Rendering of the source text

<?xml version="1.0" encoding="utf-8"?>
<model 
	name="Guyton_Model"
	cmeta:id="Guyton_Model"
	
	xmlns="http://www.cellml.org/cellml/1.0#" 
	xmlns:cellml="http://www.cellml.org/cellml/1.0#"
	xmlns:cmeta="http://www.cellml.org/metadata/1.0#"
	xmlns:xlink="http://www.w3.org/1999/xlink">

	<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
		<rdf:Description rdf:about="#Guyton_Model">
			This is the CellML 1.0 Guyton Model.  
		</rdf:Description>
	</rdf:RDF>

<!-- ========================================	DOCUMENTATION	============================================= -->

<documentation xmlns="http://cellml.org/tmp-documentation">
<article>
  <articleinfo>
  <title>Guyton Model</title>
  <author>
    <firstname>Jonna</firstname>
          <surname>Terkildsen</surname>
    <affiliation>
      <shortaffil>Auckland Bioengineering Institute, University of Auckland</shortaffil>
    </affiliation>
  </author>
</articleinfo>
  <section id="sec_status">
    <title>Model Status</title>
    <para>
		This CellML model has not been completely validated as yet. The output from the model may not conform  
		to the results from the MODSIM program. Due to the differences between procedural 
		code (in this case C-code) and declarative languages (CellML), some aspects of the original model were not 
		able to be encapsulated by the CellML model (such as the damping of variables). Work is underway to fix these 
		omissions and validate the CellML model. We also anticipate that many of these problems will be fixed when 
		the CellML 1.0 models are combined in a CellML 1.1 format.
<!--        This CellML model has been validated. Due to the differences between procedural code (in this case C-code) 
		and declarative languages (CellML), some aspects of the original model were not able to be encapsulated by 
		the CellML model (such as the damping of variables). This may effect the transient behaviour of the model, 
		however the steady-state behaviour would remain	the same. The equations in this file and the steady-state 
		output from the model conform to the results from the MODSIM program. -->
    </para>
  </section>
  <sect1 id="sec_structure">
  <title>Model Structure</title>

<para>
Arthur Guyton (1919-2003) was an American physiologist who became famous for his 1950s experiments in which he studied 
the physiology of cardiac output and its relationship with the peripheral circulation.  The results of these experiments 
challenged the conventional wisdom that it was the heart itself that controlled cardiac output.  Instead Guyton 
demonstrated that it was the need of the body tissues for oxygen which was the real regulator of cardiac output.  
The "Guyton Curves" describe the relationship between right atrial pressures and cardiac output, and they form a 
foundation for understanding the physiology of circulation. 
</para>

<para>
The Guyton model of fluid, electrolyte, and circulatory regulation is an extensive mathematical model of human circulatory 
physiology, capable of simulating a variety of experimental conditions, and contains a number of linked subsystems relating 
to circulation and its neuroendocrine control.
</para>

<para>
This is a CellML translation of the Guyton model of the regulation of the circulatory system.  The complete model consists 
of separate modules each of which characterise a separate physiological subsystems.  The Circulation Dynamics is the primary 
system, to which other modules/blocks are connected.  The other modules characterise the dynamics of the kidney, 
electrolytes and cell water, thirst and drinking, hormone regulation, autonomic regulation, cardiovascular system etc, 
and these feedback on the central circulation model.  The CellML code in these modules is based on the C code from the 
programme C-MODSIM created by Dr Jean-Pierre Montani.
</para>

<informalfigure float="0" id="full_diagram">
<mediaobject>
  <imageobject>
    <objectinfo>
      <title>model diagram</title>
    </objectinfo>
    <imagedata fileref="full_model.png"/>
  </imageobject>
</mediaobject>
<caption>A systems analysis diagram for the full Guyton model describing circulation regulation.</caption>
</informalfigure>

<!-- 
<informalfigure float="0" id="guyton_diagram">
<mediaobject>
  <imageobject>
    <objectinfo>
      <title>model diagram</title>
    </objectinfo>
    <imagedata fileref=".png"/>
  </imageobject>
</mediaobject>
<caption>A schematic diagram of the components and processes described in the current CellML model.</caption>
</informalfigure> 
-->

<para>
There are several publications referring to the Guyton model. One of these papers is cited below:
</para>

<para>
Circulation: Overall Regulation,  A.C. Guyton, T.G. Coleman, and H.J. Granger, 1972, 
            <emphasis>Annual Review of Physiology</emphasis>
          , 34, 13-44.  <ulink url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&amp;cmd=Retrieve&amp;dopt=AbstractPlus&amp;list_uids=4334846&amp;query_hl=1&amp;itool=pubmed_docsum">PubMed ID: 4334846</ulink>
</para>

</sect1>
</article>
</documentation> 


<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bqs="http://www.cellml.org/bqs/1.0#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:vCard="http://www.w3.org/2001/vcard-rdf/3.0#">
    <!--
      The following RDF block contains metadata that applies to this document
      as a whole, as indicated by the empty about attribute on the 
      <rdf:Description> element.
    -->
    <rdf:Description rdf:about="">
      <!--
        The Model Builder Metadata.  The Dublin Core "creator" element is used  
        to indicate the person who translated the model into CellML.
      -->
      <dc:creator rdf:parseType="Resource">
        <vCard:N rdf:parseType="Resource">
          <vCard:Family>Terkildsen</vCard:Family>
          <vCard:Given>Jonna</vCard:Given>
        </vCard:N>
        <vCard:EMAIL rdf:parseType="Resource">
          <rdf:value>j.terkildsen@auckland.ac.nz</rdf:value>
          <rdf:type rdf:resource="http://imc.org/vCard/3.0#internet" />
        </vCard:EMAIL>
        <vCard:ORG rdf:parseType="Resource">
          <vCard:Orgname>The University of Auckland</vCard:Orgname>
          <vCard:Orgunit>Auckland Bioengineering Institute</vCard:Orgunit>
        </vCard:ORG>
      </dc:creator>
      
      <!--
        The Creation Date metadata. This is the date on which the model
        was translated into CellML.
      -->
      <dcterms:created rdf:parseType="Resource">
        <dcterms:W3CDTF>2008-04-03</dcterms:W3CDTF>
      </dcterms:created>
      
      <!--
        The Modification History metadata. This lists the changes that have been
        made to the document, who made the changes, and when they were made.
      -->
      
      <!-- The Publisher metadata. -->
      <dc:publisher>
        The University of Auckland, Auckland Bioengineering Institute
      </dc:publisher>
    </rdf:Description>
  </rdf:RDF>
  
<!-- =======================================================    CITATION AND KEYWORD METADATA    ================================================== -->

	<rdf:RDF
			xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
			xmlns:bqs="http://www.cellml.org/bqs/1.0#"
			xmlns:dc="http://purl.org/dc/elements/1.1/"
			xmlns:dcterms="http://purl.org/dc/terms/"
			xmlns:vCard="http://www.w3.org/2001/vcard-rdf/3.0#">
		<rdf:Description rdf:about="#Guyton_Model">
			<bqs:reference rdf:parseType="Resource">
				<bqs:JournalArticle rdf:parseType="Resource">
					<dc:creator>
						<rdf:Seq>
							<rdf:li rdf:parseType="Resource">
								<rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person" />
								<vCard:N rdf:parseType="Resource">
									<vCard:Family>Guyton</vCard:Family>
									<vCard:Given></vCard:Given>
									<vCard:Other></vCard:Other>
								</vCard:N>
							</rdf:li>
							<rdf:li rdf:parseType="Resource">
								<rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person" />
								<vCard:N rdf:parseType="Resource">
									<vCard:Family>Cardiovascular</vCard:Family>
									<vCard:Given></vCard:Given>
									<vCard:Other></vCard:Other>
								</vCard:N>
							</rdf:li>
							<rdf:li rdf:parseType="Resource">
								<rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person" />
								<vCard:N rdf:parseType="Resource">
									<vCard:Family>Circulation</vCard:Family>
									<vCard:Given></vCard:Given>
									<vCard:Other></vCard:Other>
								</vCard:N>
							</rdf:li>

						</rdf:Seq>
					</dc:creator>
					<dc:title>Description of Guyton 1992 Full Cardiovascular Circulation Model</dc:title>
					<bqs:volume />
					<bqs:first_page />
					<bqs:last_page />
					<bqs:Journal rdf:parseType="Resource">
						<dc:title></dc:title>
					</bqs:Journal>
					<dcterms:issued rdf:parseType="Resource">
						<dcterms:W3CDTF>2008-00-00 00:00</dcterms:W3CDTF>
					</dcterms:issued>
				</bqs:JournalArticle>
			</bqs:reference>
			<bqs:reference rdf:parseType="Resource">
				<dc:subject rdf:parseType="Resource">
					<bqs:subject_type>keyword</bqs:subject_type>
					<rdf:value>
					<rdf:Bag>
						<rdf:li>physiology</rdf:li>
						<rdf:li>organ systems</rdf:li>
						<rdf:li>cardiovascular circulation</rdf:li>
						<rdf:li>Guyton</rdf:li>
					</rdf:Bag>
					</rdf:value>
				</dc:subject>
			</bqs:reference>
		</rdf:Description>
	</rdf:RDF>

