Generated Code
The following is c_ida code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
/* There are a total of 55 entries in the algebraic variable array. There are a total of 24 entries in each of the rate and state variable arrays. There are a total of 72 entries in the constant variable array. */ /* * VOI is time in component environment (second). * STATES[0] is V in component membrane (millivolt). * CONSTANTS[0] is R in component membrane (millijoule_per_mole_kelvin). * CONSTANTS[1] is T in component membrane (kelvin). * CONSTANTS[2] is F in component membrane (coulomb_per_mole). * CONSTANTS[3] is Cm in component membrane (microF). * ALGEBRAIC[2] is i_Na in component sodium_current (nanoA). * ALGEBRAIC[9] is i_Ca_L in component L_type_Ca_channel (nanoA). * ALGEBRAIC[18] is i_t in component Ca_independent_transient_outward_K_current (nanoA). * ALGEBRAIC[25] is i_ss in component steady_state_outward_K_current (nanoA). * ALGEBRAIC[32] is i_f in component hyperpolarisation_activated_current (nanoA). * ALGEBRAIC[29] is i_K1 in component inward_rectifier (nanoA). * ALGEBRAIC[39] is i_B in component background_currents (nanoA). * ALGEBRAIC[40] is i_NaK in component sodium_potassium_pump (nanoA). * ALGEBRAIC[42] is i_NaCa in component Na_Ca_ion_exchanger_current (nanoA). * ALGEBRAIC[41] is i_Ca_P in component sarcolemmal_calcium_pump_current (nanoA). * ALGEBRAIC[0] is i_Stim in component membrane (nanoA). * CONSTANTS[4] is stim_start in component membrane (second). * CONSTANTS[5] is stim_end in component membrane (second). * CONSTANTS[6] is stim_period in component membrane (second). * CONSTANTS[7] is stim_duration in component membrane (second). * CONSTANTS[8] is stim_amplitude in component membrane (nanoA). * ALGEBRAIC[1] is E_Na in component sodium_current (millivolt). * CONSTANTS[9] is g_Na in component sodium_current (microS). * STATES[1] is Na_i in component intracellular_ion_concentrations (millimolar). * CONSTANTS[10] is Na_o in component standard_ionic_concentrations (millimolar). * STATES[2] is m in component sodium_current_m_gate (dimensionless). * STATES[3] is h in component sodium_current_h_gate (dimensionless). * STATES[4] is j in component sodium_current_j_gate (dimensionless). * ALGEBRAIC[3] is m_infinity in component sodium_current_m_gate (dimensionless). * ALGEBRAIC[4] is tau_m in component sodium_current_m_gate (second). * ALGEBRAIC[5] is h_infinity in component sodium_current_h_gate (dimensionless). * ALGEBRAIC[6] is tau_h in component sodium_current_h_gate (second). * ALGEBRAIC[7] is j_infinity in component sodium_current_j_gate (dimensionless). * ALGEBRAIC[8] is tau_j in component sodium_current_j_gate (second). * CONSTANTS[11] is g_Ca_L in component L_type_Ca_channel (microS). * CONSTANTS[12] is E_Ca_L in component L_type_Ca_channel (millivolt). * STATES[5] is Ca_ss in component intracellular_ion_concentrations (millimolar). * STATES[6] is d in component L_type_Ca_channel_d_gate (dimensionless). * STATES[7] is f_11 in component L_type_Ca_channel_f_11_gate (dimensionless). * STATES[8] is f_12 in component L_type_Ca_channel_f_12_gate (dimensionless). * STATES[9] is Ca_inact in component L_type_Ca_channel_Ca_inact_gate (dimensionless). * ALGEBRAIC[10] is d_infinity in component L_type_Ca_channel_d_gate (dimensionless). * ALGEBRAIC[11] is tau_d in component L_type_Ca_channel_d_gate (second). * ALGEBRAIC[12] is f_11_infinity in component L_type_Ca_channel_f_11_gate (dimensionless). * ALGEBRAIC[13] is tau_f_11 in component L_type_Ca_channel_f_11_gate (second). * ALGEBRAIC[14] is f_12_infinity in component L_type_Ca_channel_f_12_gate (dimensionless). * ALGEBRAIC[15] is tau_f_12 in component L_type_Ca_channel_f_12_gate (second). * CONSTANTS[13] is tau_Ca_inact in component L_type_Ca_channel_Ca_inact_gate (second). * ALGEBRAIC[16] is Ca_inact_infinity in component L_type_Ca_channel_Ca_inact_gate (dimensionless). * ALGEBRAIC[17] is E_K in component Ca_independent_transient_outward_K_current (millivolt). * CONSTANTS[14] is g_t in component Ca_independent_transient_outward_K_current (microS). * CONSTANTS[15] is a in component Ca_independent_transient_outward_K_current (dimensionless). * CONSTANTS[16] is b in component Ca_independent_transient_outward_K_current (dimensionless). * CONSTANTS[17] is K_o in component standard_ionic_concentrations (millimolar). * STATES[10] is K_i in component intracellular_ion_concentrations (millimolar). * STATES[11] is r in component Ca_independent_transient_outward_K_current_r_gate (dimensionless). * STATES[12] is s in component Ca_independent_transient_outward_K_current_s_gate (dimensionless). * STATES[13] is s_slow in component Ca_independent_transient_outward_K_current_s_slow_gate (dimensionless). * ALGEBRAIC[20] is tau_r in component Ca_independent_transient_outward_K_current_r_gate (second). * ALGEBRAIC[19] is r_infinity in component Ca_independent_transient_outward_K_current_r_gate (dimensionless). * ALGEBRAIC[22] is tau_s in component Ca_independent_transient_outward_K_current_s_gate (second). * ALGEBRAIC[21] is s_infinity in component Ca_independent_transient_outward_K_current_s_gate (dimensionless). * ALGEBRAIC[24] is tau_s_slow in component Ca_independent_transient_outward_K_current_s_slow_gate (second). * ALGEBRAIC[23] is s_slow_infinity in component Ca_independent_transient_outward_K_current_s_slow_gate (dimensionless). * CONSTANTS[18] is g_ss in component steady_state_outward_K_current (microS). * STATES[14] is r_ss in component steady_state_outward_K_current_r_ss_gate (dimensionless). * STATES[15] is s_ss in component steady_state_outward_K_current_s_ss_gate (dimensionless). * ALGEBRAIC[27] is tau_r_ss in component steady_state_outward_K_current_r_ss_gate (second). * ALGEBRAIC[26] is r_ss_infinity in component steady_state_outward_K_current_r_ss_gate (dimensionless). * CONSTANTS[69] is tau_s_ss in component steady_state_outward_K_current_s_ss_gate (second). * ALGEBRAIC[28] is s_ss_infinity in component steady_state_outward_K_current_s_ss_gate (dimensionless). * CONSTANTS[19] is g_K1 in component inward_rectifier (microS). * ALGEBRAIC[30] is i_f_Na in component hyperpolarisation_activated_current (nanoA). * ALGEBRAIC[31] is i_f_K in component hyperpolarisation_activated_current (nanoA). * CONSTANTS[20] is g_f in component hyperpolarisation_activated_current (microS). * CONSTANTS[21] is f_Na in component hyperpolarisation_activated_current (dimensionless). * CONSTANTS[70] is f_K in component hyperpolarisation_activated_current (dimensionless). * STATES[16] is y in component hyperpolarisation_activated_current_y_gate (dimensionless). * ALGEBRAIC[34] is tau_y in component hyperpolarisation_activated_current_y_gate (second). * ALGEBRAIC[33] is y_infinity in