<?xml version="1.0"?>
<!--
This CellML file was generated on 17/07/2008 at 1:23:14 at p.m. using:
COR (0.9.31.979)
Copyright 2002-2008 Dr Alan Garny
http://COR.physiol.ox.ac.uk/ - COR@physiol.ox.ac.uk
CellML 1.0 was used to generate this model
http://www.CellML.org/
--><model xmlns="http://www.cellml.org/cellml/1.0#" xmlns:cmeta="http://www.cellml.org/metadata/1.0#" cmeta:id="purvis_2007" name="purvis_2007">
<documentation xmlns="http://cellml.org/tmp-documentation">
<article>
<articleinfo>
<title>Intrinsic Bursters Increase the Robustness of Rythm Generation in an Excitatory Network</title>
<author>
<firstname>Geoffrey</firstname>
<surname>Nunns</surname>
<affiliation>
<shortaffil>Auckland Bioengineering Institute, The University of Auckland</shortaffil>
</affiliation>
</author>
</articleinfo>
<section id="sec_status">
<title>Model Status</title>
<para>
This CellML model runs in OpenCell and COR to reproduce the published results (Figure 2B where g_tonic = 0.2 nS and g_NaP = 2.5 nS, note that E_L = -57.5 mv in accordance with the original Butera 1999 model). The CellML model should be run for a duration of 20000 ms with a step size of 0.1 ms and a high point density of 100000 points/graph. This model represents a single pacemaker cell.
</para>
</section>
<sect1 id="sec_structure">
<title>Model Structure</title>
<para>
Abstract: The pre-Botzinger complex (pBC) is a vital subcircuit of the respiratory central pattern generator. Although the existence of neurons with pacemaker-like bursting properties in this network is not questioned, their role in network rhythmogenesis is unresolved. Modeling is ideally suited to address this debate because of the ease with which biophysical parameters of individual cells and network architecture can be manipulated. We modeled the parameter variability of experimental data from pBC bursting pacemaker and nonpacemaker neurons using a modified version of our previously developed pBC neuron and network models. To investigate the role of pacemakers in networkwide rhythmogenesis, we simulated networks of these neurons and varied the fraction of the population made up of pacemakers. For each number of pacemaker neurons, we varied the amount of tonic drive to the network and measured the frequency of synchronous networkwide bursting produced. Both excitatory networks with all-to-all coupling and sparsely connected networks were explored for several levels of synaptic coupling strength. Networks containing only nonpacemakers were able to produce networkwide bursting, but with a low probability of bursting and low input and output ranges. The results indicate that inclusion of pacemakers in an excitatory network increases robustness of the network by more than tripling the input and output ranges compared with networks containing no pacemakers. The largest increase in dynamic range occurs when the number of pacemakers in the network is greater than 20% of the population. Experimental tests of the model predictions are proposed.</para>
<informalfigure float="0" id="fig_reaction_diagram">
<mediaobject>
<imageobject>
<objectinfo>
<title>model diagram</title>
</objectinfo>
<imagedata fileref="purvis_2007.png"/>
</imageobject>
</mediaobject>
<caption>Schematic diagram of the cell model.</caption>
</informalfigure>
<para>
The original paper reference is cited below:
</para>
<para>
Intrinsic Bursters Increase the Robustness of Rythm Generation in an Excitatory Network, L.K. Purvis, J.C. Smith, H. Koizumi, R.J. Butera 2007, <emphasis>Journal of Neurophysiology</emphasis>, 97, 1515-1526. <ulink url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17167061&dopt=Abstract">PubMed ID: 17167061 </ulink>
</para>
</sect1>
</article>
</documentation>