<!-- ========================================	UNITS	============================================= -->
   <units name="minute">
      <unit multiplier="60" units="second"/>
   </units>
   <units name="per_minute">
      <unit units="minute" exponent="-1"/>
   </units>
   <units name="beats_per_minute">
      <unit units="minute" exponent="-1"/>
   </units>
   <units name="beats_per_minute_per_mmHg">
      <unit units="minute" exponent="-1"/>
      <unit units="mmHg" exponent="-1"/>
   </units>
   <units name="minute_per_L">
      <unit units="minute"/>
      <unit units="litre" exponent="-1"/>
   </units>
   <units name="mmHg">
      <unit multiplier="133.322" units="newton"/>
      <unit units="metre" exponent="-2"/>
   </units>
   <units name="per_mmHg">
      <unit units="mmHg" exponent="-1"/>
   </units>
   <units name="mmHg_per_mL">
      <unit units="mmHg"/>
      <unit units="mL" exponent="-1"/>
   </units>
   <units name="mmHg_L">
      <unit units="mmHg"/>
      <unit units="litre"/>
   </units>
   <units name="per_mmHg2">
      <unit units="mmHg" exponent="-2"/>
   </units>
   <units name="mmHg3">
      <unit units="mmHg" exponent="3"/>
   </units>
   <units name="monovalent_mEq">
      <unit units="mole" prefix="milli"/>
   </units>
   <units name="monovalent_mEq_per_minute">
      <unit units="mole" prefix="milli"/>
      <unit units="minute" exponent="-1"/>
   </units>
   <units name="monovalent_mEq_per_litre">
      <unit units="mole" prefix="milli"/>
      <unit units="litre" exponent="-1"/>
   </units>
   <units name="mOsm">
      <unit units="mole" prefix="milli"/>
   </units>
   <units name="mOsm_per_litre">
      <unit units="mole" prefix="milli"/>
      <unit units="litre" exponent="-1"/>
   </units>
   <units name="mOsm_per_minute">
      <unit units="mole" prefix="milli"/>
      <unit units="minute" exponent="-1"/>
   </units>
   <units name="monovalent_mEq_per_litre_per_minute">
      <unit units="mole" prefix="milli"/>
      <unit units="litre" exponent="-1"/>
      <unit units="minute" exponent="-1"/>
   </units>
   <units name="litre2_per_monovalent_mEq_per_minute">
      <unit units="litre" exponent="2"/>
      <unit units="mole" prefix="milli" exponent="-1"/>
      <unit units="minute" exponent="-1"/>
   </units>
   <units name="L_per_minute">
      <unit units="litre"/>
      <unit units="minute" exponent="-1"/>
   </units>
   <units name="per_mmHg_per_minute">
      <unit units="mmHg" exponent="-1"/>
      <unit units="minute" exponent="-1"/>
   </units>
   <units name="mL">
      <unit units="litre" prefix="milli"/>
   </units>
   <units name="gram_per_L">
      <unit units="gram"/>
      <unit units="litre" exponent="-1"/>
   </units>
   <units name="L_mmHg_per_gram">
      <unit units="litre"/>
      <unit units="mmHg"/>
      <unit units="gram" exponent="-1"/>
   </units>
   <units name="L2_mmHg_per_gram2">
      <unit units="litre" exponent="2"/>
      <unit units="mmHg"/>
      <unit units="gram" exponent="-2"/>
   </units>
   <units name="mmHg_minute_per_L">
      <unit units="minute"/>
      <unit units="mmHg"/>
      <unit units="litre" exponent="-1"/>
   </units>
   <units name="mmHg_L_per_minute">
      <unit units="litre"/>
      <unit units="mmHg"/>
      <unit units="minute" exponent="-1"/>
   </units>
   <units name="gram_per_minute">
      <unit units="gram"/>
      <unit units="minute" exponent="-1"/>
   </units>
   <units name="mL_per_L">
      <unit units="litre" prefix="milli"/>
      <unit units="litre" exponent="-1"/>
   </units>
   <units name="mL_per_L_per_mmHg">
      <unit units="litre" prefix="milli"/>
      <unit units="litre" exponent="-1"/>
      <unit units="mmHg" exponent="-1"/>
   </units>
   <units name="mL_per_L_per_minute">
      <unit units="litre" prefix="milli"/>
      <unit units="litre" exponent="-1"/>
      <unit units="minute" exponent="-1"/>
   </units>
   <units name="mL_per_minute_per_mmHg">
      <unit units="litre" prefix="milli"/>
      <unit units="minute" exponent="-1"/>
      <unit units="mmHg" exponent="-1"/>
   </units>
   <units name="L_mL_per_minute_per_mmHg">
      <unit units="litre"/>
      <unit units="litre" prefix="milli"/>
      <unit units="minute" exponent="-1"/>
      <unit units="mmHg" exponent="-1"/>
   </units>
   <units name="L_per_mL">
      <unit units="litre" prefix="milli" exponent="-1"/>
      <unit units="litre"/>
   </units>
   <units name="L_per_mmHg">
      <unit units="mmHg" exponent="-1"/>
      <unit units="litre"/>
   </units>
   <units name="mL_per_minute">
      <unit units="mL"/>
      <unit units="minute" exponent="-1"/>
   </units>
   <units name="L_per_minute_per_mmHg">
      <unit units="litre"/>
      <unit units="minute" exponent="-1"/>
      <unit units="mmHg" exponent="-1"/>
   </units>
   <units name="L_per_minute_per_mmHg2">
      <unit units="litre"/>
      <unit units="minute" exponent="-1"/>
      <unit units="mmHg" exponent="-2"/>
   </units>
	
<!-- ========================================	ENVIRONMENT COMPONENT	============================================= -->
   <component name="environment">
      <variable name="time" units="minute" private_interface="none" public_interface="out"/>
   </component>

<!-- ========================================	INITIAL_GUESSES	============================================= -->
  <rdf:RDF xmlns:sh="http://www.cellml.org/metadata/simulation/solverhints/1.0#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
    <rdf:Description rdf:about="#Guyton_Model">
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>163.508</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#delivery_of_O2_to_NM_tissues_DOB" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>0.694163</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#NM_venous_O2_content_OSV" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>37.6</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#NM_venous_O2_content_POV" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>56.8057</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#delivery_of_O2_to_M_tissues_RMO" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>39.9793</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#M_venous_O2_content_PVO" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>0.699673</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#M_venous_O2_content_OVS" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>1.00071</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#renal_autoregulatory_feedback_factor_RNAUG2" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>1.00071</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#renal_autoregulatory_feedback_factor_RNAUG1" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>1.00071</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#renal_autoregulatory_feedback_factor_RNAUG1T" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>40.0</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#AAR_calculation_AAR1" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>40.0</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#atrial_natriuretic_peptide_effect_on_AAR_AAR" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>40.0</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#atrial_natriuretic_peptide_effect_on_AAR_AART" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>0.6</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#effect_of_renal_autoregulatory_feedback_on_EAR_RNAUG4" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>42.4737</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#EAR_calculation_EAR" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>42.4737</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#EAR_calculation_EAR1" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>84.8171</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#total_renal_resistance_RR" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>1.22057</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#normal_renal_blood_flow_RFN" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>37.8383</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#glomerular_colloid_osmotic_pressure_GLPC" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>1.20569</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#glomerular_colloid_osmotic_pressure_EFAFPR" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>1.20569</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#glomerular_colloid_osmotic_pressure_EFAFPR1" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>47.88</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#glomerular_pressure_APD" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>51.842</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#glomerular_pressure_GLP" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>0.125006</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#glomerular_filtration_rate_GFN" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>0.125006</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#glomerular_filtration_rate_GFN1" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>6.00368</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#glomerular_filtration_rate_PFL" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>1.00005</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#proximal_tubular_and_macula_densa_flow_PTFL" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>1.00051</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#proximal_tubular_and_macula_densa_flow_MDFLWT" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>1.00051</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#proximal_tubular_and_macula_densa_flow_MDFLW" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>0.00852183</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#right_atrial_pressure_PRA" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>103.525</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#arterial_pressure_and_pressure_gradient_PA" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>2.77751</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#venous_resistance_RVS" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>2.79521</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#blood_flow_through_NM_NR_tissues_BFN" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>3.71612</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#venous_average_pressure_PVS" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>16.9144</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#capillary_pressure_PC" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>1</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#volume_effect_on_arteries_ATRRFB" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>0</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#volume_effect_on_unstressed_venous_volume_ATRVFB" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>0.743224</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#venous_excess_volume_VVE" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>3.28246</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#venous_blood_volume_VVS" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>0.862514</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#arterial_blood_volume_VAS" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>0.379883</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#left_atrial_blood_volume_VLA" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>0.38131</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#pulmonary_vasculature_blood_volume_VPA" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>0.100043</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#right_atrial_blood_volume_VRA" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>-0.00184824</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#total_blood_volume_change_VBD" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>4.26092e-5</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#right_atrial_pressure_VRE" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>0.743224</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#venous_excess_volume_VVE1" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>3.71612</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#venous_average_pressure_PVS1" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>0.36019</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#venous_resistance_CN3" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>2.77632</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#venous_resistance_RV1" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>4.971743</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#NM_NR_venous_resistance_NNRVR" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>0.367514</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#arterial_pressure_and_pressure_gradient_VAE" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>1.07174</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#pressure_effect_on_arterial_distention_PAM" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>0.864676</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#non_renal_systemic_arterial_resistance_multiplier_R1" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>30.73545</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#NM_NR_arterial_resistance_NNRAR" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>99.8089</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#pressure_gradient_from_arteries_to_veins_PGS" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>35.7072</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#total_NM_NR_systemic_resistance_RSN" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>0.204582</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#effect_of_pressure_on_volume_receptors_AHZ" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>0.204582</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#effect_of_pressure_on_volume_receptors_AHZ1" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>-0.01947</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#total_volume_nervous_feedback_AH7" />
      </sh:solverHint>
      <sh:solverHint rdf:parseType="Resource">
        <sh:initialValue>103.525</sh:initialValue>
        <sh:degree>0</sh:degree>
        <sh:variable rdf:resource="#perfusion_pressure_PAR" />
      </sh:solverHint>
    </rdf:Description>
  </rdf:RDF>
  
<!-- ========================================	TEMP MYOGRS AND PAMK	============================================= -->
	<component cmeta:id="temp_myogrs_and_pamk" name="temp_myogrs_and_pamk">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#temp_myogrs_and_pamk">
				Temp component setting MYOGRS, PAMKRN and PAMK to 1.
			</rdf:Description>
		</rdf:RDF>
		
<!-- Outputs to other components -->
		<variable initial_value="1.0" name="MYOGRS" private_interface="none" public_interface="out" units="dimensionless"/>
		<variable initial_value="1.0" name="PAMK" private_interface="none" public_interface="out" units="dimensionless"/>
		<variable initial_value="1.0" name="PAMKRN" private_interface="none" public_interface="out" units="dimensionless"/>
	</component>
	
<!-- ========================================================	ALDOSTERONE MODEL	=========================================================== -->
	<component 	name="aldosterone" 
				cmeta:id="aldosterone">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#aldosterone">
				<rdf:value>
			ALDOSTERONE AND ITS FEEDBACK CONTROL FUNCTIONS FOR MODIFICATION OF THE CIRCULATION
			Two inputs are used for controlling aldosterone secretion, the potassium concentration in the 
			extracellular fluids (CKE) and the effect of angiotensin (ANM) on aldosterone secretion.  
			In turn, multiplier effects for aldosterone control of potassium (AMK) and sodium (AMNA) transport 
			through cell membranes, especially through the kidney tubule membranes are calculated.
			
			Encapsulation grouping component containing all the components in the Aldosterone Model.
			The inputs and outputs of the Aldosterone Model must be passed by this component.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

		<variable name="time"	units="minute"	private_interface="out" public_interface="in"/>

<!-- Inputs from components in other models -->
		<variable name="ANM"	units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="CKE"	units="monovalent_mEq_per_litre" private_interface="out" public_interface="in"/>

<!-- Outputs to components in other models -->
		<variable name="AMK" 	units="dimensionless" private_interface="in" public_interface="out"/>
		<variable name="AMNA" 	units="dimensionless" private_interface="in" public_interface="out"/>
	</component>

<!-- ALDOSTERONE OUTPUT CONNECTIONS -->
	<connection>
		<map_components component_1="aldosterone" component_2="aldosterone_effect_on_cell_membrane_K_transport"/>
		<map_variables variable_1="AMK" variable_2="AMK"/>
	</connection>
	<connection>
		<map_components component_1="aldosterone" component_2="aldosterone_effect_on_cell_membrane_Na_transport"/>
		<map_variables variable_1="AMNA" variable_2="AMNA"/>
	</connection>


<!-- ========================================	ANGIOTENSIN CONTOL OF ALDOSTERONE SECRETION	============================================= -->
	<component 	name="angiotensin_control_of_aldosterone_secretion" 
				cmeta:id="angiotensin_control_of_aldosterone_secretion">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#angiotensin_control_of_aldosterone_secretion">
				<rdf:value>
				AL1, AL2, and AL3:  
				Calculation of the partial effect of angiotensin on aldosterone secretion (ANMAL) 
				based on the general angiotensin multiplier (ANM).  The sensitivity of this effect
				is controlled by the sensitivity control variable (ANMALD) in Block AL2.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AL1_to_AL3">
				<rdf:value>
				AL1, AL2, and AL3:  
				Calculation of the partial effect of angiotensin on aldosterone secretion (ANMAL) 
				based on the general angiotensin multiplier (ANM).  The sensitivity of this effect
				is controlled by the sensitivity control variable (ANMALD) in Block AL2.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="ANM"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="ANMAL" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="ANMALD"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="AL1_to_AL3">
				<eq/>
				<ci>ANMAL</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<apply>
							<minus/>
							<ci>ANM</ci>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
						<ci>ANMALD</ci>
					</apply>
					<cn cellml:units="dimensionless">1</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="angiotensin_control_of_aldosterone_secretion" component_2="aldosterone"/>
		<map_variables variable_1="ANM" variable_2="ANM"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="angiotensin_control_of_aldosterone_secretion" component_2="aldosterone_parameter_values"/>
		<map_variables variable_1="ANMALD" variable_2="ANMALD"/>
	</connection>

