Generated Code
The following is python code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
# Size of variable arrays: sizeAlgebraic = 15 sizeStates = 6 sizeConstants = 33 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (second)" legend_states[0] = "V in component membrane (millivolt)" legend_constants[0] = "R in component membrane (millijoule_per_mole_kelvin)" legend_constants[1] = "T in component membrane (kelvin)" legend_constants[2] = "F in component membrane (coulomb_per_mole)" legend_constants[3] = "Cm in component membrane (microF_per_cm2)" legend_algebraic[11] = "i_K_dr in component delayed_rectifier_K_channel_current (nanoA_per_cm2)" legend_algebraic[12] = "i_K_Ca in component Ca_sensitive_K_current (nanoA_per_cm2)" legend_algebraic[13] = "i_K_ATP in component ATP_sensitive_K_current (nanoA_per_cm2)" legend_algebraic[4] = "i_fast in component fast_current (nanoA_per_cm2)" legend_algebraic[9] = "i_Ca in component calcium_current (nanoA_per_cm2)" legend_algebraic[10] = "i_NS in component cationic_nonselective_inward_current (nanoA_per_cm2)" legend_algebraic[14] = "i_NaL in component Na_leak_current (nanoA_per_cm2)" legend_constants[4] = "g_fast in component fast_current (microS_per_cm2)" legend_constants[5] = "V_fast in component fast_current (millivolt)" legend_algebraic[0] = "m_infinity in component fast_current_m_gate (dimensionless)" legend_states[1] = "h in component fast_current_h_gate (dimensionless)" legend_constants[6] = "Vm in component fast_current_m_gate (millivolt)" legend_constants[7] = "Sm in component fast_current_m_gate (millivolt)" legend_constants[8] = "lamda_h in component fast_current_h_gate (per_second)" legend_algebraic[5] = "tau_h in component fast_current_h_gate (second)" legend_algebraic[1] = "h_infinity in component fast_current_h_gate (dimensionless)" legend_constants[9] = "Vh in component fast_current_h_gate (millivolt)" legend_constants[10] = "Sh in component fast_current_h_gate (millivolt)" legend_constants[11] = "K_Ca in component calcium_current (micromolar)" legend_constants[12] = "P_Ca in component calcium_current (nanoA_per_micromolar_per_cm2)" legend_constants[13] = "Ca_o in component calcium_current (micromolar)" legend_states[2] = "Ca_i in component cytosolic_calcium (micromolar)" legend_algebraic[8] = "f_infinity in component calcium_current_f_gate (dimensionless)" legend_states[3] = "d in component calcium_current_d_gate (dimensionless)" legend_constants[14] = "lamda_d in component calcium_current_d_gate (per_second)" legend_algebraic[6] = "tau_d in component calcium_current_d_gate (second)" legend_algebraic[2] = "d_infinity in component calcium_current_d_gate (dimensionless)" legend_constants[15] = "Vd in component calcium_current_d_gate (millivolt)" legend_constants[16] = "Sd in component calcium_current_d_gate (millivolt)" legend_constants[17] = "g_NS in component cationic_nonselective_inward_current (microS_per_cm2)" legend_constants[18] = "K_NS in component cationic_nonselective_inward_current (micromolar)" legend_constants[19] = "VNS in component cationic_nonselective_inward_current (millivolt)" legend_states[4] = "Ca_lum in component cytosolic_calcium (micromolar)" legend_constants[20] = "V_K in component delayed_rectifier_K_channel_current (millivolt)" legend_constants[21] = "g_K_dr in component delayed_rectifier_K_channel_current (microS_per_cm2)" legend_states[5] = "n in component delayed_rectifier_K_channel_current_n_gate (dimensionless)" legend_constants[22] = "lamda_n in component delayed_rectifier_K_channel_current_n_gate (per_second)" legend_constants[23] = "Vn in component delayed_rectifier_K_channel_current_n_gate (millivolt)" legend_constants[24] = "Sn in component delayed_rectifier_K_channel_current_n_gate (millivolt)" legend_algebraic[3] = "n_infinity in component delayed_rectifier_K_channel_current_n_gate (dimensionless)" legend_algebraic[7] = "tau_n in component delayed_rectifier_K_channel_current_n_gate (second)" legend_constants[25] = "g_K_Ca in component Ca_sensitive_K_current (microS_per_cm2)" legend_constants[26] = "g_K_ATP in component ATP_sensitive_K_current (microS_per_cm2)" legend_constants[27] = "g_NaL in component Na_leak_current (microS_per_cm2)" legend_constants[28] = "V_Na in component Na_leak_current (millivolt)" legend_constants[29] = "k_rel in component cytosolic_calcium (per_second)" legend_constants[30] = "k_Ca in component cytosolic_calcium (per_second)" legend_constants[31] = "k_pump in component cytosolic_calcium (per_second)" legend_constants[32] = "omega in component cytosolic_calcium (micromolar_cm2_per_nanoA_per_second)" legend_rates[0] = "d/dt V in component membrane (millivolt)" legend_rates[1] = "d/dt h in component fast_current_h_gate (dimensionless)" legend_rates[3] = "d/dt d in component calcium_current_d_gate (dimensionless)" legend_rates[5] = "d/dt n in component delayed_rectifier_K_channel_current_n_gate (dimensionless)" legend_rates[2] = "d/dt Ca_i in component cytosolic_calcium (micromolar)" legend_rates[4] = "d/dt