component hyperpolarisation_activated_current_y_gate (dimensionless). * ALGEBRAIC[36] is i_B_Na in component background_currents (nanoA). * ALGEBRAIC[37] is i_B_Ca in component background_currents (nanoA). * ALGEBRAIC[38] is i_B_K in component background_currents (nanoA). * CONSTANTS[22] is g_B_Na in component background_currents (microS). * CONSTANTS[23] is g_B_Ca in component background_currents (microS). * CONSTANTS[24] is g_B_K in component background_currents (microS). * ALGEBRAIC[35] is E_Ca in component background_currents (millivolt). * CONSTANTS[25] is Ca_o in component standard_ionic_concentrations (millimolar). * STATES[17] is Ca_i in component intracellular_ion_concentrations (millimolar). * CONSTANTS[26] is i_NaK_max in component sodium_potassium_pump (nanoA). * CONSTANTS[27] is K_m_K in component sodium_potassium_pump (millimolar). * CONSTANTS[28] is K_m_Na in component sodium_potassium_pump (millimolar). * CONSTANTS[71] is sigma in component sodium_potassium_pump (dimensionless). * CONSTANTS[29] is i_Ca_P_max in component sarcolemmal_calcium_pump_current (nanoA). * CONSTANTS[30] is K_NaCa in component Na_Ca_ion_exchanger_current (millimolar_4). * CONSTANTS[31] is d_NaCa in component Na_Ca_ion_exchanger_current (millimolar_4). * CONSTANTS[32] is gamma_NaCa in component Na_Ca_ion_exchanger_current (dimensionless). * ALGEBRAIC[43] is J_rel in component SR_Ca_release_channel (millimolar_per_second). * CONSTANTS[33] is v1 in component SR_Ca_release_channel (per_second). * CONSTANTS[34] is k_a_plus in component SR_Ca_release_channel (millimolar4_per_second). * CONSTANTS[35] is k_a_minus in component SR_Ca_release_channel (per_second). * CONSTANTS[36] is k_b_plus in component SR_Ca_release_channel (millimolar3_per_second). * CONSTANTS[37] is k_b_minus in component SR_Ca_release_channel (per_second). * CONSTANTS[38] is k_c_plus in component SR_Ca_release_channel (per_second). * CONSTANTS[39] is k_c_minus in component SR_Ca_release_channel (per_second). * STATES[18] is P_O1 in component SR_Ca_release_channel (dimensionless). * STATES[19] is P_O2 in component SR_Ca_release_channel (dimensionless). * STATES[20] is P_C1 in component SR_Ca_release_channel (dimensionless). * STATES[21] is P_C2 in component SR_Ca_release_channel (dimensionless). * CONSTANTS[40] is n in component SR_Ca_release_channel (dimensionless). * CONSTANTS[41] is m in component SR_Ca_release_channel (dimensionless). * STATES[22] is Ca_JSR in component intracellular_ion_concentrations (millimolar). * ALGEBRAIC[46] is J_up in component SERCA2a_pump (millimolar_per_second). * CONSTANTS[42] is K_fb in component SERCA2a_pump (millimolar). * CONSTANTS[43] is K_rb in component SERCA2a_pump (millimolar). * ALGEBRAIC[44] is fb in component SERCA2a_pump (dimensionless). * ALGEBRAIC[45] is rb in component SERCA2a_pump (dimensionless). * CONSTANTS[44] is Vmaxf in component SERCA2a_pump (millimolar_per_second). * CONSTANTS[45] is Vmaxr in component SERCA2a_pump (millimolar_per_second). * CONSTANTS[46] is K_SR in component SERCA2a_pump (dimensionless). * CONSTANTS[47] is N_fb in component SERCA2a_pump (dimensionless). * CONSTANTS[48] is N_rb in component SERCA2a_pump (dimensionless). * STATES[23] is Ca_NSR in component intracellular_ion_concentrations (millimolar). * ALGEBRAIC[47] is J_tr in component intracellular_and_SR_Ca_fluxes (millimolar_per_second). * ALGEBRAIC[48] is J_xfer in component intracellular_and_SR_Ca_fluxes (millimolar_per_second). * ALGEBRAIC[51] is J_trpn in component intracellular_and_SR_Ca_fluxes (millimolar_per_second). * CONSTANTS[49] is tau_tr in component intracellular_and_SR_Ca_fluxes (second). * CONSTANTS[50] is tau_xfer in component intracellular_and_SR_Ca_fluxes (second). * CONSTANTS[51] is HTRPNCa in component intracellular_and_SR_Ca_fluxes (millimolar). * CONSTANTS[52] is LTRPNCa in component intracellular_and_SR_Ca_fluxes (millimolar). * ALGEBRAIC[49] is J_HTRPNCa in component intracellular_and_SR_Ca_fluxes (millimolar_per_second). * ALGEBRAIC[50] is J_LTRPNCa in component intracellular_and_SR_Ca_fluxes (millimolar_per_second). * CONSTANTS[53] is HTRPN_tot in component intracellular_and_SR_Ca_fluxes (millimolar). * CONSTANTS[54] is LTRPN_tot in component intracellular_and_SR_Ca_fluxes (millimolar). * CONSTANTS[55] is k_htrpn_plus in component intracellular_and_SR_Ca_fluxes (millimolar_per_second). * CONSTANTS[56] is k_htrpn_minus in component intracellular_and_SR_Ca_fluxes (per_second). * CONSTANTS[57] is k_ltrpn_plus in component intracellular_and_SR_Ca_fluxes (millimolar_per_second). * CONSTANTS[58] is k_ltrpn_minus in component intracellular_and_SR_Ca_fluxes (per_second). * CONSTANTS[59] is V_myo in component intracellular_ion_concentrations (pico_litre). * CONSTANTS[60] is V_JSR in component intracellular_ion_concentrations (pico_litre). * CONSTANTS[61] is V_NSR in component intracellular_ion_concentrations (pico_litre). * CONSTANTS[62] is V_SS in component intracellular_ion_concentrations (pico_litre). * CONSTANTS[63] is K_mCMDN in component intracellular_ion_concentrations (millimolar). * CONSTANTS[64] is K_mCSQN in component intracellular_ion_concentrations (millimolar). * CONSTANTS[65] is K_mEGTA in component intracellular_ion_concentrations (millimolar). * CONSTANTS[66] is CMDN_tot in component intracellular_ion_concentrations (millimolar). * CONSTANTS[67] is CSQN_tot in component intracellular_ion_concentrations (millimolar). * CONSTANTS[68] is EGTA_tot in component intracellular_ion_concentrations (millimolar). * ALGEBRAIC[52] is beta_i in component intracellular_ion_concentrations (millimolar). * ALGEBRAIC[53] is beta_SS in component intracellular_ion_concentrations (millimolar). * ALGEBRAIC[54] is beta_JSR in component intracellular_ion_concentrations (millimolar). * RATES[0] is d/dt V in component membrane (millivolt). * RATES[2] is d/dt m in component sodium_current_m_gate (dimensionless). * RATES[3] is d/dt h in component sodium_current_h_gate (dimensionless). * RATES[4] is d/dt j in component sodium_current_j_gate (dimensionless). * RATES[6] is d/dt d in component L_type_Ca_channel_d_gate (dimensionless). * RATES[7] is d/dt f_11 in component L_type_Ca_channel_f_11_gate (dimensionless). * RATES[8] is d/dt f_12 in component L_type_Ca_channel_f_12_gate (dimensionless). * RATES[9] is d/dt Ca_inact in component L_type_Ca_channel_Ca_inact_gate (dimensionless). * RATES[11] is d/dt r in component Ca_independent_transient_outward_K_current_r_gate (dimensionless). * RATES[12] is d/dt s in component Ca_independent_transient_outward_K_current_s_gate (dimensionless). * RATES[13] is d/dt s_slow in component Ca_independent_transient_outward_K_current_s_slow_gate (dimensionless). * RATES[14] is d/dt r_ss in component