<!-- ========================================	OSMOTIC CONTROL OF ALDOSTERONE SECRETION	============================================= -->
	<component 	name="osmotic_control_of_aldosterone_secretion" 
				cmeta:id="osmotic_control_of_aldosterone_secretion">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#osmotic_control_of_aldosterone_secretion">
				<rdf:value>
				AL4:  
				Calculation of the driving force of potassium extracellular fluid concentration (CKE) 
				on aldosterone secretion by subtracting the constant 3.3 from CKE.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AL4">
				<rdf:value>
				AL4:  
				Calculation of the driving force of potassium extracellular fluid concentration (CKE) 
				on aldosterone secretion by subtracting the constant 3.3 from CKE.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="CKE"	units="monovalent_mEq_per_litre" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="OSMAL" 	units="dimensionless" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="AL4">
				<eq/>
				<ci>OSMAL</ci>
				<apply>
					<divide/>
					<apply>
						<minus/>
						<ci>CKE</ci>
						<cn cellml:units="monovalent_mEq_per_litre">3.3</cn>
					</apply>
					<cn cellml:units="monovalent_mEq_per_litre">1.0</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="osmotic_control_of_aldosterone_secretion" component_2="aldosterone"/>
		<map_variables variable_1="CKE" variable_2="CKE"/>
	</connection>

<!-- ========================================	ALDOSTERONE SECRETION	============================================= -->
	<component 	name="aldosterone_secretion" 
				cmeta:id="aldosterone_secretion">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#aldosterone_secretion">
				<rdf:value>
				AL5:  
				Calculation of the basic rate of secretion of aldosterone (AMRBSC) by multiplying 
				the potassium drive for secretion from Block AL4 times the angiotensin drive for 
				aldosterone secretion (ANMAL).

				AL6, AL7, AL8, and AL9:  
				These blocks calculate the aldosterone secretion rate (AMR).  Blocks AL6, AL7, 
				and AL8 represent a sensitivity controller for the control of aldosterone secretion rate.
				The sensitivity control variable is AMKMUL in Block AL7.  Block AL9 sets a lower limit 
				to the aldosterone secretion equal to zero.

				AL9A:  
				Provision is made here for infusion of aldosterone to perform infusion experiments (ALDINF).

				AL9B:  
				Provision is made here to set the rate of aldosterone entering the circulatory system (AMR1)
				to a constant value (ALDKNS) irrespective of all other changes at earlier stages in this 
				calculation.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AL5">
				<rdf:value>
				AL5:  
				Calculation of the basic rate of secretion of aldosterone (AMRBSC) by multiplying 
				the potassium drive for secretion from Block AL4 times the angiotensin drive for 
				aldosterone secretion (ANMAL).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AL6_to_AL8">
				<rdf:value>
				AL6, AL7, AL8:  
				These blocks calculate the aldosterone secretion rate (AMR).  Blocks AL6, AL7, 
				and AL8 represent a sensitivity controller for the control of aldosterone secretion rate.
				The sensitivity control variable is AMKMUL in Block AL7.  
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AL9">
				<rdf:value>
				AL9:
				Block AL9 sets a lower limit to the aldosterone secretion equal to zero.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AL9A_and_AL9B">
				<rdf:value>
				AL9A:  
				Provision is made here for infusion of aldosterone to perform infusion experiments (ALDINF).

				AL9B:  
				Provision is made here to set the rate of aldosterone entering the circulatory system (AMR1)
				to a constant value (ALDKNS) irrespective of all other changes at earlier stages in this 
				calculation.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="ANMAL"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="OSMAL"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="AMR1" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="AMKMUL"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="ALDINF"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="ALDKNS"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="AMRBSC"	units="dimensionless" private_interface="none" public_interface="none"/>
		<variable name="AMRT"	units="dimensionless" private_interface="none" public_interface="none"/>
		<variable name="AMR"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="AL5">
				<eq/>
				<ci>AMRBSC</ci>
				<apply>
					<times/>
					<ci>ANMAL</ci>
					<cn cellml:units="dimensionless">0.909</cn>
					<ci>OSMAL</ci>
				</apply>
			</apply>
			<apply id="AL6_to_AL8">
				<eq/>
				<ci>AMRT</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<apply>
							<minus/>
							<ci>AMRBSC</ci>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
						<ci>AMKMUL</ci>
					</apply>
					<cn cellml:units="dimensionless">1</cn>
				</apply>
			</apply>
			<apply id="AL9">
				<eq/>
				<ci>AMR</ci>
				<piecewise>
					<piece>
						<cn cellml:units="dimensionless">0</cn>
						<apply>
							<lt/>
							<ci>AMRT</ci>
							<cn cellml:units="dimensionless">0</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>AMRT</ci>
					</otherwise>
				</piecewise>
			</apply>
			<apply id="AL9A_and_AL9B">
				<eq/>
				<ci>AMR1</ci>
				<piecewise>
					<piece>
						<ci>ALDKNS</ci>
						<apply>
							<gt/>
							<ci>ALDKNS</ci>
							<cn cellml:units="dimensionless">0</cn>
						</apply>
					</piece>
					<otherwise>
						<apply>
							<plus/>
							<ci>AMR</ci>
							<ci>ALDINF</ci>
						</apply>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="aldosterone_secretion" component_2="angiotensin_control_of_aldosterone_secretion"/>
		<map_variables variable_1="ANMAL" variable_2="ANMAL"/>
	</connection>
	<connection>
		<map_components component_1="aldosterone_secretion" component_2="osmotic_control_of_aldosterone_secretion"/>
		<map_variables variable_1="OSMAL" variable_2="OSMAL"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="aldosterone_secretion" component_2="aldosterone_parameter_values"/>
		<map_variables variable_1="AMKMUL" variable_2="AMKMUL"/>
		<map_variables variable_1="ALDINF" variable_2="ALDINF"/>
		<map_variables variable_1="ALDKNS" variable_2="ALDKNS"/>
	</connection>

<!-- ========================================	ALDOSTERONE CONCENTRATION		============================================= -->
	<component 	name="aldosterone_concentration" 
				cmeta:id="aldosterone_concentration">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#aldosterone_concentration">
				<rdf:value>
				AL10, AL11, and AL12:  
				Calculation of aldosterone concentration (AMC), allowing for a time delay in the
				build-up of the aldosterone.  The time constant for the time delay is AMT in Block AL12.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AL10_to_AL12">
				<rdf:value>
				AL10, AL11, and AL12:  
				Calculation of aldosterone concentration (AMC), allowing for a time delay in the
				build-up of the aldosterone.  The time constant for the time delay is AMT in Block AL12.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="AMR1"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="AMC"	initial_value="1.0"	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="AMT"	units="minute" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="AL10_to_AL12">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>AMC</ci>
				</apply>
				<apply>
					<divide/>
					<apply>
						<minus/>
						<ci>AMR1</ci>
						<ci>AMC</ci>
					</apply>
					<ci>AMT</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="aldosterone_concentration" component_2="aldosterone_secretion"/>
		<map_variables variable_1="AMR1" variable_2="AMR1"/>
	</connection>
	<connection>
		<map_components component_1="aldosterone_concentration" component_2="aldosterone"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="aldosterone_concentration" component_2="aldosterone_parameter_values"/>
		<map_variables variable_1="AMT" variable_2="AMT"/>
	</connection>

<!-- ========================================	GENERAL ALDOSTERONE MULTIPLIER	============================================= -->
	<component 	name="general_aldosterone_multiplier" 
				cmeta:id="general_aldosterone_multiplier">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#general_aldosterone_multiplier">
				<rdf:value>
				AL13:  
				This block calculates, based on the input of aldosterone concentration (AMC), 
				an output factor (AM1) for the physiological multiplying effect of aldosterone 
				on different physiological mechanisms.  This is a temporary aldosterone multiplier
				effect.  It is calculated as shown in the block, with AM1LL equal to the lower 
				limit of AM1 and AM1UL equal to the upper limit.

				AL14, AL15, and AL16:  
				These are a sensitivity controller; the control variable for sensitivity is ALDMM in
				Block AL15, and the output AM is a general aldosterone multiplier.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AL13">
				<rdf:value>
				AL13:  
				This block calculates, based on the input of aldosterone concentration (AMC), 
				an output factor (AM1) for the physiological multiplying effect of aldosterone 
				on different physiological mechanisms.  This is a temporary aldosterone multiplier
				effect.  It is calculated as shown in the block, with AM1LL equal to the lower 
				limit of AM1 and AM1UL equal to the upper limit.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AL14_to_AL16">
				<rdf:value>
				AL14, AL15, and AL16:  
				These are a sensitivity controller; the control variable for sensitivity is ALDMM in
				Block AL15, and the output AM is a general aldosterone multiplier.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="AMC"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="AM" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="AM1UL"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="AM1LL"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="AMCSNS"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="ALDMM"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="AM1"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="AL13">
				<eq/>
				<ci>AM1</ci>
				<apply>
					<minus/>
					<ci>AM1UL</ci>
					<apply>
						<divide/>
						<apply>
							<minus/>
							<ci>AM1UL</ci>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
						<apply>
							<plus/>
							<apply>
								<times/>
								<apply>
									<divide/>
									<apply>
										<minus/>
										<ci>AM1LL</ci>
										<cn cellml:units="dimensionless">1</cn>
									</apply>
									<apply>
										<minus/>
										<ci>AM1LL</ci>
										<ci>AM1UL</ci>
									</apply>
								</apply>
								<apply>
									<minus/>
									<ci>AMC</ci>
									<cn cellml:units="dimensionless">1</cn>
								</apply>
								<ci>AMCSNS</ci>
							</apply>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
					</apply>
				</apply>
			</apply>
			<apply id="AL14_to_AL16">
				<eq/>
				<ci>AM</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<apply>
							<minus/>
							<ci>AM1</ci>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
						<ci>ALDMM</ci>
					</apply>
					<cn cellml:units="dimensionless">1</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="general_aldosterone_multiplier" component_2="aldosterone_concentration"/>
		<map_variables variable_1="AMC" variable_2="AMC"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="general_aldosterone_multiplier" component_2="aldosterone_parameter_values"/>
		<map_variables variable_1="AM1UL" variable_2="AM1UL"/>
		<map_variables variable_1="AM1LL" variable_2="AM1LL"/>
		<map_variables variable_1="AMCSNS" variable_2="AMCSNS"/>
		<map_variables variable_1="ALDMM" variable_2="ALDMM"/>
	</connection>