<units name="millisecond">
<unit prefix="milli" units="second"/>
</units>
<units name="millivolt">
<unit prefix="milli" units="volt"/>
</units>
<units name="nanoA">
<unit prefix="nano" units="ampere"/>
</units>
<units name="nanoS">
<unit prefix="nano" units="siemens"/>
</units>
<units name="nanoF">
<unit prefix="nano" units="farad"/>
</units>
<component name="environment">
<variable cmeta:id="environment_time" name="time" public_interface="out" units="millisecond"/>
</component>
<component name="membrane">
<variable cmeta:id="membrane_V" initial_value="-50.0" name="V" public_interface="out" units="millivolt"/>
<variable initial_value="0.021" name="C" units="nanoF"/>
<variable initial_value="0" name="i_app" units="nanoA"/>
<variable name="i_tonic_e" public_interface="in" units="nanoA"/>
<variable name="i_Na" public_interface="in" units="nanoA"/>
<variable name="i_NaP" public_interface="in" units="nanoA"/>
<variable name="i_K" public_interface="in" units="nanoA"/>
<variable name="i_leak" public_interface="in" units="nanoA"/>
<variable name="time" public_interface="in" units="millisecond"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>V</ci>
</apply>
<apply>
<divide/>
<apply>
<plus/>
<apply>
<minus/>
<apply>
<plus/>
<ci>i_Na</ci>
<ci>i_NaP</ci>
<ci>i_K</ci>
<ci>i_leak</ci>
</apply>
</apply>
<ci>i_tonic_e</ci>
<ci>i_app</ci>
</apply>
<ci>C</ci>
</apply>
</apply>
</math>
</component>
<component name="fast_sodium_current">
<variable cmeta:id="fast_sodium_current_i_Na" name="i_Na" public_interface="out" units="nanoA"/>
<variable initial_value="50" name="E_Na" public_interface="out" units="millivolt"/>
<variable initial_value="28" name="g_Na" units="nanoS"/>
<variable name="time" private_interface="out" public_interface="in" units="millisecond"/>
<variable name="V" private_interface="out" public_interface="in" units="millivolt"/>
<variable name="m_infinity" private_interface="in" units="dimensionless"/>
<variable name="n" public_interface="in" units="dimensionless"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<ci>i_Na</ci>
<apply>
<times/>
<ci>g_Na</ci>
<apply>
<power/>
<ci>m_infinity</ci>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="dimensionless">3</cn>
</apply>
<apply>
<minus/>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="dimensionless">1</cn>
<ci>n</ci>
</apply>
<apply>
<divide/>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="volt">1</cn>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="millivolt">1000</cn>
</apply>
<apply>
<minus/>
<ci>V</ci>
<ci>E_Na</ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="fast_sodium_current_m_gate">
<variable name="m_infinity" public_interface="out" units="dimensionless"/>
<variable initial_value="-34" name="theta_m" units="millivolt"/>
<variable initial_value="-5" name="omega_m" units="millivolt"/>
<variable name="V" public_interface="in" units="millivolt"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<ci>m_infinity</ci>
<apply>
<divide/>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="dimensionless">1</cn>
<apply>
<plus/>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="dimensionless">1</cn>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<minus/>
<ci>V</ci>
<ci>theta_m</ci>
</apply>
<ci>omega_m</ci>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
</component>
<component name="potassium_current">
<variable cmeta:id="potassium_current_i_K" name="i_K" public_interface="out" units="nanoA"/>
<variable initial_value="11.2" name="g_K" units="nanoS"/>
<variable initial_value="-85" name="E_K" units="millivolt"/>
<variable name="time" private_interface="out" public_interface="in" units="millisecond"/>
<variable name="V" private_interface="out" public_interface="in" units="millivolt"/>