steady_state_outward_K_current_r_ss_gate (dimensionless). * RATES[15] is d/dt s_ss in component steady_state_outward_K_current_s_ss_gate (dimensionless). * RATES[16] is d/dt y in component hyperpolarisation_activated_current_y_gate (dimensionless). * RATES[20] is d/dt P_C1 in component SR_Ca_release_channel (dimensionless). * RATES[18] is d/dt P_O1 in component SR_Ca_release_channel (dimensionless). * RATES[19] is d/dt P_O2 in component SR_Ca_release_channel (dimensionless). * RATES[21] is d/dt P_C2 in component SR_Ca_release_channel (dimensionless). * RATES[17] is d/dt Ca_i in component intracellular_ion_concentrations (millimolar). * RATES[1] is d/dt Na_i in component intracellular_ion_concentrations (millimolar). * RATES[10] is d/dt K_i in component intracellular_ion_concentrations (millimolar). * RATES[5] is d/dt Ca_ss in component intracellular_ion_concentrations (millimolar). * RATES[22] is d/dt Ca_JSR in component intracellular_ion_concentrations (millimolar). * RATES[23] is d/dt Ca_NSR in component intracellular_ion_concentrations (millimolar). * There are a total of 5 condition variables. */ void initConsts(double* CONSTANTS, double* RATES, double *STATES) { STATES[0] = -80.50146; CONSTANTS[0] = 8314.5; CONSTANTS[1] = 295; CONSTANTS[2] = 96487; CONSTANTS[3] = 0.0001; CONSTANTS[4] = 1; CONSTANTS[5] = 10; CONSTANTS[6] = 1; CONSTANTS[7] = 0.005; CONSTANTS[8] = -0.6; CONSTANTS[9] = 0.8; STATES[1] = 10.73519; CONSTANTS[10] = 140; STATES[2] = 0.004164108; STATES[3] = 0.6735613; STATES[4] = 0.6729362; CONSTANTS[11] = 0.031; CONSTANTS[12] = 65; STATES[5] = 0.00008737212; STATES[6] = 0.000002171081; STATES[7] = 0.9999529; STATES[8] = 0.9999529; STATES[9] = 0.9913102; CONSTANTS[13] = 0.009; CONSTANTS[14] = 0.035; CONSTANTS[15] = 0.886; CONSTANTS[16] = 0.114; CONSTANTS[17] = 5.4; STATES[10] = 139.2751; STATES[11] = 0.002191519; STATES[12] = 0.9842542; STATES[13] = 0.6421196; CONSTANTS[18] = 0.007; STATES[14] = 0.002907171; STATES[15] = 0.3142767; CONSTANTS[19] = 0.024; CONSTANTS[20] = 0.00145; CONSTANTS[21] = 0.2; STATES[16] = 0.003578708; CONSTANTS[22] = 0.00008015; CONSTANTS[23] = 0.0000324; CONSTANTS[24] = 0.000138; CONSTANTS[25] = 1.2; STATES[17] = 0.00007901351; CONSTANTS[26] = 0.08; CONSTANTS[27] = 1.5; CONSTANTS[28] = 10; CONSTANTS[29] = 0.004; CONSTANTS[30] = 0.000009984; CONSTANTS[31] = 0.0001; CONSTANTS[32] = 0.5; CONSTANTS[33] = 1.8e3; CONSTANTS[34] = 12.15e12; CONSTANTS[35] = 576; CONSTANTS[36] = 4.05e9; CONSTANTS[37] = 1930; CONSTANTS[38] = 100; CONSTANTS[39] = 0.8; STATES[18] = 0.0004327548; STATES[19] = 0.000000000606254; STATES[20] = 0.6348229; STATES[21] = 0.3647471; CONSTANTS[40] = 4; CONSTANTS[41] = 3; STATES[22] = 0.06607948; CONSTANTS[42] = 0.000168; CONSTANTS[43] = 3.29; CONSTANTS[44] = 0.04; CONSTANTS[45] = 0.9; CONSTANTS[46] = 1; CONSTANTS[47] = 1.2; CONSTANTS[48] = 1; STATES[23] = 0.06600742; CONSTANTS[49] = 0.0005747; CONSTANTS[50] = 0.0267; CONSTANTS[51] = 1.394301e-1; CONSTANTS[52] = 5.1619e-3; CONSTANTS[53] = 0.14; CONSTANTS[54] = 0.07; CONSTANTS[55] = 200000; CONSTANTS[56] = 0.066; CONSTANTS[57] = 40000; CONSTANTS[58] = 40; CONSTANTS[59] = 0.00000936; CONSTANTS[60] = 0.000000056; CONSTANTS[61] = 0.000000504; CONSTANTS[62] = 0.0000000012; CONSTANTS[63] = 0.00238; CONSTANTS[64] = 0.8; CONSTANTS[65] = 0.00015; CONSTANTS[66] = 0.05; CONSTANTS[67] = 15; CONSTANTS[68] = 10; CONSTANTS[69] = 