<!-- ========================================	ALDOSTERONE EFFECT ON CELL MEMBRANE POTASSIUM TRANSPORT	============================================= -->
	<component 	name="aldosterone_effect_on_cell_membrane_K_transport" 
				cmeta:id="aldosterone_effect_on_cell_membrane_K_transport">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#aldosterone_effect_on_cell_membrane_K_transport">
				<rdf:value>
				AL17, AL18, AL19, and AL20:  
				This is an additional sensitivity control circuit for controlling the aldosterone 
				multiplier effect on potassium transport through cell membranes (AMK), especially 
				in the kidney tubules.  The input to this system is the general aldosterone multiplier (AM),
				and the sensitivity controller is the variable AMKM in Block AL18.  The lower limit to 
				AMK is set by Block AL20.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AL17_to_AL19">
				<rdf:value>
				AL17, AL18 and AL19:  
				This is an additional sensitivity control circuit for controlling the aldosterone 
				multiplier effect on potassium transport through cell membranes (AMK), especially 
				in the kidney tubules.  The input to this system is the general aldosterone multiplier (AM),
				and the sensitivity controller is the variable AMKM in Block AL18.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AL20">
				<rdf:value>
				AL20:  
				The lower limit to AMK is set by Block AL20.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="AM"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="aldosterone_effect_on_cell_membrane_K_transport_AMK"
					name="AMK" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="AMKM"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="AMKT"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="AL17_to_AL19">
				<eq/>
				<ci>AMKT</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<apply>
							<minus/>
							<ci>AM</ci>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
						<ci>AMKM</ci>
					</apply>
					<cn cellml:units="dimensionless">1</cn>
				</apply>
			</apply>
			<apply id="AL20">
				<eq/>
				<ci>AMK</ci>
				<piecewise>
					<piece>
						<cn cellml:units="dimensionless">0.2</cn>
						<apply>
							<lt/>
							<ci>AMKT</ci>
							<cn cellml:units="dimensionless">0.2</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>AMKT</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="aldosterone_effect_on_cell_membrane_K_transport" component_2="general_aldosterone_multiplier"/>
		<map_variables variable_1="AM" variable_2="AM"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="aldosterone_effect_on_cell_membrane_K_transport" component_2="aldosterone_parameter_values"/>
		<map_variables variable_1="AMKM" variable_2="AMKM"/>
	</connection>

<!-- ========================================	ALDOSTERONE EFFECT ON CELL MEMBRANE SODIUM TRANSPORT	============================================= -->
	<component 	name="aldosterone_effect_on_cell_membrane_Na_transport" 
				cmeta:id="aldosterone_effect_on_cell_membrane_Na_transport">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#aldosterone_effect_on_cell_membrane_Na_transport">
				<rdf:value>
				AL21, AL22, AL23, AL24, and AL25:  
				This circuit calculates an aldosterone multiplier factor for control of sodium 
				transport through cell membranes (AMNA), with the input to the circuit equal to 
				the generalized aldosterone multiplier (AM) and a sensitivity controller (AMNAM) 
				in Block AL22.  The upper and lower limits for the controlling effect on sodium 
				transport are set by variables AMNAUL and AMNALL in Blocks AL24 and AL25 respectively.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AL21_to_AL23">
				<rdf:value>
				AL21, AL22 and AL23:  
				This circuit calculates an aldosterone multiplier factor for control of sodium 
				transport through cell membranes (AMNA), with the input to the circuit equal to 
				the generalized aldosterone multiplier (AM) and a sensitivity controller (AMNAM) 
				in Block AL22.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AL24_and_AL25">
				<rdf:value>
				AL24, and AL25:  
				The upper and lower limits for the controlling effect on sodium 
				transport are set by variables AMNAUL and AMNALL in Blocks AL24 and AL25 respectively.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="AM"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="aldosterone_effect_on_cell_membrane_Na_transport_AMNA"
					name="AMNA" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="AMNAM"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="AMNAUL"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="AMNALL"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="AMNAT"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="AL21_to_AL23">
				<eq/>
				<ci>AMNAT</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<apply>
							<minus/>
							<ci>AM</ci>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
						<ci>AMNAM</ci>
					</apply>
					<cn cellml:units="dimensionless">1</cn>
				</apply>
			</apply>
			<apply id="AL24_and_AL25">
				<eq/>
				<ci>AMNA</ci>
				<piecewise>
					<piece>
						<ci>AMNALL</ci>
						<apply>
							<lt/>
							<ci>AMNAT</ci>
							<ci>AMNALL</ci>
						</apply>
					</piece>
					<piece>
						<ci>AMNAUL</ci>
						<apply>
							<gt/>
							<ci>AMNAT</ci>
							<ci>AMNAUL</ci>
						</apply>
					</piece>
					<otherwise>
						<ci>AMNAT</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="aldosterone_effect_on_cell_membrane_Na_transport" component_2="general_aldosterone_multiplier"/>
		<map_variables variable_1="AM" variable_2="AM"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="aldosterone_effect_on_cell_membrane_Na_transport" component_2="aldosterone_parameter_values"/>
		<map_variables variable_1="AMNAM" variable_2="AMNAM"/>
		<map_variables variable_1="AMNAUL" variable_2="AMNAUL"/>
		<map_variables variable_1="AMNALL" variable_2="AMNALL"/>
	</connection>

<!-- ==========================================================	ALDOSTERONE PARAMETER VALUES	================================================================ -->
	<component 	name="aldosterone_parameter_values"
				cmeta:id="aldosterone_parameter_values">
				
      <variable name="ANMALD" 	units="dimensionless" 	initial_value="2.5"			private_interface="none"	public_interface="out"/>	<!-- sensitivity controller, angiotensin effect on aldo secretion [P] -->
      <variable name="AMKMUL" 	units="dimensionless" 	initial_value="12"			private_interface="none"	public_interface="out"/>	<!-- sensitivity controller of AMR [P] -->
      <variable name="ALDINF" 	units="dimensionless" 	initial_value="0"			private_interface="none"	public_interface="out"/>	<!-- rate of exogenous aldosterone infusion [P] -->
      <variable name="ALDKNS" 	units="dimensionless" 	initial_value="0"			private_interface="none"	public_interface="out"/>	<!-- overriding value for aldosterone secretion [P] -->
      <variable name="AMT" 	units="minute" 		initial_value="60"			private_interface="none"	public_interface="out"/>	<!-- time constant, aldo accumulation and destruction [P] -->
      <variable name="AM1UL" 	units="dimensionless" 	initial_value="5"			private_interface="none"	public_interface="out"/>	<!-- AM1 upper limit [P] -->
      <variable name="AM1LL" 	units="dimensionless" 	initial_value="0"			private_interface="none"	public_interface="out"/>	<!-- AM1 lower limit [P] -->
      <variable name="AMCSNS" 	units="dimensionless" 	initial_value="0.65"			private_interface="none"	public_interface="out"/>	<!-- sensitivity controller, aldosterone secretion [P] -->
      <variable name="ALDMM" 	units="dimensionless" 	initial_value="2.5"			private_interface="none"	public_interface="out"/>	<!-- sensitivity controller of aldosterone multiplier [P] -->
      <variable name="AMKM" 	units="dimensionless" 	initial_value="0.5"			private_interface="none"	public_interface="out"/>	<!-- sensitivity controller of AMK [P] -->
      <variable name="AMNAM" 	units="dimensionless" 	initial_value="0.8"			private_interface="none"	public_interface="out"/>	<!-- sensitivity controller of AMNA [P] -->
      <variable name="AMNAUL" 	units="dimensionless" 	initial_value="15"			private_interface="none"	public_interface="out"/>	<!-- AMNA upper limit [P] -->
      <variable name="AMNALL" 	units="dimensionless" 	initial_value="0.04"			private_interface="none"	public_interface="out"/>	<!-- AMNA lower limit [P] -->
	</component>

<!-- =========================================================================================================================================================================== -->

<!-- ========================================================	ANGIOTENSIN MODEL	=========================================================== -->
	<component 	name="angiotensin" 
				cmeta:id="angiotensin">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#angiotensin">
				<rdf:value>
				This section calculates the control functions of angiotensin, beginning with the 
				control of angiotensin formation by the kidneys in response to changes in the rate 
				of flow of fluid in the renal tubules at the macula densa (MDFLW), and extending 
				through a series of curve-fitting and sensitivity controlled equations to determine 
				the multiple feedback effects of angiotensin to control the various aspects of 
				circulatory function.
				
				Encapsulation grouping component containing all the components in the Angiotensin Model. 
				The inputs and outputs of the Angiotensin Model must be passed by this component.				
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

		<variable name="time"	units="minute"	private_interface="out" public_interface="in"/>

<!-- Inputs from components in other models -->
		<variable name="MDFLW"	units="L_per_minute" private_interface="out" public_interface="in"/>

<!-- Outputs to components in other models -->
		<variable name="ANUVN" 	units="dimensionless" private_interface="in" public_interface="out"/>
		<variable name="ANU" 	units="dimensionless" private_interface="in" public_interface="out"/>
		<variable name="ANM" 	units="dimensionless" private_interface="in" public_interface="out"/>
	</component>

<!-- OUTPUT CONNECTIONS -->
	<connection>
		<map_components component_1="angiotensin" component_2="angiotensin_effect_on_venous_constriction"/>
		<map_variables variable_1="ANUVN" variable_2="ANUVN"/>
	</connection>
	<connection>
		<map_components component_1="angiotensin" component_2="angiotensin_effect_on_circulation"/>
		<map_variables variable_1="ANU" variable_2="ANU"/>
	</connection>
	<connection>
		<map_components component_1="angiotensin" component_2="general_angiotensin_multiplier"/>
		<map_variables variable_1="ANM" variable_2="ANM"/>
	</connection>

<!-- ========================================	INSTANTANEOUS ANGIONTENSIN FORMATION	============================================= -->
	<component 	name="instantaneous_angiotensin_formation" 
				cmeta:id="instantaneous_angiotensin_formation">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#instantaneous_angiotensin_formation">
				<rdf:value>
				AN1:  
				This block damps the variations in rate of fluid flow in the renal tubules at 
				the macula densa (MDFLW).  The damped outflow is the variable MDFLW3.
				NB - REMOVED DAMPING FORM AN1!!!!

				AN2:  
				This block calculates the formation rate of angiotensin (ANGSCR) at different 
				levels of MDFLW3.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AN1">
				<rdf:value>
				AN1:  
				This block damps the variations in rate of fluid flow in the renal tubules at 
				the macula densa (MDFLW).  The damped outflow is the variable MDFLW3.
				NB - REMOVED DAMPING FORM AN1!!!!
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AN2">
				<rdf:value>
				AN2:  
				This block calculates the formation rate of angiotensin (ANGSCR) at different 
				levels of MDFLW3.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="MDFLW"	units="L_per_minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="ANGSCR" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable name="MDFLW3"	units="L_per_minute" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="AN1">
				<eq/>
				<ci>MDFLW3</ci>
				<ci>MDFLW</ci>
			</apply>
			<apply id="AN2">
				<eq/>
				<ci>ANGSCR</ci>
				<piecewise>
					<piece>
						<apply>
							<divide/>
							<cn cellml:units="L_per_minute">1</cn>
							<apply>
								<plus/>
								<cn cellml:units="L_per_minute">1</cn>
								<apply>
									<times/>
									<apply>
										<minus/>
										<ci>MDFLW3</ci>
										<cn cellml:units="L_per_minute">1</cn>
									</apply>
									<cn cellml:units="dimensionless">72</cn>
								</apply>
							</apply>
						</apply>
						<apply>
							<gt/>
							<ci>MDFLW3</ci>
							<cn cellml:units="L_per_minute">1</cn>
						</apply>
					</piece>
					<otherwise>
						<apply>
							<minus/>
							<cn cellml:units="dimensionless">10</cn>
							<apply>
								<divide/>
								<cn cellml:units="L_per_minute">9</cn>
								<apply>
									<plus/>
									<cn cellml:units="L_per_minute">1</cn>
									<apply>
										<times/>
										<apply>
											<minus/>
											<cn cellml:units="L_per_minute">1</cn>
											<ci>MDFLW3</ci>
										</apply>
										<cn cellml:units="dimensionless">8</cn>
									</apply>
								</apply>
							</apply>
						</apply>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="instantaneous_angiotensin_formation" component_2="angiotensin"/>
		<map_variables variable_1="MDFLW" variable_2="MDFLW"/>
	</connection>