<variable name="n" private_interface="in" public_interface="out" units="dimensionless"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<ci>i_K</ci>
<apply>
<times/>
<ci>g_K</ci>
<apply>
<power/>
<ci>n</ci>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="dimensionless">4</cn>
</apply>
<apply>
<divide/>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="volt">1</cn>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="millivolt">1000</cn>
</apply>
<apply>
<minus/>
<ci>V</ci>
<ci>E_K</ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="potassium_current_n_gate">
<variable initial_value="0.01" name="n" public_interface="out" units="dimensionless"/>
<variable name="n_infinity" units="dimensionless"/>
<variable name="tau_n" units="millisecond"/>
<variable initial_value="10" name="tau_n_max" units="millisecond"/>
<variable initial_value="-29" name="theta_n" units="millivolt"/>
<variable initial_value="-4" name="omega_n" units="millivolt"/>
<variable name="V" public_interface="in" units="millivolt"/>
<variable name="time" public_interface="in" units="millisecond"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>n</ci>
</apply>
<apply>
<divide/>
<apply>
<minus/>
<ci>n_infinity</ci>
<ci>n</ci>
</apply>
<ci>tau_n</ci>
</apply>
</apply>
<apply>
<eq/>
<ci>n_infinity</ci>
<apply>
<divide/>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="dimensionless">1</cn>
<apply>
<plus/>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="dimensionless">1</cn>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<minus/>
<ci>V</ci>
<ci>theta_n</ci>
</apply>
<ci>omega_n</ci>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>tau_n</ci>
<apply>
<divide/>
<ci>tau_n_max</ci>
<apply>
<cosh/>
<apply>
<divide/>
<apply>
<minus/>
<ci>V</ci>
<ci>theta_n</ci>
</apply>
<apply>
<times/>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="dimensionless">2</cn>
<ci>omega_n</ci>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
</component>
<component name="persistent_sodium_current">
<variable cmeta:id="persistent_sodium_current_i_NaP" name="i_NaP" public_interface="out" units="nanoA"/>
<variable initial_value="2.5" name="g_NaP" units="nanoS"/>
<variable name="time" private_interface="out" public_interface="in" units="millisecond"/>
<variable name="V" private_interface="out" public_interface="in" units="millivolt"/>
<variable name="E_Na" public_interface="in" units="millivolt"/>
<variable name="m_infinity" private_interface="in" units="dimensionless"/>
<variable name="h" private_interface="in" units="dimensionless"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<ci>i_NaP</ci>
<apply>
<times/>
<ci>g_NaP</ci>
<ci>m_infinity</ci>
<ci>h</ci>
<apply>
<divide/>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="volt">1</cn>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="millivolt">1000</cn>
</apply>
<apply>
<minus/>
<ci>V</ci>
<ci>E_Na</ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="persistent_sodium_current_m_gate">
<variable name="m_infinity" public_interface="out" units="dimensionless"/>
<variable initial_value="-45.1" name="theta_m" units="millivolt"/>
<variable initial_value="-6" name="omega_m" units="millivolt"/>
<variable name="V" public_interface="in" units="millivolt"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<ci>m_infinity</ci>
<apply>
<divide/>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="dimensionless">1</cn>
<apply>
<plus/>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="dimensionless">1</cn>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<minus/>
<ci>V</ci>
<ci>theta_m</ci>
</apply>
<ci>omega_m</ci>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
</component>
<component name="persistent_sodium_current_h_gate">
