
<map_variables variable_2="c" variable_1="c"/>
</connection>
<connection>
<map_components component_2="calcium_leak_out_of_the_ER" component_1="cytosolic_free_calcium_concentration"/>
<map_variables variable_2="c" variable_1="c"/>
</connection>
<connection>
<map_components component_2="calcium_influx_into_the_ER" component_1="cytosolic_free_calcium_concentration"/>
<map_variables variable_2="c" variable_1="c"/>
</connection>
<connection>
<map_components component_2="calcium_efflux_through_the_IP3R" component_1="cytosolic_free_calcium_concentration"/>
<map_variables variable_2="c" variable_1="c"/>
</connection>
<connection>
<map_components component_2="calcium_leak_out_of_the_ER" component_1="ER_calcium_concentration"/>
<map_variables variable_2="c_er" variable_1="c_er"/>
</connection>
<connection>
<map_components component_2="calcium_efflux_through_the_IP3R" component_1="ER_calcium_concentration"/>
<map_variables variable_2="c_er" variable_1="c_er"/>
</connection>
<connection>
<map_components component_2="calcium_influx_into_the_ER" component_1="net_calcium_efflux_out_of_the_ER"/>
<map_variables variable_2="J_SERCA" variable_1="J_SERCA"/>
</connection>
<connection>
<map_components component_2="calcium_efflux_through_the_IP3R" component_1="net_calcium_efflux_out_of_the_ER"/>
<map_variables variable_2="JIP3" variable_1="JIP3"/>
</connection>
<connection>
<map_components component_2="calcium_leak_out_of_the_ER" component_1="net_calcium_efflux_out_of_the_ER"/>
<map_variables variable_2="Jleak" variable_1="Jleak"/>
</connection>
<connection>
<map_components component_2="cytosolic_free_calcium_concentration" component_1="net_calcium_efflux_out_of_the_ER"/>
<map_variables variable_2="Jer" variable_1="Jer"/>
</connection>
<connection>
<map_components component_2="ER_calcium_concentration" component_1="net_calcium_efflux_out_of_the_ER"/>
<map_variables variable_2="Jer" variable_1="Jer"/>
</connection>
<connection>
<map_components component_2="calcium_flux_through_the_membrane" component_1="calcium_current"/>
<map_variables variable_2="i_Ca" variable_1="i_Ca"/>
</connection>
<connection>
<map_components component_2="calcium_dependent_potassium_current" component_1="delayed_rectifier_potassium_current"/>
<map_variables variable_2="V_K" variable_1="V_K"/>
</connection>
<connection>
<map_components component_2="nucleotide_sensitive_potassium_current" component_1="delayed_rectifier_potassium_current"/>
<map_variables variable_2="V_K" variable_1="V_K"/>
</connection>
<connection>
<map_components component_2="calcium_current_m_gate" component_1="calcium_current"/>
<map_variables variable_2="m_infinity" variable_1="m_infinity"/>
<map_variables variable_2="time" variable_1="time"/>
<map_variables variable_2="V" variable_1="V"/>
</connection>
<connection>
<map_components component_2="delayed_rectifier_potassium_current_n_gate" component_1="delayed_rectifier_potassium_current"/>
<map_variables variable_2="n" variable_1="n"/>
<map_variables variable_2="time" variable_1="time"/>
<map_variables variable_2="V" variable_1="V"/>
</connection>
<connection>
<map_components component_2="nucleotide_sensitive_potassium_current_a_gate" component_1="nucleotide_sensitive_potassium_current"/>
<map_variables variable_2="a" variable_1="a"/>