<!-- ========================================	TIME-DELAYED ANGIOTENSIN FORMATION	============================================= -->
	<component 	name="time_delayed_angiotensin_formation" 
				cmeta:id="time_delayed_angiotensin_formation">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#time_delayed_angiotensin_formation">
				<rdf:value>
				AN4, AN5, AN6, AN7, and AN8:  
				Calculation of additional formation of angiotensin caused after a long-term delay.  
				That is, when the JG cells are stimulated over long periods of time, in addition to
				their acute effects on secretion rate of renin and subsequent formation of angiotensin,
				there is a long-term increase in numbers of active JG cells to give a long-term delayed 
				response over a period of days.  The variable ANXM adjusts the magnitude of this 
				delayed response.  ANX is the total response without regard to the time delay.  ANV is 
				the time-constant of the time delay.  ANX1 is the total extra secretion after factoring
				in the time delay effects of blocks 6, 7, and 8.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AN4_and_AN5">
				<rdf:value>
				AN4, AN5, AN6, AN7, and AN8:  
				Calculation of additional formation of angiotensin caused after a long-term delay.  
				That is, when the JG cells are stimulated over long periods of time, in addition to
				their acute effects on secretion rate of renin and subsequent formation of angiotensin,
				there is a long-term increase in numbers of active JG cells to give a long-term delayed 
				response over a period of days.  The variable ANXM adjusts the magnitude of this 
				delayed response.  ANX is the total response without regard to the time delay.  ANV is 
				the time-constant of the time delay.  ANX1 is the total extra secretion after factoring
				in the time delay effects of blocks 6, 7, and 8.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AN6_to_AN8">
				<rdf:value>
				AN4, AN5, AN6, AN7, and AN8:  
				Calculation of additional formation of angiotensin caused after a long-term delay.  
				That is, when the JG cells are stimulated over long periods of time, in addition to
				their acute effects on secretion rate of renin and subsequent formation of angiotensin,
				there is a long-term increase in numbers of active JG cells to give a long-term delayed 
				response over a period of days.  The variable ANXM adjusts the magnitude of this 
				delayed response.  ANX is the total response without regard to the time delay.  ANV is 
				the time-constant of the time delay.  ANX1 is the total extra secretion after factoring
				in the time delay effects of blocks 6, 7, and 8.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="ANGSCR"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="ANX1" 	initial_value="0.0"	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="ANXM"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="ANV"	units="minute" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="ANX"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="AN4_and_AN5">
				<eq/>
				<ci>ANX</ci>
				<apply>
					<times/>
					<apply>
						<minus/>
						<ci>ANGSCR</ci>
						<cn cellml:units="dimensionless">1</cn>
					</apply>
					<ci>ANXM</ci>
				</apply>
			</apply>
			<apply id="AN6_to_AN8">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>ANX1</ci>
				</apply>
				<apply>
					<divide/>
					<apply>
						<minus/>
						<ci>ANX</ci>
						<ci>ANX1</ci>
					</apply>
					<ci>ANV</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="time_delayed_angiotensin_formation" component_2="instantaneous_angiotensin_formation"/>
		<map_variables variable_1="ANGSCR" variable_2="ANGSCR"/>
	</connection>
	<connection>
		<map_components component_1="time_delayed_angiotensin_formation" component_2="angiotensin"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="time_delayed_angiotensin_formation" component_2="angiotensin_parameter_values"/>
		<map_variables variable_1="ANXM" variable_2="ANXM"/>
		<map_variables variable_1="ANV" variable_2="ANV"/>
	</connection>

<!-- ========================================	TOTAL ANGIOTENSIN FORMATION	============================================= -->
	<component 	name="total_angiotensin_formation" 
				cmeta:id="total_angiotensin_formation">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#total_angiotensin_formation">
				<rdf:value>
				AN9:  
				Summation of instantaneous formation of angiotensin (ANGSCR) plus the time delayed 
				formation of angiotensin (ANX1).

				AN10:  
				Calculation of the total rate of formation of angiotensin (ANPR) in case some of 
				the renal mass (and therefore some of the JG cells) has been removed or destroyed. 
				Factor REK is equal to the proportion of kidney mass that is still functional.

				AN11:  
				This sets the lower limit of ANPR to a very low level, almost zero, below which 
				this cannot fall.  The reason for this is to prevent a negative value from appearing.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AN9_and_AN10">
				<rdf:value>
				AN9:  
				Summation of instantaneous formation of angiotensin (ANGSCR) plus the time delayed 
				formation of angiotensin (ANX1).

				AN10:  
				Calculation of the total rate of formation of angiotensin (ANPR) in case some of 
				the renal mass (and therefore some of the JG cells) has been removed or destroyed. 
				Factor REK is equal to the proportion of kidney mass that is still functional.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AN11">
				<rdf:value>
				AN11:  
				This sets the lower limit of ANPR to a very low level, almost zero, below which 
				this cannot fall.  The reason for this is to prevent a negative value from appearing.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="ANGSCR"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="ANX1"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="ANPR" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="REK"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="ANPRT"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="AN9_and_AN10">
				<eq/>
				<ci>ANPRT</ci>
				<apply>
					<times/>
					<apply>
						<plus/>
						<ci>ANGSCR</ci>
						<ci>ANX1</ci>
					</apply>
					<ci>REK</ci>
				</apply>
			</apply>
			<apply id="AN11">
				<eq/>
				<ci>ANPR</ci>
				<piecewise>
					<piece>
						<cn cellml:units="dimensionless">0.00001</cn>
						<apply>
							<lt/>
							<ci>ANPRT</ci>
							<cn cellml:units="dimensionless">0.00001</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>ANPRT</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="total_angiotensin_formation" component_2="instantaneous_angiotensin_formation"/>
		<map_variables variable_1="ANGSCR" variable_2="ANGSCR"/>
	</connection>
	<connection>
		<map_components component_1="total_angiotensin_formation" component_2="time_delayed_angiotensin_formation"/>
		<map_variables variable_1="ANX1" variable_2="ANX1"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="total_angiotensin_formation" component_2="angiotensin_parameter_values"/>
		<map_variables variable_1="REK" variable_2="REK"/>
	</connection>

<!-- ========================================	ARTIFICIAL ANGIOTENSIN FORMATION	============================================= -->
	<component 	name="artificial_angiotensin_formation" 
				cmeta:id="artificial_angiotensin_formation">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#artificial_angiotensin_formation">
				<rdf:value>
				AN11A:  
				This block allows the addition of infused angiotensin (ANGINF) to the amount of 
				angiotensin that is formed in the body (ANPR).

				AN11B:  
				This block allows one to disregard all the previous blocks and to set the total 
				rate of angiotensin entering the circulatory system (ANPR1) to a constant level, ANGKNS. 
				When ANGKNS is equal to zero or less, then Block 11B is ineffective.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AN11A_and_AN11B">
				<rdf:value>
				AN11A:  
				This block allows the addition of infused angiotensin (ANGINF) to the amount of 
				angiotensin that is formed in the body (ANPR).

				AN11B:  
				This block allows one to disregard all the previous blocks and to set the total 
				rate of angiotensin entering the circulatory system (ANPR1) to a constant level, ANGKNS. 
				When ANGKNS is equal to zero or less, then Block 11B is ineffective.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="ANPR"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="ANPR1" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="ANGKNS"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="ANGINF"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="AN11A_and_AN11B">
				<eq/>
				<ci>ANPR1</ci>
				<piecewise>
					<piece>
						<ci>ANGKNS</ci>
						<apply>
							<gt/>
							<ci>ANGKNS</ci>
							<cn cellml:units="dimensionless">0</cn>
						</apply>
					</piece>
					<otherwise>
						<apply>
							<plus/>
							<ci>ANPR</ci>
							<ci>ANGINF</ci>
						</apply>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="artificial_angiotensin_formation" component_2="total_angiotensin_formation"/>
		<map_variables variable_1="ANPR" variable_2="ANPR"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="artificial_angiotensin_formation" component_2="angiotensin_parameter_values"/>
		<map_variables variable_1="ANGKNS" variable_2="ANGKNS"/>
		<map_variables variable_1="ANGINF" variable_2="ANGINF"/>
	</connection>

<!-- ========================================	ANGIOTENSIN CONCENTRATION	============================================= -->
	<component 	name="angiotensin_concentration" 
				cmeta:id="angiotensin_concentration">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#angiotensin_concentration">
				<rdf:value>
				AN12, AN13, and AN14:  
				These blocks convert the rate of entry of angiotensin into the body fluids (ANPR1), 
				into the concentration of angiotensin (ANC) considering the normal value to be the 
				numeral 1.  The value ANT is the time constant for rate of change of angiotensin 
				concentration in the body fluids.  The value Z12 is a damping coefficient to allow 
				damping of this conversion so that the model can be run faster for long-term simulations.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AN12_to_AN14">
				<rdf:value>
				AN12, AN13, and AN14:  
				These blocks convert the rate of entry of angiotensin into the body fluids (ANPR1), 
				into the concentration of angiotensin (ANC) considering the normal value to be the 
				numeral 1.  The value ANT is the time constant for rate of change of angiotensin 
				concentration in the body fluids.  The value Z12 is a damping coefficient to allow 
				damping of this conversion so that the model can be run faster for long-term simulations.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="ANPR1"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="ANC" 	initial_value="0.859476"	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="ANT"	units="minute" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="AN12_to_AN14">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>ANC</ci>
				</apply>
				<apply>
					<divide/>
					<apply>
						<minus/>
						<ci>ANPR1</ci>
						<ci>ANC</ci>
					</apply>
					<ci>ANT</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="angiotensin_concentration" component_2="artificial_angiotensin_formation"/>
		<map_variables variable_1="ANPR1" variable_2="ANPR1"/>
	</connection>
	<connection>
		<map_components component_1="angiotensin_concentration" component_2="angiotensin"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="angiotensin_concentration" component_2="angiotensin_parameter_values"/>
		<map_variables variable_1="ANT" variable_2="ANT"/>
	</connection>

<!-- ========================================	GENERAL ANGIOTENSIN MULTIPLIER	============================================= -->
	<component 	name="general_angiotensin_multiplier" 
				cmeta:id="general_angiotensin_multiplier">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#general_angiotensin_multiplier">
				<rdf:value>
				AN15:  
				This is an equation that allows one to convert the concentration of angiotensin (ANC) 
				into an angiotensin multiplier (ANM) which describes the multiplicative effect of 
				angiotensin on various physiological functions, assuming the normal value of ANM 
				to be 1.0.  The value ANMUL is the upper limit to the level of ANM.  ANMLL is the 
				lower limit of ANM.  And the value ANCSNS is a sensitivity value for adjusting the 
				quantitative effect of ANC on ANM.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AN15">
				<rdf:value>
				AN15:  
				This is an equation that allows one to convert the concentration of angiotensin (ANC) 
				into an angiotensin multiplier (ANM) which describes the multiplicative effect of 
				angiotensin on various physiological functions, assuming the normal value of ANM 
				to be 1.0.  The value ANMUL is the upper limit to the level of ANM.  ANMLL is the 
				lower limit of ANM.  And the value ANCSNS is a sensitivity value for adjusting the 
				quantitative effect of ANC on ANM.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="ANC"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="general_angiotensin_multiplier_ANM"
					name="ANM" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="ANMUL"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="ANMLL"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="ANCSNS"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="AN15">
				<eq/>
				<ci>ANM</ci>
				<apply>
					<minus/>
					<ci>ANMUL</ci>
					<apply>
						<divide/>
						<apply>
							<minus/>
							<ci>ANMUL</ci>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
						<apply>
							<plus/>
							<apply>
								<times/>
								<apply>
									<divide/>
									<apply>
										<minus/>
										<ci>ANMLL</ci>
										<cn cellml:units="dimensionless">1</cn>
									</apply>
									<apply>
										<minus/>
										<ci>ANMLL</ci>
										<ci>ANMUL</ci>
									</apply>
								</apply>
								<apply>
									<minus/>
									<ci>ANC</ci>
									<cn cellml:units="dimensionless">1</cn>
								</apply>
								<ci>ANCSNS</ci>
							</apply>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
					</apply>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="general_angiotensin_multiplier" component_2="angiotensin_concentration"/>
		<map_variables variable_1="ANC" variable_2="ANC"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="general_angiotensin_multiplier" component_2="angiotensin_parameter_values"/>
		<map_variables variable_1="ANMUL" variable_2="ANMUL"/>
		<map_variables variable_1="ANMLL" variable_2="ANMLL"/>
		<map_variables variable_1="ANCSNS" variable_2="ANCSNS"/>
	</connection>

<!-- ========================================	ANGIOTENSIN EFFECT ON CIRCULATION	============================================= -->
	<component 	name="angiotensin_effect_on_circulation" 
				cmeta:id="angiotensin_effect_on_circulation">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#angiotensin_effect_on_circulation">
				<rdf:value>
				AN16, AN17, and AN18:  
				These blocks are a sensitivity controller for converting the basic effect of the 
				angiotensin multiplier (ANM) on other functional systems of the circulation (ANU).  
				The sensitivity adjustment is the factor ANUM in Block 17.