Ca_lum in component cytosolic_calcium (micromolar)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; states[0] = -38.34146 constants[0] = 8314 constants[1] = 310 constants[2] = 96485 constants[3] = 1 constants[4] = 600 constants[5] = 80 states[1] = 0.214723 constants[6] = -25 constants[7] = 9 constants[8] = 12.5 constants[9] = -48 constants[10] = -7 constants[11] = 1 constants[12] = 2 constants[13] = 2500 states[2] = 0.6959466 states[3] = 0.0031711238 constants[14] = 2.5 constants[15] = -10 constants[16] = 5 constants[17] = 5 constants[18] = 50 constants[19] = -20 states[4] = 102.686 constants[20] = -75 constants[21] = 600 states[5] = 0.1836403 constants[22] = 12.5 constants[23] = -18 constants[24] = 14 constants[25] = 5 constants[26] = 2 constants[27] = 0.3 constants[28] = 80 constants[29] = 0.2 constants[30] = 7 constants[31] = 30 constants[32] = 0.2 return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic rates[4] = -constants[29]*(states[4]-states[2])+constants[31]*states[2] algebraic[5] = 1.00000/(constants[8]*(exp((constants[9]-states[0])/(2.00000*constants[10]))+exp((states[0]-constants[9])/(2.00000*constants[10])))) algebraic[1] = 1.00000/(1.00000+exp((constants[9]-states[0])/constants[10])) rates[1] = (algebraic[1]-states[1])/algebraic[5] algebraic[6] = 1.00000/(constants[14]*(exp((constants[15]-states[0])/(2.00000*constants[16]))+exp((states[0]-constants[15])/(2.00000*constants[16])))) algebraic[2] = 1.00000/(1.00000+exp((constants[15]-states[0])/constants[16])) rates[3] = (algebraic[2]-states[3])/algebraic[6] algebraic[3] = 1.00000/(1.00000+exp((constants[23]-states[0])/constants[24])) algebraic[7] = 1.00000/(constants[22]*(exp((constants[23]-states[0])/(2.00000*constants[24]))+exp((states[0]-constants[23])/(2.00000*constants[24])))) rates[5] = (algebraic[3]-states[5])/algebraic[7] algebraic[8] = constants[11]/(constants[11]+states[2]) algebraic[9] = (((constants[12]*states[3]*algebraic[8]*2.00000*constants[2]*states[0])/(constants[0]*constants[1]))*(constants[13]-states[2]*exp((2.00000*constants[2]*states[0])/(constants[0]*constants[1]))))/(1.00000-exp((2.00000*constants[2]*states[0])/(constants[0]*constants[1]))) rates[2] = constants[29]*(states[4]-states[2])-(constants[32]*algebraic[9]+constants[30]*states[2]+constants[31]*states[2]) algebraic[11] = constants[21]*(power(states[5], 4.00000))*(states[0]-constants[20]) algebraic[12] = ((constants[25]*(power(states[2], 3.00000)))/(power(constants[11], 3.00000)+power(states[2], 3.00000)))*(states[0]-constants[20]) algebraic[13] = constants[26]*(states[0]-constants[20]) algebraic[0] = 1.00000/(1.00000+exp((constants[6]-states[0])/constants[7])) algebraic[4] = constants[4]*(power(algebraic[0], 3.00000))*states[1]*(states[0]-constants[5]) algebraic[10] = ((constants[17]*(power(constants[18], 2.00000)))/(power(constants[18], 2.00000)+power(states[4], 2.00000)))*((states[0]-constants[19])/(1.00000-exp(0.100000*(constants[19]-states[0])))-10.0000) algebraic[14] = constants[27]*(states[0]-constants[28]) rates[0] = -(algebraic[11]+algebraic[12]+algebraic[13]+algebraic[4]+algebraic[9]+algebraic[10]+algebraic[14])/constants[3] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[5] = 1.00000/(constants[8]*(exp((constants[9]-states[0])/(2.00000*constants[10]))+exp((states[0]-constants[9])/(2.00000*constants[10])))) algebraic[1] = 1.00000/(1.00000+exp((constants[9]-states[0])/constants[10])) algebraic[6] = 1.00000/(constants[14]*(exp((constants[15]-states[0])/(2.00000*constants[16]))+exp((states[0]-constants[15])/(2.00000*constants[16])))) algebraic[2] = 1.00000/(1.00000+exp((constants[15]-states[0])/constants[16])) algebraic[3] = 1.00000/(1.00000+exp((constants[23]-states[0])/constants[24])) algebraic[7] = 1.00000/(constants[22]*(exp((constants[23]-states[0])/(2.00000*constants[24]))+exp((states[0]-constants[23])/(2.00000*constants[24])))) algebraic[8] = constants[11]/(constants[11]+states[2]) algebraic[9] = (((constants[12]*states[3]*algebraic[8]*2.00000*constants[2]*states[0])/(constants[0]*constants[1]))*(constants[13]-states[2]*exp((2.00000*constants[2]*states[0])/(constants[0]*constants[1]))))/(1.00000-exp((2.00000*constants[2]*states[0])/(constants[0]*constants[1]))) algebraic[11] = constants[21]*(power(states[5], 4.00000))*(states[0]-constants[20]) algebraic[12] = ((constants[25]*(power(states[2], 3.00000)))/(power(constants[11], 3.00000)+power(states[2], 3.00000)))*(states[0]-constants[20]) algebraic[13] = constants[26]*(states[0]-constants[20]) algebraic[0] = 1.00000/(1.00000+exp((constants[6]-states[0])/constants[7])) algebraic[4] = constants[4]*(power(algebraic[0], 3.00000))*states[1]*(states[0]-constants[5]) algebraic[10] = ((constants[17]*(power(constants[18], 2.00000)))/(power(constants[18], 2.00000)+power(states[4], 2.00000)))*((states[0]-constants[19])/(1.00000-exp(0.100000*(constants[19]-states[0])))-10.0000) algebraic[14] = constants[27]*(states[0]-constants[28]) return algebraic def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)