<variable initial_value="0.92" name="h" public_interface="out" units="dimensionless"/>
<variable name="h_infinity" units="dimensionless"/>
<variable name="tau_h" units="millisecond"/>
<variable initial_value="10000" name="tau_h_max" units="millisecond"/>
<variable initial_value="-53" name="theta_h" units="millivolt"/>
<variable initial_value="6" name="omega_h" units="millivolt"/>
<variable name="V" public_interface="in" units="millivolt"/>
<variable name="time" public_interface="in" units="millisecond"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>h</ci>
</apply>
<apply>
<divide/>
<apply>
<minus/>
<ci>h_infinity</ci>
<ci>h</ci>
</apply>
<ci>tau_h</ci>
</apply>
</apply>
<apply>
<eq/>
<ci>h_infinity</ci>
<apply>
<divide/>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="dimensionless">1</cn>
<apply>
<plus/>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="dimensionless">1</cn>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<minus/>
<ci>V</ci>
<ci>theta_h</ci>
</apply>
<ci>omega_h</ci>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>tau_h</ci>
<apply>
<divide/>
<ci>tau_h_max</ci>
<apply>
<cosh/>
<apply>
<divide/>
<apply>
<minus/>
<ci>V</ci>
<ci>theta_h</ci>
</apply>
<apply>
<times/>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="dimensionless">2</cn>
<ci>omega_h</ci>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
</component>
<component name="leakage_current">
<variable cmeta:id="leakage_current_i_leak" name="i_leak" public_interface="out" units="nanoA"/>
<variable initial_value="2.2" name="g_leak" units="nanoS"/>
<variable initial_value="-57.5" name="E_leak" units="millivolt"/>
<variable name="time" public_interface="in" units="millisecond"/>
<variable name="V" public_interface="in" units="millivolt"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<ci>i_leak</ci>
<apply>
<times/>
<ci>g_leak</ci>
<apply>
<divide/>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="volt">1</cn>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="millivolt">1000</cn>
</apply>
<apply>
<minus/>
<ci>V</ci>
<ci>E_leak</ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="tonic_current">
<variable cmeta:id="tonic_current_i_tonic_e" name="i_tonic_e" public_interface="out" units="nanoA"/>
<variable cmeta:id="tonic_current_g_tonic_e" initial_value="0.2" name="g_tonic_e" units="nanoS"/>
<variable initial_value="0" name="E_syn_e" units="millivolt"/>
<variable name="time" public_interface="in" units="millisecond"/>
<variable name="V" public_interface="in" units="millivolt"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<ci>i_tonic_e</ci>
<apply>
<times/>
<ci>g_tonic_e</ci>
<apply>
<divide/>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="volt">1</cn>
<cn xmlns:cellml="http://www.cellml.org/cellml/1.0#" cellml:units="millivolt">1000</cn>
</apply>
<apply>
<minus/>
<ci>V</ci>
<ci>E_syn_e</ci>
</apply>
</apply>
</apply>
</math>
</component>
<group>
<relationship_ref relationship="encapsulation"/>
<component_ref component="fast_sodium_current">
<component_ref component="fast_sodium_current_m_gate"/>
</component_ref>
<component_ref component="potassium_current">
<component_ref component="potassium_current_n_gate"/>
</component_ref>
<component_ref component="persistent_sodium_current">
<component_ref component="persistent_sodium_current_m_gate"/>
<component_ref component="persistent_sodium_current_h_gate"/>
</component_ref>
</group>
<connection>
<map_components component_1="membrane" component_2="environment"/>
<map_variables variable_1="time" variable_2="time"/>
</connection>
<connection>
<map_components component_1="fast_sodium_current" component_2="environment"/>
<map_variables variable_1="time" variable_2="time"/>
</connection>
<connection>