				AN19:  
				This block sets the lower limit to which ANU can fall (ANULL).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AN16_to_AN18">
				<rdf:value>
				AN16, AN17, and AN18:  
				These blocks are a sensitivity controller for converting the basic effect of the 
				angiotensin multiplier (ANM) on other functional systems of the circulation (ANU).  
				The sensitivity adjustment is the factor ANUM in Block 17.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AN19">
				<rdf:value>
				AN19:  
				This block sets the lower limit to which ANU can fall (ANULL).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="ANM"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="angiotensin_effect_on_circulation_ANU"
					name="ANU" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="ANUM"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="ANULL"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="ANU1"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="AN16_to_AN18">
				<eq/>
				<ci>ANU1</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<apply>
							<minus/>
							<ci>ANM</ci>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
						<ci>ANUM</ci>
					</apply>
					<cn cellml:units="dimensionless">1</cn>
				</apply>
			</apply>
			<apply id="AN19">
				<eq/>
				<ci>ANU</ci>
				<piecewise>
					<piece>
						<ci>ANULL</ci>
						<apply>
							<lt/>
							<ci>ANU1</ci>
							<ci>ANULL</ci>
						</apply>
					</piece>
					<otherwise>
						<ci>ANU1</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="angiotensin_effect_on_circulation" component_2="general_angiotensin_multiplier"/>
		<map_variables variable_1="ANM" variable_2="ANM"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="angiotensin_effect_on_circulation" component_2="angiotensin_parameter_values"/>
		<map_variables variable_1="ANUM" variable_2="ANUM"/>
		<map_variables variable_1="ANULL" variable_2="ANULL"/>
	</connection>

<!-- ========================================	ANGIOTENSIN EFFECT ON VENOUS CONSTRICTION	============================================= -->
	<component 	name="angiotensin_effect_on_venous_constriction" 
				cmeta:id="angiotensin_effect_on_venous_constriction">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#angiotensin_effect_on_venous_constriction">
				<rdf:value>
				AN20, AN21, and AN22:  
				Calculation of the effect of angiotensin on venous constriction (ANUVN), with 
				sensitivity controlled by ANUVM in Block 21.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AN20_to_AN22">
				<rdf:value>
				AN20, AN21, and AN22:  
				Calculation of the effect of angiotensin on venous constriction (ANUVN), with 
				sensitivity controlled by ANUVM in Block 21.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="ANU"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="angiotensin_effect_on_venous_constriction_ANUVN"
					name="ANUVN" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="ANUVM"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="AN20_to_AN22">
				<eq/>
				<ci>ANUVN</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<apply>
							<minus/>
							<ci>ANU</ci>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
						<ci>ANUVM</ci>
					</apply>
					<cn cellml:units="dimensionless">1</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="angiotensin_effect_on_venous_constriction" component_2="angiotensin_effect_on_circulation"/>
		<map_variables variable_1="ANU" variable_2="ANU"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="angiotensin_effect_on_venous_constriction" component_2="angiotensin_parameter_values"/>
		<map_variables variable_1="ANUVM" variable_2="ANUVM"/>
	</connection>

<!-- ==========================================================	ANGIOTENSIN PARAMETER VALUES	================================================================ -->
	<component 	name="angiotensin_parameter_values"
				cmeta:id="angiotensin_parameter_values">
		<variable name="ANXM"	 	units="dimensionless" 	initial_value="0"			private_interface="none"	public_interface="out"/>	<!-- sensitivity controller of ANX [P] -->
		<variable name="ANV" 		units="minute" 			initial_value="5000"		private_interface="none"	public_interface="out"/>	<!-- time constant, angiotensin secretion [P] -->
		<variable name="REK" 		units="dimensionless" 	initial_value="1"			private_interface="none"	public_interface="out"/>	<!-- total functional renal mass, ratio to normal [P] -->
		<variable name="ANGINF" 	units="dimensionless" 	initial_value="0"			private_interface="none"	public_interface="out"/>	<!-- rate of exogenous angiotensin infusion [P] -->
		<variable name="ANGKNS" 	units="dimensionless" 	initial_value="0"			private_interface="none"	public_interface="out"/>	<!-- overriding value for angiotensin secretion [P] -->
		<variable name="ANT" 		units="minute" 			initial_value="12"			private_interface="none"	public_interface="out"/>	<!-- time constant, angiotensin accumulation and destruction [P] -->
		<variable name="Z12" 		units="dimensionless" 	initial_value="5"			private_interface="none"	public_interface="out"/>	<!-- damping factor, angiotensin system [P] -->
		<variable name="ANMUL" 		units="dimensionless" 	initial_value="1.8"			private_interface="none"	public_interface="out"/>	<!-- ANM upper limit [P] -->
		<variable name="ANMLL" 		units="dimensionless" 	initial_value="0.7"			private_interface="none"	public_interface="out"/>	<!-- ANM lower limit [P] -->
		<variable name="ANCSNS" 	units="dimensionless" 	initial_value="0.4"			private_interface="none"	public_interface="out"/>	<!-- sensitivity controller of ANM [P] -->
		<variable name="ANULL" 		units="dimensionless" 	initial_value="0.8"			private_interface="none"	public_interface="out"/>	<!-- ANU lower limit [P] -->
		<variable name="ANUM" 		units="dimensionless" 	initial_value="6"			private_interface="none"	public_interface="out"/>	<!-- sensitivity controller of ANU [P] -->
		<variable name="ANUVM" 		units="dimensionless" 	initial_value="0"			private_interface="none"	public_interface="out"/>	<!-- sensitivity controller of ANUVN [P] -->
	</component>

<!-- ============================================================================================================================================================ -->


<!-- ===================================================	ANTI-DIURETIC HORMONE MODEL	====================================================== -->
	<component 	name="antidiuretic_hormone" 
				cmeta:id="antidiuretic_hormone">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#antidiuretic_hormone">
				<rdf:value>
				Antidiuretic Hormone and its control functions.
				This section calculates the control of antidiuretic hormone secretion and also 
				calculates multiplier factors for control of other aspects of circulatory function 
				by antidiuretic hormone.  The major factors that are considered to affect the rate 
				of antidiuretic hormone secretion are (1) a feedback effect of osmotic concentration 
				in the extracellular fluids as determined from the concentration of sodium (CNA), 
				and (2) a feedback effect of arterial pressure (PA).

				Encapsulation grouping component containing all the components in the Anti-Diuretic Hormone Model. 
				The inputs and outputs of the Anti-Diuretic Hormone Model must be passed by this component.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

		<variable name="time"	units="minute"	private_interface="out" public_interface="in"/>

<!-- Inputs from components in other models -->
		<variable name="CNA"	units="monovalent_mEq_per_litre" private_interface="out" public_interface="in"/>
		<variable name="PA1"	units="mmHg" private_interface="out" public_interface="in"/>

<!-- Outputs to components in other models -->
		<variable name="ADHMK" 	units="dimensionless" private_interface="in" public_interface="out"/>
		<variable name="ADHMV" 	units="dimensionless" private_interface="in" public_interface="out"/>
		<variable name="ADHC" 	units="dimensionless" private_interface="in" public_interface="out"/>
	</component>

<!-- OUTPUT CONNECTIONS -->
	<connection>
		<map_components component_1="antidiuretic_hormone" component_2="ADH_effect_on_kidney"/>
		<map_variables variable_1="ADHMK" variable_2="ADHMK"/>
	</connection>
	<connection>
		<map_components component_1="antidiuretic_hormone" component_2="ADH_effect_on_nonrenal_vascular_resistance"/>
		<map_variables variable_1="ADHMV" variable_2="ADHMV"/>
	</connection>
	<connection>
		<map_components component_1="antidiuretic_hormone" component_2="ADH_in_blood"/>
		<map_variables variable_1="ADHC" variable_2="ADHC"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- ========================================	OSMOTIC CONTROL OF ANTIDIURETIC HORMONE SECRETION	============================================= -->
	<component 	name="osmotic_control_of_ADH_secretion" 
				cmeta:id="osmotic_control_of_ADH_secretion">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#osmotic_control_of_ADH_secretion">
				<rdf:value>
				AD1, AD2, and AD3:  
				Calculation of a multiplier factor (ADHNA) that determines the effect of the 
				concentration of sodium in the extracellular fluid (CNA) on the secretion of ADH.  
				The lower limit of CNA at which the normal stimulating effect of changes in CNA 
				will affect antidiuretic hormone secretion is equal to CNR.  The mathematical 
				steps in Blocks AD1, AD2, and AD3 provide curve shaping effects for the relationship 
				between CNA and ADHNA.