2.10000; CONSTANTS[70] = 1.00000 - CONSTANTS[21]; CONSTANTS[71] = (exp(CONSTANTS[10]/67.3000) - 1.00000)/7.00000; RATES[0] = 0.1001; RATES[2] = 0.1001; RATES[3] = 0.1001; RATES[4] = 0.1001; RATES[6] = 0.1001; RATES[7] = 0.1001; RATES[8] = 0.1001; RATES[9] = 0.1001; RATES[11] = 0.1001; RATES[12] = 0.1001; RATES[13] = 0.1001; RATES[14] = 0.1001; RATES[15] = 0.1001; RATES[16] = 0.1001; RATES[20] = 0.1001; RATES[18] = 0.1001; RATES[19] = 0.1001; RATES[21] = 0.1001; RATES[17] = 0.1001; RATES[1] = 0.1001; RATES[10] = 0.1001; RATES[5] = 0.1001; RATES[22] = 0.1001; RATES[23] = 0.1001; } void computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { resid[0] = RATES[0] - - (ALGEBRAIC[2]+ALGEBRAIC[9]+ALGEBRAIC[18]+ALGEBRAIC[25]+ALGEBRAIC[32]+ALGEBRAIC[29]+ALGEBRAIC[39]+ALGEBRAIC[40]+ALGEBRAIC[42]+ALGEBRAIC[41]+ALGEBRAIC[0])/CONSTANTS[3]; resid[1] = RATES[2] - (ALGEBRAIC[3] - STATES[2])/ALGEBRAIC[4]; resid[2] = RATES[3] - (ALGEBRAIC[5] - STATES[3])/ALGEBRAIC[6]; resid[3] = RATES[4] - (ALGEBRAIC[7] - STATES[4])/ALGEBRAIC[8]; resid[4] = RATES[6] - (ALGEBRAIC[10] - STATES[6])/ALGEBRAIC[11]; resid[5] = RATES[7] - (ALGEBRAIC[12] - STATES[7])/ALGEBRAIC[13]; resid[6] = RATES[8] - (ALGEBRAIC[14] - STATES[8])/ALGEBRAIC[15]; resid[7] = RATES[9] - (ALGEBRAIC[16] - STATES[9])/CONSTANTS[13]; resid[8] = RATES[11] - (ALGEBRAIC[19] - STATES[11])/ALGEBRAIC[20]; resid[9] = RATES[12] - (ALGEBRAIC[21] - STATES[12])/ALGEBRAIC[22]; resid[10] = RATES[13] - (ALGEBRAIC[23] - STATES[13])/ALGEBRAIC[24]; resid[11] = RATES[14] - (ALGEBRAIC[26] - STATES[14])/ALGEBRAIC[27]; resid[12] = RATES[15] - (ALGEBRAIC[28] - STATES[15])/CONSTANTS[69]; resid[13] = RATES[16] - (ALGEBRAIC[33] - STATES[16])/ALGEBRAIC[34]; resid[14] = RATES[20] - - CONSTANTS[34]*pow(STATES[5], CONSTANTS[40])*STATES[20]+ CONSTANTS[35]*STATES[18]; resid[15] = RATES[18] - ( CONSTANTS[34]*pow(STATES[5], CONSTANTS[40])*STATES[20] - ( CONSTANTS[35]*STATES[18]+ CONSTANTS[36]*pow(STATES[5], CONSTANTS[41])*STATES[18]+ CONSTANTS[38]*STATES[18]))+ CONSTANTS[37]*STATES[19]+ CONSTANTS[39]*STATES[21]; resid[16] = RATES[19] - CONSTANTS[36]*pow(STATES[5], CONSTANTS[41])*STATES[18] - CONSTANTS[37]*STATES[19]; resid[17] = RATES[21] - CONSTANTS[38]*STATES[18] - CONSTANTS[39]*STATES[21]; resid[18] = RATES[17] - ALGEBRAIC[52]*(ALGEBRAIC[48] - (ALGEBRAIC[46]+ALGEBRAIC[51]+( ((ALGEBRAIC[37] - 2.00000*ALGEBRAIC[42])+ALGEBRAIC[41])*1.00000)/( 2.00000*CONSTANTS[59]*CONSTANTS[2]))); resid[19] = RATES[1] - ( - (ALGEBRAIC[2]+ALGEBRAIC[36]+ ALGEBRAIC[42]*3.00000+ ALGEBRAIC[40]*3.00000+ALGEBRAIC[30])*1.00000)/( CONSTANTS[59]*CONSTANTS[2]); resid[20] = RATES[10] - ( - (ALGEBRAIC[25]+ALGEBRAIC[38]+ALGEBRAIC[18]+ALGEBRAIC[29]+ALGEBRAIC[31]+ ALGEBRAIC[40]*- 2.00000)*1.00000)/( CONSTANTS[59]*CONSTANTS[2]); resid[21] = RATES[5] - ALGEBRAIC[53]*((( ALGEBRAIC[43]*CONSTANTS[60])/CONSTANTS[62] - ( ALGEBRAIC[48]*CONSTANTS[59])/CONSTANTS[62]) - ( ALGEBRAIC[9]*1.00000)/( 2.00000*CONSTANTS[62]*CONSTANTS[2])); resid[22] = RATES[22] - ALGEBRAIC[54]*(ALGEBRAIC[47] - ALGEBRAIC[43]); resid[23] = RATES[23] - ( ALGEBRAIC[46]*CONSTANTS[59])/CONSTANTS[61] - ( ALGEBRAIC[47]*CONSTANTS[60])/CONSTANTS[61]; } void computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { } void computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[0] = (CONDVAR[0]>=0.00000&&CONDVAR[1]<=0.00000&&CONDVAR[2]<=0.00000 ? CONSTANTS[8] : 0.00000); ALGEBRAIC[1] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[10]/STATES[1]); ALGEBRAIC[2] = CONSTANTS[9]*pow(STATES[2], 3.00000)*STATES[3]*STATES[4]*(STATES[0] - ALGEBRAIC[1]); ALGEBRAIC[3] = 1.00000/(1.00000+exp((STATES[0]+45.0000)/- 6.50000)); ALGEBRAIC[4] = 0.00136000/(( 0.320000*(STATES[0]+47.1300))/(1.00000 - exp( - 0.100000*(STATES[0]+47.1300)))+ 0.0800000*exp(- STATES[0]/11.0000)); ALGEBRAIC[5] = 1.00000/(1.00000+exp((STATES[0]+76.1000)/6.07000)); ALGEBRAIC[6] = (CONDVAR[3]>=0.00000 ? 