<map_variables variable_2="time" variable_1="time"/>
<map_variables variable_2="c" variable_1="c"/>
</connection>
<connection>
<map_components component_2="calcium_dependent_potassium_current_omega_gate" component_1="calcium_dependent_potassium_current"/>
<map_variables variable_2="omega" variable_1="omega"/>
<map_variables variable_2="c" variable_1="c"/>
</connection>
<rdf:RDF>
<rdf:Bag rdf:about="rdf:#d2c5ab47-cde1-4ddd-8a83-5ee5bced133d">
<rdf:li>calcium dynamics</rdf:li>
<rdf:li>electrophysiological</rdf:li>
<rdf:li>electrophysiology</rdf:li>
<rdf:li>pancreas</rdf:li>
</rdf:Bag>
<rdf:Seq rdf:about="rdf:#d8b329fa-b795-4a30-bedf-0d129b068260">
<rdf:li rdf:resource="rdf:#fa79f1a8-f52a-4008-86f1-3978c09d7081"/>
<rdf:li rdf:resource="rdf:#7cc8a90b-4245-448d-b9c3-e8c61068251f"/>
</rdf:Seq>
<rdf:Description rdf:about="rdf:#7cc8a90b-4245-448d-b9c3-e8c61068251f">
<rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person"/>
<vCard:N rdf:resource="rdf:#065d47d8-8b08-46ef-83a5-a3ba753024a0"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#eb05bc3e-abfe-4db0-a095-c634cc8c8412">
<vCard:ORG rdf:resource="rdf:#2929f5e4-2222-48be-a744-05bd6b4704f1"/>
<vCard:EMAIL rdf:resource="rdf:#e54d989f-b472-43de-8899-819fffc77fe9"/>
<vCard:N rdf:resource="rdf:#14669c37-6964-4771-838d-a7059f2b53f5"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#607b320c-e618-48fa-baac-a81ea50adff3">
<dc:title>Bulletin of Mathemtical Biology</dc:title>
</rdf:Description>
<rdf:Description rdf:about="rdf:#ee8f7344-99cc-4fae-90e9-651b27387058">
<dc:creator rdf:resource="rdf:#558c7e84-8adf-4df2-bd0a-3380944419ea"/>
<rdf:value/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#952b84fd-cb7d-4a40-9a6f-d18230ad2120">
<dcterms:W3CDTF>2004-09</dcterms:W3CDTF>
</rdf:Description>
<rdf:Description rdf:about="rdf:#e4c1def9-d194-42fb-b9d9-73ba759e6a18">
<vCard:Given>Richard</vCard:Given>
<vCard:Family>Bertram</vCard:Family>
</rdf:Description>
<rdf:Description rdf:about="rdf:#14669c37-6964-4771-838d-a7059f2b53f5">
<vCard:Given>Catherine</vCard:Given>
<vCard:Family>Lloyd</vCard:Family>
<vCard:Other>May</vCard:Other>
</rdf:Description>
<rdf:Description rdf:about="rdf:#95667620-6bdf-4207-a7bc-b7798fe815a2">
<dc:subject rdf:resource="rdf:#854b8dce-52c5-45a6-919d-0c1ba9b4d7a2"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#e3aee144-01d0-4d8d-9561-8519593f0f16">
<bqs:Pubmed_id>15294427</bqs:Pubmed_id>
<bqs:JournalArticle rdf:resource="rdf:#5b60a9c1-3c89-498d-bff9-10b5430bf1d2"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#5b60a9c1-3c89-498d-bff9-10b5430bf1d2">
<dc:creator rdf:resource="rdf:#d8b329fa-b795-4a30-bedf-0d129b068260"/>
<dc:title>A Calcium-based Phantom Bursting Model for Pancreatic Islets</dc:title>
<bqs:volume>66</bqs:volume>
<bqs:first_page>1313</bqs:first_page>
<bqs:Journal rdf:resource="rdf:#607b320c-e618-48fa-baac-a81ea50adff3"/>
<dcterms:issued rdf:resource="rdf:#952b84fd-cb7d-4a40-9a6f-d18230ad2120"/>
<bqs:last_page>1344</bqs:last_page>
</rdf:Description>
<rdf:Description rdf:about="rdf:#e65536c1-57bf-4d54-9128-4383814e6e01">
<vCard:FN>Catherine Lloyd</vCard:FN>
</rdf:Description>
<rdf:Description rdf:about="#bertram_sherman_2004_version01">
<dc:title>
Bertram and Sherman's calcium-based phantom bursting model for pancreatic islets.