				AD8:  
				The effect of sodium concentration on ADH secretion (ADHNA) is not allowed 
				to go below zero.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AD1_to_AD3">
				<rdf:value>
				AD1, AD2, and AD3:  
				Calculation of a multiplier factor (ADHNA) that determines the effect of the 
				concentration of sodium in the extracellular fluid (CNA) on the secretion of ADH.  
				The lower limit of CNA at which the normal stimulating effect of changes in CNA 
				will affect antidiuretic hormone secretion is equal to CNR.  The mathematical 
				steps in Blocks AD1, AD2, and AD3 provide curve shaping effects for the relationship 
				between CNA and ADHNA.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AD8">
				<rdf:value>
				AD8:  
				The effect of sodium concentration on ADH secretion (ADHNA) is not allowed 
				to go below zero.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="CNA"	units="monovalent_mEq_per_litre" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="ADHNA" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="CNR"	units="monovalent_mEq_per_litre" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="ADHNA1"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="AD1_to_AD3">
				<eq/>
				<ci>ADHNA1</ci>
				<apply>
					<divide/>
					<apply>
						<minus/>
						<ci>CNA</ci>
						<ci>CNR</ci>
					</apply>
					<apply>
						<minus/>
						<cn cellml:units="monovalent_mEq_per_litre">142</cn>
						<ci>CNR</ci>
					</apply>
				</apply>
			</apply>
			<apply id="AD8">
				<eq/>
				<ci>ADHNA</ci>
				<piecewise>
					<piece>
						<cn cellml:units="dimensionless">0</cn>
						<apply>
							<lt/>
							<ci>ADHNA1</ci>
							<cn cellml:units="dimensionless">0</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>ADHNA1</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="osmotic_control_of_ADH_secretion" component_2="antidiuretic_hormone"/>
		<map_variables variable_1="CNA" variable_2="CNA"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="osmotic_control_of_ADH_secretion" component_2="antidiuretic_hormone_parameter_values"/>
		<map_variables variable_1="CNR" variable_2="CNR"/>
	</connection>

<!-- ========================================	PRESSURE CONTROL OF ANTIDIURETIC HORMONE SECRETION	============================================= -->
	<component 	name="pressure_control_of_ADH_secretion" 
				cmeta:id="pressure_control_of_ADH_secretion">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#pressure_control_of_ADH_secretion">
				<rdf:value>
				AD4, AD5, AD6, and AD7:  
				Calculation of the effect of low levels of arterial pressure to cause secretion 
				of antidiuretic hormone.  The mathematical steps in these blocks provide appropriate 
				curve shaping.  Zero effect of pressure on ADH secretion occurs whenever the arterial 
				pressure is greater than 85 mm Hg.  The factor ADHPAM is the sensitivity control for 
				the overall effect.  The output of this set of blocks is ADHPR.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AD4">
				<rdf:value>
				AD4, AD5, AD6, and AD7:  
				Calculation of the effect of low levels of arterial pressure to cause secretion 
				of antidiuretic hormone.  The mathematical steps in these blocks provide appropriate 
				curve shaping.  Zero effect of pressure on ADH secretion occurs whenever the arterial 
				pressure is greater than 85 mm Hg.  The factor ADHPAM is the sensitivity control for 
				the overall effect.  The output of this set of blocks is ADHPR.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AD5_to_AD7">
				<rdf:value>
				AD4, AD5, AD6, and AD7:  
				Calculation of the effect of low levels of arterial pressure to cause secretion 
				of antidiuretic hormone.  The mathematical steps in these blocks provide appropriate 
				curve shaping.  Zero effect of pressure on ADH secretion occurs whenever the arterial 
				pressure is greater than 85 mm Hg.  The factor ADHPAM is the sensitivity control for 
				the overall effect.  The output of this set of blocks is ADHPR.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PA1"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="ADHPR" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="ADHPUL"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="ADHPAM"	units="per_mmHg2" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="ADHPA"	units="mmHg" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="AD4">
				<eq/>
				<ci>ADHPA</ci>
				<piecewise>
					<piece>
						<ci>ADHPUL</ci>
						<apply>
							<gt/>
							<ci>PA1</ci>
							<ci>ADHPUL</ci>
						</apply>
					</piece>
					<otherwise>
						<ci>PA1</ci>
					</otherwise>
				</piecewise>
			</apply>
			<apply id="AD5_to_AD7">
				<eq/>
				<ci>ADHPR</ci>
				<apply>
					<times/>
					<apply>
						<power/>
						<apply>
							<minus/>
							<ci>ADHPUL</ci>
							<ci>ADHPA</ci>
						</apply>
						<cn cellml:units="dimensionless">2</cn>
					</apply>
					<ci>ADHPAM</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="pressure_control_of_ADH_secretion" component_2="antidiuretic_hormone"/>
		<map_variables variable_1="PA1" variable_2="PA1"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="pressure_control_of_ADH_secretion" component_2="antidiuretic_hormone_parameter_values"/>
		<map_variables variable_1="ADHPUL" variable_2="ADHPUL"/>
		<map_variables variable_1="ADHPAM" variable_2="ADHPAM"/>
	</connection>

<!-- ========================================	TOTAL ANTIDIURETIC HORMONE SECRETION	============================================= -->
	<component 	name="total_ADH_secretion" 
				cmeta:id="total_ADH_secretion">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#total_ADH_secretion">
				<rdf:value>
				AD9:  
				Calculation of the net rate of ADH entry into the body fluids (ADH) by adding 
				the partial effect of ADHNA for osmotic control of ADH secretion plus the partial 
				effect ADHPR for pressure control of secretion, plus ADHINF for any rate of 
				infusion of ADH.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AD9">
				<rdf:value>
				AD9:  
				Calculation of the net rate of ADH entry into the body fluids (ADH) by adding 
				the partial effect of ADHNA for osmotic control of ADH secretion plus the partial 
				effect ADHPR for pressure control of secretion, plus ADHINF for any rate of 
				infusion of ADH.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="ADHNA"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="ADHPR"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="ADH" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="ADHINF"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="ADH1"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="AD9">
				<eq/>
				<ci>ADH1</ci>
				<apply>
					<plus/>
					<ci>ADHNA</ci>
					<ci>ADHPR</ci>
					<ci>ADHINF</ci>
				</apply>
			</apply>
			<apply id="AD9_extended">
				<eq/>
				<ci>ADH</ci>
				<piecewise>
					<piece>
						<cn cellml:units="dimensionless">0</cn>
						<apply>
							<lt/>
							<ci>ADH1</ci>
							<cn cellml:units="dimensionless">0</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>ADH1</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="total_ADH_secretion" component_2="osmotic_control_of_ADH_secretion"/>
		<map_variables variable_1="ADHNA" variable_2="ADHNA"/>
	</connection>
	<connection>
		<map_components component_1="total_ADH_secretion" component_2="pressure_control_of_ADH_secretion"/>
		<map_variables variable_1="ADHPR" variable_2="ADHPR"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="total_ADH_secretion" component_2="antidiuretic_hormone_parameter_values"/>
		<map_variables variable_1="ADHINF" variable_2="ADHINF"/>
	</connection>

<!-- ========================================	ANTIDIURETIC HORMONE IN BLOOD	============================================= -->
	<component 	name="ADH_in_blood" 
				cmeta:id="ADH_in_blood">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#ADH_in_blood">
				<rdf:value>
				AD10, AD11, AD12, and AD13:  
				Calculation of instantaneous antidiuretic hormone concentration in the blood (ADHC) 
				by integrating in Block 12 the rate of hormone entry into the fluids (ADH) with 
				respect to time.  A time constant for the integration (Block 11) is equal to ADHTC.  
				Block 13 damps the response of this integration to prevent oscillation when very 
				long iteration intervals are used in providing long-term solutions for the model.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AD10_to_AD13">
				<rdf:value>
				AD10, AD11, AD12, and AD13:  
				Calculation of instantaneous antidiuretic hormone concentration in the blood (ADHC) 
				by integrating in Block 12 the rate of hormone entry into the fluids (ADH) with 
				respect to time.  A time constant for the integration (Block 11) is equal to ADHTC.  
				Block 13 damps the response of this integration to prevent oscillation when very 
				long iteration intervals are used in providing long-term solutions for the model.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="ADH"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="ADH_in_blood_ADHC"
					name="ADHC"	initial_value="1.0"	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="ADHTC"	units="minute" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="AD10_to_AD13">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>ADHC</ci>
				</apply>
				<apply>
					<divide/>
					<apply>
						<minus/>
						<ci>ADH</ci>
						<ci>ADHC</ci>
					</apply>
					<ci>ADHTC</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="ADH_in_blood" component_2="total_ADH_secretion"/>
		<map_variables variable_1="ADH" variable_2="ADH"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="ADH_in_blood" component_2="antidiuretic_hormone_parameter_values"/>
		<map_variables variable_1="ADHTC" variable_2="ADHTC"/>
	</connection>

<!-- ====================================	ANTIDIURETIC HORMONE EFFECT ON NONRENAL VASCULAR RESISTANCE	======================================== -->
	<component 	name="ADH_effect_on_nonrenal_vascular_resistance" 
				cmeta:id="ADH_effect_on_nonrenal_vascular_resistance">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#ADH_effect_on_nonrenal_vascular_resistance">
				<rdf:value>
				AD14 and AD15:  
				Calculation from the instantaneous concentration of ADH in the plasma (ADHC) 
				of a multiplier factor (ADHMV) to describe the effect of antidiuretic hormone 
				in causing contraction of many of the blood vessels of the body.  Block 15 sets 
				a lower limit for ADHMV equal to ADHVLL, and the upper limit is ADHVUL.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AD14">
				<rdf:value>
				AD14:  
				Calculation from the instantaneous concentration of ADH in the plasma (ADHC) 
				of a multiplier factor (ADHMV) to describe the effect of antidiuretic hormone 
				in causing contraction of many of the blood vessels of the body.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AD15">
				<rdf:value>
				AD15:  
				Block 15 sets a lower limit for ADHMV equal to ADHVLL, and the upper limit is ADHVUL.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="ADHC"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="ADH_effect_on_nonrenal_vascular_resistance_ADHMV"
					name="ADHMV" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="ADHVUL"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="ADHVLL"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="ADHMV1"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="AD14">
				<eq/>
				<ci>ADHMV1</ci>
				<apply>
					<minus/>
					<ci>ADHVUL</ci>
					<apply>
						<divide/>
						<apply>
							<minus/>
							<ci>ADHVUL</ci>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
						<apply>
							<plus/>
							<apply>
								<times/>
								<apply>
									<divide/>
									<apply>
										<minus/>
										<ci>ADHVLL</ci>
										<cn cellml:units="dimensionless">1</cn>
									</apply>
									<apply>
										<minus/>
										<ci>ADHVLL</ci>
										<ci>ADHVUL</ci>
									</apply>
								</apply>
								<apply>
									<minus/>
									<ci>ADHC</ci>
									<cn cellml:units="dimensionless">1</cn>
								</apply>
							</apply>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
					</apply>
				</apply>
			</apply>
			<apply id="AD15">
				<eq/>
				<ci>ADHMV</ci>
				<piecewise>
					<piece>
						<ci>ADHVLL</ci>
						<apply>
							<lt/>
							<ci>ADHMV1</ci>
							<ci>ADHVLL</ci>
						</apply>
					</piece>
					<otherwise>
						<ci>ADHMV1</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="ADH_effect_on_nonrenal_vascular_resistance" component_2="ADH_in_blood"/>
		<map_variables variable_1="ADHC" variable_2="ADHC"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="ADH_effect_on_nonrenal_vascular_resistance" component_2="antidiuretic_hormone_parameter_values"/>
		<map_variables variable_1="ADHVUL" variable_2="ADHVUL"/>
		<map_variables variable_1="ADHVLL" variable_2="ADHVLL"/>
	</connection>

<!-- ========================================	ANTIDIURETIC HORMONE EFFECT ON KIDNEY	============================================= -->
	<component 	name="ADH_effect_on_kidney" 
				cmeta:id="ADH_effect_on_kidney">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#ADH_effect_on_kidney">
				<rdf:value>
				AD16 and AD17:  
				Calculation from the plasma concentration of ADH (ADHC) of a multiplier factor (ADHMK) 
				to describe the effect of the ADH in affecting the kidney.  Block 17 gives a lower limit
				to ADHMK equal to ADHKLL, and Block 16 gives an upper limit equal to AMKUL.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AD16">
				<rdf:value>
				AD16:  
				Calculation from the plasma concentration of ADH (ADHC) of a multiplier factor (ADHMK) 
				to describe the effect of the ADH in affecting the kidney.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AD17">
				<rdf:value>
				AD17:  
				Block 17 gives a lower limit to ADHMK equal to ADHKLL, and Block 16 gives an upper limit equal to AMKUL.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="ADHC"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="ADH_effect_on_kidney_ADHMK"
					name="ADHMK" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="ADHKLL"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="ADHKUL"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="ADHMK1"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="AD16">
				<eq/>
				<ci>ADHMK1</ci>
				<apply>
					<minus/>
					<ci>ADHKUL</ci>
					<apply>
						<divide/>
						<apply>
							<minus/>
							<ci>ADHKUL</ci>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
						<apply>
							<plus/>
							<apply>
								<times/>
								<apply>
									<divide/>
									<apply>
										<minus/>
										<ci>ADHKLL</ci>
										<cn cellml:units="dimensionless">1</cn>
									</apply>
									<apply>
										<minus/>
										<ci>ADHKLL</ci>
										<ci>ADHKUL</ci>
									</apply>
								</apply>
								<apply>
									<minus/>
									<ci>ADHC</ci>
									<cn cellml:units="dimensionless">1</cn>
								</apply>
							</apply>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
					</apply>
				</apply>
			</apply>
			<apply id="AD17">
				<eq/>
				<ci>ADHMK</ci>
				<piecewise>
					<piece>
						<ci>ADHKLL</ci>
						<apply>
							<lt/>
							<ci>ADHMK1</ci>
							<ci>ADHKLL</ci>
						</apply>
					</piece>
					<otherwise>
						<ci>ADHMK1</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="ADH_effect_on_kidney" component_2="ADH_in_blood"/>
		<map_variables variable_1="ADHC" variable_2="ADHC"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="ADH_effect_on_kidney" component_2="antidiuretic_hormone_parameter_values"/>
		<map_variables variable_1="ADHKLL" variable_2="ADHKLL"/>
		<map_variables variable_1="ADHKUL" variable_2="ADHKUL"/>
	</connection>