0.000453700*(1.00000+exp(- (STATES[0]+10.6600)/11.1000)) : 0.00349000/( 0.135000*exp(- (STATES[0]+80.0000)/6.80000)+ 3.56000*exp( 0.0790000*STATES[0])+ 310000.*exp( 0.350000*STATES[0]))); ALGEBRAIC[7] = 1.00000/(1.00000+exp((STATES[0]+76.1000)/6.07000)); ALGEBRAIC[8] = (CONDVAR[4]>=0.00000 ? ( 0.0116300*(1.00000+exp( - 0.100000*(STATES[0]+32.0000))))/exp( - 2.53500e-07*STATES[0]) : 0.00349000/( ((STATES[0]+37.7800)/(1.00000+exp( 0.311000*(STATES[0]+79.2300))))*( - 127140.*exp( 0.244400*STATES[0]) - 3.47400e-05*exp( - 0.0439100*STATES[0]))+( 0.121200*exp( - 0.0105200*STATES[0]))/(1.00000+exp( - 0.137800*(STATES[0]+40.1400))))); ALGEBRAIC[9] = CONSTANTS[11]*STATES[6]*( (0.900000+STATES[9]/10.0000)*STATES[7]+ (0.100000 - STATES[9]/10.0000)*STATES[8])*(STATES[0] - CONSTANTS[12]); ALGEBRAIC[10] = 1.00000/(1.00000+exp((STATES[0]+15.3000)/- 5.00000)); ALGEBRAIC[11] = 0.00305000*exp( - 0.00450000*pow(STATES[0]+7.00000, 2.00000))+ 0.00105000*exp( - 0.00200000*pow(STATES[0] - 18.0000, 2.00000))+0.000250000; ALGEBRAIC[12] = 1.00000/(1.00000+exp((STATES[0]+26.7000)/5.40000)); ALGEBRAIC[13] = 0.105000*exp(- pow((STATES[0]+45.0000)/12.0000, 2.00000))+0.0400000/(1.00000+exp((- STATES[0]+25.0000)/25.0000))+0.0150000/(1.00000+exp((STATES[0]+75.0000)/25.0000))+0.00170000; ALGEBRAIC[14] = 1.00000/(1.00000+exp((STATES[0]+26.7000)/5.40000)); ALGEBRAIC[15] = 0.0410000*exp(- pow((STATES[0]+47.0000)/12.0000, 2.00000))+0.0800000/(1.00000+exp((STATES[0]+55.0000)/- 5.00000))+0.0150000/(1.00000+exp((STATES[0]+75.0000)/25.0000))+0.00170000; ALGEBRAIC[16] = 1.00000/(1.00000+STATES[5]/0.0100000); ALGEBRAIC[17] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[17]/STATES[10]); ALGEBRAIC[18] = CONSTANTS[14]*STATES[11]*( CONSTANTS[15]*STATES[12]+ CONSTANTS[16]*STATES[13])*(STATES[0] - ALGEBRAIC[17]); ALGEBRAIC[19] = 1.00000/(1.00000+exp((STATES[0]+10.6000)/- 11.4200)); ALGEBRAIC[20] = 1.00000/( 45.1600*exp( 0.0357700*(STATES[0]+50.0000))+ 98.9000*exp( - 0.100000*(STATES[0]+38.0000))); ALGEBRAIC[21] = 1.00000/(1.00000+exp((STATES[0]+45.3000)/6.88410)); ALGEBRAIC[22] = 0.350000*exp(- pow((STATES[0]+70.0000)/15.0000, 2.00000))+0.0350000; ALGEBRAIC[23] = 1.00000/(1.00000+exp((STATES[0]+45.3000)/6.88410)); ALGEBRAIC[24] = 3.70000*exp(- pow((STATES[0]+70.0000)/30.0000, 2.00000))+0.0350000; ALGEBRAIC[25] = CONSTANTS[18]*STATES[14]*STATES[15]*(STATES[0] - ALGEBRAIC[17]); ALGEBRAIC[26] = 1.00000/(1.00000+exp((STATES[0]+11.5000)/- 11.8200)); ALGEBRAIC[27] = 10.0000/( 45.1600*exp( 0.0357700*(STATES[0]+50.0000))+ 98.9000*exp( - 0.100000*(STATES[0]+38.0000))); ALGEBRAIC[28] = 1.00000/(1.00000+exp((STATES[0]+87.5000)/10.3000)); ALGEBRAIC[29] = ( (48.0000/(exp((STATES[0]+37.0000)/25.0000)+exp((STATES[0]+37.0000)/- 25.0000))+10.0000)*0.00100000)/(1.00000+exp((STATES[0] - (ALGEBRAIC[17]+76.7700))/- 17.0000))+( CONSTANTS[19]*(STATES[0] - (ALGEBRAIC[17]+1.73000)))/( (1.00000+exp(( 