</dc:title>
<cmeta:bio_entity>Pancreatic Islets</cmeta:bio_entity>
<cmeta:comment rdf:resource="rdf:#71191fd2-132d-4837-bbd0-e086676cdaee"/>
<bqs:reference rdf:resource="rdf:#95667620-6bdf-4207-a7bc-b7798fe815a2"/>
<bqs:reference rdf:resource="rdf:#e3aee144-01d0-4d8d-9561-8519593f0f16"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#e95474af-e8d2-4189-b556-9eed11f44b41">
<vCard:N rdf:resource="rdf:#d971db67-58e8-435a-bd6f-e35ce3c953ff"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#558c7e84-8adf-4df2-bd0a-3380944419ea">
<vCard:FN/>
</rdf:Description>
<rdf:Description rdf:about="">
<dc:publisher>The University of Auckland, Bioengineering Institute</dc:publisher>
<cmeta:comment rdf:resource="rdf:#ee8f7344-99cc-4fae-90e9-651b27387058"/>
<dcterms:created rdf:resource="rdf:#8d8e4ae5-73b9-464d-aaba-7e5c246f3610"/>
<dc:creator rdf:resource="rdf:#eb05bc3e-abfe-4db0-a095-c634cc8c8412"/>
<cmeta:modification rdf:resource="rdf:#2edf4099-8350-46a0-bcb7-352d6fa7dcfb"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#d971db67-58e8-435a-bd6f-e35ce3c953ff">
<vCard:Given>James</vCard:Given>
<vCard:Family>Lawson</vCard:Family>
<vCard:Other>Richard</vCard:Other>
</rdf:Description>
<rdf:Description rdf:about="rdf:#8d8e4ae5-73b9-464d-aaba-7e5c246f3610">
<dcterms:W3CDTF>2004-09-02T00:00:00+00:00</dcterms:W3CDTF>
</rdf:Description>
<rdf:Description rdf:about="rdf:#2edf4099-8350-46a0-bcb7-352d6fa7dcfb">
<dcterms:modified rdf:resource="rdf:#e0fbdbd4-33c4-4163-b3cf-59a3c0de8801"/>
<rdf:value>Fixed units by adding 'per_millisecond' fudge factor.
Updated curation status.</rdf:value>
<cmeta:modifier rdf:resource="rdf:#e95474af-e8d2-4189-b556-9eed11f44b41"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#854b8dce-52c5-45a6-919d-0c1ba9b4d7a2">
<bqs:subject_type>keyword</bqs:subject_type>
<rdf:value rdf:resource="rdf:#d2c5ab47-cde1-4ddd-8a83-5ee5bced133d"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#e54d989f-b472-43de-8899-819fffc77fe9">
<rdf:type rdf:resource="http://imc.org/vCard/3.0#internet"/>
<rdf:value>c.lloyd@auckland.ac.nz</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#e0fbdbd4-33c4-4163-b3cf-59a3c0de8801">
<dcterms:W3CDTF>2009-05-25T17:11:35+12:00</dcterms:W3CDTF>
</rdf:Description>
<rdf:Description rdf:about="rdf:#065d47d8-8b08-46ef-83a5-a3ba753024a0">
<vCard:Given>Arthur</vCard:Given>
<vCard:Family>Sherman</vCard:Family>
</rdf:Description>
<rdf:Description rdf:about="rdf:#fa79f1a8-f52a-4008-86f1-3978c09d7081">
<rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person"/>
<vCard:N rdf:resource="rdf:#e4c1def9-d194-42fb-b9d9-73ba759e6a18"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#2929f5e4-2222-48be-a744-05bd6b4704f1">
<vCard:Orgname>The University of Auckland</vCard:Orgname>
<vCard:Orgunit>The Bioengineering Institute</vCard:Orgunit>
</rdf:Description>
<rdf:Description rdf:about="rdf:#71191fd2-132d-4837-bbd0-e086676cdaee">
<dc:creator rdf:resource="rdf:#e65536c1-57bf-4d54-9128-4383814e6e01"/>
<rdf:value>This is the CellML description of Bertram and Sherman's
calcium-based phantom bursting model for pancreatic islets.</rdf:value>
</rdf:Description>
</rdf:RDF>
</model>