<map_components component_1="potassium_current" component_2="environment"/>
<map_variables variable_1="time" variable_2="time"/>
</connection>
<connection>
<map_components component_1="persistent_sodium_current" component_2="environment"/>
<map_variables variable_1="time" variable_2="time"/>
</connection>
<connection>
<map_components component_1="leakage_current" component_2="environment"/>
<map_variables variable_1="time" variable_2="time"/>
</connection>
<connection>
<map_components component_1="tonic_current" component_2="environment"/>
<map_variables variable_1="time" variable_2="time"/>
</connection>
<connection>
<map_components component_1="fast_sodium_current" component_2="membrane"/>
<map_variables variable_1="V" variable_2="V"/>
<map_variables variable_1="i_Na" variable_2="i_Na"/>
</connection>
<connection>
<map_components component_1="potassium_current" component_2="membrane"/>
<map_variables variable_1="V" variable_2="V"/>
<map_variables variable_1="i_K" variable_2="i_K"/>
</connection>
<connection>
<map_components component_1="persistent_sodium_current" component_2="membrane"/>
<map_variables variable_1="V" variable_2="V"/>
<map_variables variable_1="i_NaP" variable_2="i_NaP"/>
</connection>
<connection>
<map_components component_1="leakage_current" component_2="membrane"/>
<map_variables variable_1="V" variable_2="V"/>
<map_variables variable_1="i_leak" variable_2="i_leak"/>
</connection>
<connection>
<map_components component_1="tonic_current" component_2="membrane"/>
<map_variables variable_1="V" variable_2="V"/>
<map_variables variable_1="i_tonic_e" variable_2="i_tonic_e"/>
</connection>
<connection>
<map_components component_1="fast_sodium_current" component_2="persistent_sodium_current"/>
<map_variables variable_1="E_Na" variable_2="E_Na"/>
</connection>
<connection>
<map_components component_1="fast_sodium_current" component_2="potassium_current"/>
<map_variables variable_1="n" variable_2="n"/>
</connection>
<connection>
<map_components component_1="fast_sodium_current" component_2="fast_sodium_current_m_gate"/>
<map_variables variable_1="m_infinity" variable_2="m_infinity"/>
<map_variables variable_1="V" variable_2="V"/>
</connection>
<connection>
<map_components component_1="potassium_current" component_2="potassium_current_n_gate"/>
<map_variables variable_1="n" variable_2="n"/>
<map_variables variable_1="V" variable_2="V"/>
<map_variables variable_1="time" variable_2="time"/>
</connection>
<connection>
<map_components component_1="persistent_sodium_current" component_2="persistent_sodium_current_m_gate"/>
<map_variables variable_1="m_infinity" variable_2="m_infinity"/>
<map_variables variable_1="V" variable_2="V"/>
</connection>
<connection>
<map_components component_1="persistent_sodium_current" component_2="persistent_sodium_current_h_gate"/>
<map_variables variable_1="h" variable_2="h"/>
<map_variables variable_1="V" variable_2="V"/>
<map_variables variable_1="time" variable_2="time"/>
</connection>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"><rdf:Description rdf:nodeID="n1"><rdf:type><rdf:Description rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#Bag"/></rdf:type><rdf:_4 xml:lang="en">pacemaker</rdf:_4><rdf:_3 xml:lang="en">neurobiology</rdf:_3><rdf:_2 xml:lang="en">neuron</rdf:_2><rdf:_1 xml:lang="en">electrophysiology</rdf:_1></rdf:Description><rdf:Description rdf:about="rdf:#c5787d75-fd3f-45ea-9653-3b2d525c453e"><Given xmlns="http://www.w3.org/2001/vcard-rdf/3.0#" xml:lang="en">H</Given><Other xmlns="http://www.w3.org/2001/vcard-rdf/3.0#" xml:lang="en"></Other><Family xmlns="http://www.w3.org/2001/vcard-rdf/3.0#" xml:lang="en">Koizumi</Family></rdf:Description><rdf:Description rdf:nodeID="n2"><rdf:rest><rdf:Description rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/></rdf:rest><rdf:first><rdf:Description rdf:nodeID="n3"/></rdf:first></rdf:Description><rdf:Description rdf:about="rdf:#ee716159-c10f-48c7-9cc1-bfed7f9a8e1e"><W3CDTF xmlns="http://purl.org/dc/terms/" xml:lang="en">2007-00-00 00:00</W3CDTF></rdf:Description><rdf:Description rdf:about="rdf:#d0466534-2574-45c1-93d4-b06916a8517d"><N xmlns="http://www.w3.org/2001/vcard-rdf/3.0#"><rdf:Description rdf:about="rdf:#ce8152ab-6065-4ad2-9d04-bd05c01a278f"/></N><rdf:type><rdf:Description rdf:about="http://www.cellml.org/bqs/1.0#Person"/></rdf:type></rdf:Description><rdf:Description rdf:about="rdf:#a56bbf02-0cfc-404e-b4a4-68710b74ec4c"><rdf:type><rdf:Description rdf:about="http://imc.org/vCard/3.0#internet"/></rdf:type><rdf:value xml:lang="en">gnunns1@jhem.jhu.edu</rdf:value></rdf:Description><rdf:Description rdf:about="rdf:#6883b6c3-1f2c-47a2-be6a-33f4dac11825"><N xmlns="http://www.w3.org/2001/vcard-rdf/3.0#"><rdf:Description rdf:about="rdf:#07b64d56-c35f-4125-abca-22214ca0f0e1"/></N><rdf:type><rdf:Description rdf:about="http://www.cellml.org/bqs/1.0#Person"/></rdf:type></rdf:Description><rdf:Description rdf:nodeID="n4"><subject xmlns="http://purl.org/dc/elements/1.1/"><rdf:Description rdf:nodeID="n5"/></subject></rdf:Description><rdf:Description rdf:about="rdf:#836606f3-a256-4757-af19-14063d7c256c"><creator xmlns="http://purl.org/dc/elements/1.1/"><rdf:Description rdf:about="rdf:#558ec226-3208-4a42-ba75-28bbd34c8ead"/></creator><rdf:value xml:lang="en">This CellML model is known to run in both PCEnv and COR, the units have been checked and are consistent. The CellML model can recreate the published results for the single cell. However, in addition to the single cell model, this publication also describes a multicellular network, and it uses the simulation results from this model as a basis for its figures. Alone, CellML can not describe this kind of model. Instead we will need to embed the current CellML model within a FieldML or openCMISS framework (or other such modelling frameworks) in order to fully implement the multicellular network description.</rdf:value></rdf:Description><rdf:Description rdf:about="rdf:#3ef6993b-ccaa-4d49-bc36-c70ba08ae73a"><creator xmlns="http://purl.org/dc/elements/1.1/"><rdf:Description rdf:about="rdf:#35161228-ae68-46ea-9fbb-609c6b8a366e"/></creator><rdf:value xml:lang="en">This CellML model is known to run in both PCEnv and COR, the units have been checked and are consistent. The CellML model can recreate the published results for the single cell. However, in addition to the single cell model, this publication also describes a multicellular network, and it uses the simulation results from this model as a basis for its figures. Alone, CellML can not describe this kind of model. Instead we will need to embed the current CellML model within a FieldML or openCMISS framework (or other such modelling frameworks) in order to fully implement the multicellular network description.</rdf:value></rdf:Description><rdf:Description rdf:nodeID="n3"><pointDensity xmlns="http://www.cellml.org/metadata/simulation/1.0#nonstandard-" xml:lang="en">100000</pointDensity><endingValue xmlns="http://www.cellml.org/metadata/simulation/1.0#" xml:lang="en">10000</endingValue></rdf:Description><rdf:Description rdf:about="rdf:#ffdf0b4f-9983-4c29-8590-bf359e415b0e"><N xmlns="http://www.w3.org/2001/vcard-rdf/3.0#"><rdf:Description rdf:about="rdf:#27cc4d46-d48b-48f3-83a2-131574320632"/></N></rdf:Description><rdf:Description rdf:about="rdf:#a3b824d2-cadf-4b58-a030-0c5cb3dfa391"><Given xmlns="http://www.w3.org/2001/vcard-rdf/3.0#" xml:lang="en">Geoffrey</Given><Other xmlns="http://www.w3.org/2001/vcard-rdf/3.0#" xml:lang="en">Rogan</Other><Family