1.61300*CONSTANTS[2]*(STATES[0] - (ALGEBRAIC[17]+1.73000)))/( CONSTANTS[0]*CONSTANTS[1])))*(1.00000+exp((CONSTANTS[17] - 0.998800)/- 0.124000))); ALGEBRAIC[30] = CONSTANTS[20]*STATES[16]*CONSTANTS[21]*(STATES[0] - ALGEBRAIC[1]); ALGEBRAIC[31] = CONSTANTS[20]*STATES[16]*CONSTANTS[70]*(STATES[0] - ALGEBRAIC[17]); ALGEBRAIC[32] = ALGEBRAIC[30]+ALGEBRAIC[31]; ALGEBRAIC[33] = 1.00000/(1.00000+exp((STATES[0]+138.600)/10.4800)); ALGEBRAIC[34] = 1.00000/( 0.118850*exp((STATES[0]+80.0000)/28.3700)+ 0.562300*exp((STATES[0]+80.0000)/- 14.1900)); ALGEBRAIC[36] = CONSTANTS[22]*(STATES[0] - ALGEBRAIC[1]); ALGEBRAIC[35] = (( 0.500000*CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[25]/STATES[17]); ALGEBRAIC[37] = CONSTANTS[23]*(STATES[0] - ALGEBRAIC[35]); ALGEBRAIC[38] = CONSTANTS[24]*(STATES[0] - ALGEBRAIC[17]); ALGEBRAIC[39] = ALGEBRAIC[36]+ALGEBRAIC[37]+ALGEBRAIC[38]; ALGEBRAIC[40] = ( (( (( CONSTANTS[26]*1.00000)/(1.00000+ 0.124500*exp(( - 0.100000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))+ 0.0365000*CONSTANTS[71]*exp(( - STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))))*CONSTANTS[17])/(CONSTANTS[17]+CONSTANTS[27]))*1.00000)/(1.00000+pow(CONSTANTS[28]/STATES[1], 1.50000)); ALGEBRAIC[41] = ( CONSTANTS[29]*STATES[17])/(STATES[17]+0.000400000); ALGEBRAIC[42] = ( CONSTANTS[30]*( pow(STATES[1], 3.00000)*CONSTANTS[25]*exp( 0.0374300*STATES[0]*CONSTANTS[32]) - pow(CONSTANTS[10], 3.00000)*STATES[17]*exp( 0.0374300*STATES[0]*(CONSTANTS[32] - 1.00000))))/(1.00000+ CONSTANTS[31]*( STATES[17]*pow(CONSTANTS[10], 3.00000)+ CONSTANTS[25]*pow(STATES[1], 3.00000))); ALGEBRAIC[43] = CONSTANTS[33]*(STATES[18]+STATES[19])*(STATES[22] - STATES[5]); ALGEBRAIC[44] = pow(STATES[17]/CONSTANTS[42], CONSTANTS[47]); ALGEBRAIC[45] = pow(STATES[23]/CONSTANTS[43], CONSTANTS[48]); ALGEBRAIC[46] = ( CONSTANTS[46]*( CONSTANTS[44]*ALGEBRAIC[44] - CONSTANTS[45]*ALGEBRAIC[45]))/(1.00000+ALGEBRAIC[44]+ALGEBRAIC[45]); ALGEBRAIC[47] = (STATES[23] - STATES[22])/CONSTANTS[49]; ALGEBRAIC[48] = (STATES[5] - STATES[17])/CONSTANTS[50]; ALGEBRAIC[49] = CONSTANTS[55]*STATES[17]*(CONSTANTS[53] - CONSTANTS[51]) - CONSTANTS[56]*CONSTANTS[51]; ALGEBRAIC[50] = CONSTANTS[57]*STATES[17]*(CONSTANTS[54] - CONSTANTS[52]) - CONSTANTS[58]*CONSTANTS[52]; ALGEBRAIC[51] = ALGEBRAIC[49]+ALGEBRAIC[50]; ALGEBRAIC[52] = 1.00000/(1.00000+( CONSTANTS[66]*CONSTANTS[63])/pow(CONSTANTS[63]+STATES[17], 2.00000)+( CONSTANTS[68]*CONSTANTS[65])/pow(CONSTANTS[65]+STATES[17], 2.00000)); ALGEBRAIC[53] = 1.00000/(1.00000+( CONSTANTS[66]*CONSTANTS[63])/pow(CONSTANTS[63]+STATES[5], 2.00000)); ALGEBRAIC[54] = 1.00000/(1.00000+( CONSTANTS[67]*CONSTANTS[64])/pow(CONSTANTS[64]+STATES[22], 2.00000)); } void getStateInformation(double* SI) { SI[0] = 1.0; SI[1] = 1.0; SI[2] = 1.0; SI[3] = 1.0; SI[4] = 1.0; SI[5] = 1.0; SI[6] = 1.0; SI[7] = 1.0; SI[8] = 1.0; SI[9] = 1.0; SI[10] = 1.0; SI[11] = 1.0; SI[12] = 1.0; SI[13] = 1.0; SI[14] = 1.0; SI[15] = 1.0; SI[16] = 1.0; SI[17] = 1.0; SI[18] = 1.0; SI[19] = 1.0; SI[20] = 1.0; SI[21] = 1.0; SI[22] = 1.0; SI[23] = 1.0; } void computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { CONDVAR[0] = VOI - CONSTANTS[4]; CONDVAR[1] = VOI - CONSTANTS[5]; CONDVAR[2] = ((VOI - CONSTANTS[4]) - floor((VOI - CONSTANTS[4])/CONSTANTS[6])*CONSTANTS[6]) - CONSTANTS[7]; CONDVAR[3] = STATES[0] - - 40.0000; CONDVAR[4] = STATES[0] - - 40.0000; }