xmlns="http://www.w3.org/2001/vcard-rdf/3.0#" xml:lang="en">Nunns</Family></rdf:Description><rdf:Description rdf:about="rdf:#27cc4d46-d48b-48f3-83a2-131574320632"><Given xmlns="http://www.w3.org/2001/vcard-rdf/3.0#" xml:lang="en">Geoffrey</Given><Other xmlns="http://www.w3.org/2001/vcard-rdf/3.0#" xml:lang="en">Rogan</Other><Family xmlns="http://www.w3.org/2001/vcard-rdf/3.0#" xml:lang="en">Nunns</Family></rdf:Description><rdf:Description rdf:about="rdf:#7a3ba441-d864-453f-97ad-0fd20652301d"><Pubmed_id xmlns="http://www.cellml.org/bqs/1.0#" xml:lang="en">17167061</Pubmed_id><JournalArticle xmlns="http://www.cellml.org/bqs/1.0#"><rdf:Description rdf:about="rdf:#8a3958af-263f-4655-8c42-9e5d656acd8a"/></JournalArticle></rdf:Description><rdf:Description rdf:about="rdf:#d6026876-a3d9-4e84-99fc-f0355c92ecd6"><W3CDTF xmlns="http://purl.org/dc/terms/" xml:lang="en">2008-07-17T14:19:05+12:00</W3CDTF></rdf:Description><rdf:Description rdf:about="rdf:#a31a27f1-8d0d-4c12-acc3-0f5f284495c3"><rdf:type><rdf:Description rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq"/></rdf:type><rdf:_4><rdf:Description rdf:about="rdf:#a9d6950f-39d6-418f-80e8-6cca3e02ec86"/></rdf:_4><rdf:_3><rdf:Description rdf:about="rdf:#e5686ae4-44ff-4059-9ba3-bdfb6cfd6f5a"/></rdf:_3><rdf:_2><rdf:Description rdf:about="rdf:#d0466534-2574-45c1-93d4-b06916a8517d"/></rdf:_2><rdf:_1><rdf:Description rdf:about="rdf:#6883b6c3-1f2c-47a2-be6a-33f4dac11825"/></rdf:_1></rdf:Description><rdf:Description rdf:about="rdf:#35161228-ae68-46ea-9fbb-609c6b8a366e"><FN xmlns="http://www.w3.org/2001/vcard-rdf/3.0#" xml:lang="en">Geoff Nunns</FN></rdf:Description><rdf:Description rdf:about="rdf:#f1eaae36-1d5c-4463-841c-0bd928e359fa"><title xmlns="http://purl.org/dc/elements/1.1/" xml:lang="en">Journal of Neurophysiology</title></rdf:Description><rdf:Description rdf:nodeID="n5"><subject_type xmlns="http://www.cellml.org/bqs/1.0#" xml:lang="en">keyword</subject_type><rdf:value><rdf:Description rdf:nodeID="n1"/></rdf:value></rdf:Description><rdf:Description rdf:about="rdf:#39952cc5-9a4a-437f-a2b0-cdea41823ff3"><W3CDTF xmlns="http://purl.org/dc/terms/" xml:lang="en">2008-07-17T00:00:00+00:00</W3CDTF></rdf:Description><rdf:Description rdf:about="rdf:#07b64d56-c35f-4125-abca-22214ca0f0e1"><Given xmlns="http://www.w3.org/2001/vcard-rdf/3.0#" xml:lang="en">Liston</Given><Other xmlns="http://www.w3.org/2001/vcard-rdf/3.0#" xml:lang="en">K</Other><Family xmlns="http://www.w3.org/2001/vcard-rdf/3.0#" xml:lang="en">Purvis</Family></rdf:Description><rdf:Description rdf:about="rdf:#e5686ae4-44ff-4059-9ba3-bdfb6cfd6f5a"><N xmlns="http://www.w3.org/2001/vcard-rdf/3.0#"><rdf:Description rdf:about="rdf:#c5787d75-fd3f-45ea-9653-3b2d525c453e"/></N><rdf:type><rdf:Description rdf:about="http://www.cellml.org/bqs/1.0#Person"/></rdf:type></rdf:Description><rdf:Description rdf:about="rdf:#afd12d3d-5a5e-4dd5-b5a7-abf5d8089a5a"><Given xmlns="http://www.w3.org/2001/vcard-rdf/3.0#" xml:lang="en">Robert</Given><Other xmlns="http://www.w3.org/2001/vcard-rdf/3.0#" xml:lang="en">J</Other><Family xmlns="http://www.w3.org/2001/vcard-rdf/3.0#" xml:lang="en">Butera</Family></rdf:Description><rdf:Description rdf:about="rdf:#129a9084-4f6f-4c34-8176-2abb3d2f2f70"><Orgunit xmlns="http://www.w3.org/2001/vcard-rdf/3.0#" xml:lang="en">Auckland Bioengineering Institute</Orgunit><Orgname xmlns="http://www.w3.org/2001/vcard-rdf/3.0#" xml:lang="en">The University of Auckland</Orgname></rdf:Description><rdf:Description rdf:about="rdf:#558ec226-3208-4a42-ba75-28bbd34c8ead"><FN xmlns="http://www.w3.org/2001/vcard-rdf/3.0#" xml:lang="en">Geoff Nunns</FN></rdf:Description><rdf:Description rdf:about="rdf:#ce8152ab-6065-4ad2-9d04-bd05c01a278f"><Given xmlns="http://www.w3.org/2001/vcard-rdf/3.0#" xml:lang="en">Jeffrey</Given><Other xmlns="http://www.w3.org/2001/vcard-rdf/3.0#" xml:lang="en">C</Other><Family xmlns="http://www.w3.org/2001/vcard-rdf/3.0#" xml:lang="en">Smith</Family></rdf:Description><rdf:Description rdf:about="rdf:#a9d6950f-39d6-418f-80e8-6cca3e02ec86"><N xmlns="http://www.w3.org/2001/vcard-rdf/3.0#"><rdf:Description rdf:about="rdf:#afd12d3d-5a5e-4dd5-b5a7-abf5d8089a5a"/></N><rdf:type><rdf:Description rdf:about="http://www.cellml.org/bqs/1.0#Person"/></rdf:type></rdf:Description><rdf:Description rdf:about="rdf:#8ae6a4f0-367c-49ee-95c5-97b96c210838"><modified xmlns="http://purl.org/dc/terms/"><rdf:Description rdf:about="rdf:#d6026876-a3d9-4e84-99fc-f0355c92ecd6"/></modified><cmeta:modifier><rdf:Description rdf:about="rdf:#ffdf0b4f-9983-4c29-8590-bf359e415b0e"/></cmeta:modifier><rdf:value xml:lang="en">Fixed "not exactly equivalent but dimensionally equivalent" errors.</rdf:value></rdf:Description><rdf:Description rdf:about="rdf:#cab31d81-29f6-4974-8065-ff676a5aa3ba"><N xmlns="http://www.w3.org/2001/vcard-rdf/3.0#"><rdf:Description rdf:about="rdf:#a3b824d2-cadf-4b58-a030-0c5cb3dfa391"/></N><ORG xmlns="http://www.w3.org/2001/vcard-rdf/3.0#"><rdf:Description rdf:about="rdf:#129a9084-4f6f-4c34-8176-2abb3d2f2f70"/></ORG><EMAIL xmlns="http://www.w3.org/2001/vcard-rdf/3.0#"><rdf:Description rdf:about="rdf:#a56bbf02-0cfc-404e-b4a4-68710b74ec4c"/></EMAIL></rdf:Description><rdf:Description rdf:about=""><created xmlns="http://purl.org/dc/terms/"><rdf:Description rdf:about="rdf:#39952cc5-9a4a-437f-a2b0-cdea41823ff3"/></created><title xmlns="http://purl.org/dc/elements/1.1/" xml:lang="en">Intrinsic Bursters Increase the Robustness of Rythm Generation in an Excitatory Network: Single Pacemaker Cell</title><creator xmlns="http://purl.org/dc/elements/1.1/"><rdf:Description rdf:about="rdf:#cab31d81-29f6-4974-8065-ff676a5aa3ba"/></creator><cmeta:comment><rdf:Description rdf:about="rdf:#836606f3-a256-4757-af19-14063d7c256c"/></cmeta:comment><cmeta:modification><rdf:Description rdf:about="rdf:#8ae6a4f0-367c-49ee-95c5-97b96c210838"/></cmeta:modification><publisher xmlns="http://purl.org/dc/elements/1.1/" xml:lang="en"></publisher></rdf:Description><rdf:Description rdf:nodeID="n6"><boundIntervals xmlns="http://www.cellml.org/metadata/simulation/1.0#"><rdf:Description rdf:nodeID="n2"/></boundIntervals></rdf:Description><rdf:Description rdf:about="#purvis_2007"><cmeta:comment><rdf:Description rdf:about="rdf:#3ef6993b-ccaa-4d49-bc36-c70ba08ae73a"/></cmeta:comment><simulation xmlns="http://www.cellml.org/metadata/simulation/1.0#"><rdf:Description rdf:nodeID="n6"/></simulation><reference xmlns="http://www.cellml.org/bqs/1.0#"><rdf:Description rdf:about="rdf:#7a3ba441-d864-453f-97ad-0fd20652301d"/></reference><reference xmlns="http://www.cellml.org/bqs/1.0#"><rdf:Description rdf:nodeID="n4"/></reference></rdf:Description><rdf:Description rdf:about="rdf:#8a3958af-263f-4655-8c42-9e5d656acd8a"><issued xmlns="http://purl.org/dc/terms/"><rdf:Description rdf:about="rdf:#ee716159-c10f-48c7-9cc1-bfed7f9a8e1e"/></issued><title xmlns="http://purl.org/dc/elements/1.1/" xml:lang="en">Intrinsic Bursters Increase the Robustness of Rythm Generation in an Excitatory Network</title><creator xmlns="http://purl.org/dc/elements/1.1/"><rdf:Description rdf:about="rdf:#a31a27f1-8d0d-4c12-acc3-0f5f284495c3"/></creator><first_page xmlns="http://www.cellml.org/bqs/1.0#" xml:lang="en">1515</first_page><last_page xmlns="http://www.cellml.org/bqs/1.0#" xml:lang="en">1526</last_page><Journal xmlns="http://www.cellml.org/bqs/1.0#"><rdf:Description rdf:about="rdf:#f1eaae36-1d5c-4463-841c-0bd928e359fa"/></Journal><volume xmlns="http://www.cellml.org/bqs/1.0#" xml:lang="en">97</volume></rdf:Description></rdf:RDF></model>