<!-- ======================================		ANTIDIURETIC HORMONE PARAMETER VALUES		========================================== -->
	<component 	name="antidiuretic_hormone_parameter_values"
				cmeta:id="antidiuretic_hormone_parameter_values">
      <variable name="CNR" 	units="monovalent_mEq_per_litre" 	initial_value="139"	private_interface="none"	public_interface="out"/>	<!-- reference sodium conc to determine ADH secretion rate [P] -->
      <variable name="ADHPUL"	units="mmHg" 		initial_value="85"			private_interface="none"	public_interface="out"/>	<!-- ADHPA upper limit [P] -->
      <variable name="ADHPAM"	units="per_mmHg2" 	initial_value="0.3"			private_interface="none"	public_interface="out"/>	<!-- sensitivity control of arterial pressure on ADH [P] -->
      <variable name="ADHINF" 	units="dimensionless" 	initial_value="0"			private_interface="none"	public_interface="out"/>	<!-- rate of exogenous ADH infusion [P] -->
      <variable name="ADHTC" 	units="minute" 	initial_value="15"			private_interface="none"	public_interface="out"/>	<!-- time constant, ADH secretion [P] -->
      <variable name="ADHVUL" 	units="dimensionless" 	initial_value="2.5"			private_interface="none"	public_interface="out"/>	<!-- ADHMV upper limit [P] -->
      <variable name="ADHVLL"	units="dimensionless" 	initial_value="0.93617"		private_interface="none"	public_interface="out"/> 	<!-- ADHMV lower limit [P] -->
      <variable name="ADHKLL" 	units="dimensionless" 	initial_value="0.2"			private_interface="none"	public_interface="out"/>	<!-- ADHMK lower limit [P] -->
      <variable name="ADHKUL" 	units="dimensionless" 	initial_value="5"			private_interface="none"	public_interface="out"/>	<!-- ADHMK upper limit [P] -->
	</component>


<!-- ============================================================================================================================================================ -->

<!-- ==================================================	ATRIAL NATRIURETIC PEPTIDE MODEL		===================================================== -->
	<component 	name="atrial_natriuretic_peptide" 
				cmeta:id="atrial_natriuretic_peptide">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#atrial_natriuretic_peptide">
				<rdf:value>
				This section calculates the control of atrial natriuretic peptide secretion by the 
				left and right atria of the heart.  It also calculates a multiplier factor for 
				controlling the resistance of the afferent arterioles (AAR) of the kidneys.
				
				Encapsulation grouping component containing all the components in the Atrial Natriuretic   
				Peptide Model. The inputs and outputs of the Atrial Natriuretic Peptide Model must be passed 
				by this component.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

		<variable name="time"	units="minute"	private_interface="out" public_interface="in"/>

<!-- Inputs from components in other models -->
		<variable name="PLA"	units="mmHg" private_interface="out" public_interface="in"/>
		<variable name="PRA"	units="mmHg" private_interface="out" public_interface="in"/>

<!-- Outputs to components in other models -->
		<variable name="ANPX" 	units="dimensionless" private_interface="in" public_interface="out"/>
	</component>

<!-- OUTPUT CONNECTIONS -->
	<connection>
		<map_components component_1="atrial_natriuretic_peptide" component_2="ANP_effect_on_renal_afferent_arteriolar_resistance"/>
		<map_variables variable_1="ANPX" variable_2="ANPX"/>
	</connection>

<!-- ========================================	TOTAL ATRIAL NATRIURETIC PEPTIDE SECRETED	============================================= -->
	<component 	name="total_ANP_secreted" 
				cmeta:id="total_ANP_secreted">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#total_ANP_secreted">
				<rdf:value>
				ANP1, ANP2, ANP3, ANP3A, and ANP4:  
				Calculation of the total amount of atrial natriuretic peptide secreted at 
				any given time.  Block ANP1 determines the pressure level at which changes 
				in left atrial pressure (PLA) will begin to affect atrinatriuretic peptide 
				secretion.  Block 1A sets a lower limit of zero for this secretion.  
				Block ANP2 calculates from the pressure level in the right atrium (PRA) the 
				stimulation of ANP output by the right atrium.  Block 3 multiplies the 
				output of the right atrium by two-fold (against a one-fold amount secreted 
				by the left atrium).  Block 3A sets a lower limit of zero for right atrial 
				output.  Block 4 adds the outputs from the left atrium and right atrium.

				ANP5:  
				Block 5 normalizes the ANP secretion under normal conditions to a value of 1.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ANP1_and_ANP1A">
				<rdf:value>
				ANP1, ANP2, ANP3 and ANP3A:  
				Calculation of the total amount of atrial natriuretic peptide secreted at 
				any given time.  Block ANP1 determines the pressure level at which changes 
				in left atrial pressure (PLA) will begin to affect atrinatriuretic peptide 
				secretion.  Block 1A sets a lower limit of zero for this secretion.  
				Block ANP2 calculates from the pressure level in the right atrium (PRA) the 
				stimulation of ANP output by the right atrium.  Block 3 multiplies the 
				output of the right atrium by two-fold (against a one-fold amount secreted 
				by the left atrium).  Block 3A sets a lower limit of zero for right atrial 
				output. 
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ANP2_ANP3_and_ANP3A">
				<rdf:value>
				ANP1, ANP2, ANP3 and ANP3A:  
				Calculation of the total amount of atrial natriuretic peptide secreted at 
				any given time.  Block ANP1 determines the pressure level at which changes 
				in left atrial pressure (PLA) will begin to affect atrinatriuretic peptide 
				secretion.  Block 1A sets a lower limit of zero for this secretion.  
				Block ANP2 calculates from the pressure level in the right atrium (PRA) the 
				stimulation of ANP output by the right atrium.  Block 3 multiplies the 
				output of the right atrium by two-fold (against a one-fold amount secreted 
				by the left atrium).  Block 3A sets a lower limit of zero for right atrial 
				output. 
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ANP4_and_ANP5">
				<rdf:value>
				ANP4 and ANP5:  
				Block 4 adds the outputs from the left atrium and right atrium.  Block 5 normalizes 
				the ANP secretion under normal conditions to a value of 1.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PLA"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="PRA"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="ANP" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable name="ANPL"	units="dimensionless" private_interface="none" public_interface="none"/>
		<variable name="ANPR2"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="ANP1_and_ANP1A">
				<eq/>
				<ci>ANPL</ci>
				<piecewise>
					<piece>
						<cn cellml:units="dimensionless">0</cn>
						<apply>
							<lt/>
							<apply>
								<times/>
								<apply>
									<minus/>
									<ci>PLA</ci>
									<cn cellml:units="mmHg">1</cn>
								</apply>
								<cn cellml:units="per_mmHg">1</cn>
							</apply>
							<cn cellml:units="dimensionless">0</cn>
						</apply>
					</piece>
					<otherwise>
						<apply>
							<times/>
							<apply>
								<minus/>
								<ci>PLA</ci>
								<cn cellml:units="mmHg">1</cn>
							</apply>
							<cn cellml:units="per_mmHg">1</cn>
						</apply>
					</otherwise>
				</piecewise>
			</apply>
			<apply id="ANP2_ANP3_and_ANP3A">
				<eq/>
				<ci>ANPR2</ci>
				<piecewise>
					<piece>
						<cn cellml:units="dimensionless">0</cn>
						<apply>
							<lt/>
							<apply>
								<times/>
								<apply>
									<plus/>
									<ci>PRA</ci>
									<cn cellml:units="mmHg">1</cn>
								</apply>
								<cn cellml:units="per_mmHg">2</cn>
							</apply>
							<cn cellml:units="dimensionless">0</cn>
						</apply>
					</piece>
					<otherwise>
						<apply>
							<times/>
							<apply>
								<plus/>
								<ci>PRA</ci>
								<cn cellml:units="mmHg">1</cn>
							</apply>
							<cn cellml:units="per_mmHg">2</cn>
						</apply>
					</otherwise>
				</piecewise>
			</apply>
			<apply id="ANP4_and_ANP5">
				<eq/>
				<ci>ANP</ci>
				<apply>
					<divide/>
					<apply>
						<plus/>
						<ci>ANPL</ci>
						<ci>ANPR2</ci>
					</apply>
					<cn cellml:units="dimensionless">3</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="total_ANP_secreted" component_2="atrial_natriuretic_peptide"/>
		<map_variables variable_1="PLA" variable_2="PLA"/>
		<map_variables variable_1="PRA" variable_2="PRA"/>
	</connection>

<!-- ========================================	ATRIAL NATRIURETIC PEPTIDE INTO CIRCULATION	============================================= -->
	<component 	name="ANP_into_circulation" 
				cmeta:id="ANP_into_circulation">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#ANP_into_circulation">
				<rdf:value>
				ANP 7:  
				This block allows infusion of ANP into the circulation (ANPINF).  The output 
				of the block is ANP1 which is the total rate of ANP entering the circulation 
				at any given time.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ANP7">
				<rdf:value>
				ANP 7:  
				This block allows infusion of ANP into the circulation (ANPINF).  The output 
				of the block is ANP1 which is the total rate of ANP entering the circulation 
				at any given time.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="ANP"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="ANP1" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="ANPKNS"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="ANPINF"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="ANP7">
				<eq/>
				<ci>ANP1</ci>
				<piecewise>
					<piece>
						<ci>ANPKNS</ci>
						<apply>
							<gt/>
							<ci>ANPKNS</ci>
							<cn cellml:units="dimensionless">0</cn>
						</apply>
					</piece>
					<otherwise>
						<apply>
							<plus/>
							<ci>ANP</ci>
							<ci>ANPINF</ci>
						</apply>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="ANP_into_circulation" component_2="total_ANP_secreted"/>
		<map_variables variable_1="ANP" variable_2="ANP"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="ANP_into_circulation" component_2="atrial_natriuretic_peptide_parameter_values"/>
		<map_variables variable_1="ANPKNS" variable_2="ANPKNS"/>
		<map_variables variable_1="ANPINF" variable_2="ANPINF"/>
	</connection>

<!-- ========================================	ATRIAL NATRIURETIC PEPTIDE IN PLASMA	============================================= -->
<!-- ========================================	CHECK THIS EQUATION! REMOVED DAMPING FROM DE!!!	============================================= -->
	<component 	name="ANP_in_plasma" 
				cmeta:id="ANP_in_plasma">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#ANP_in_plasma">
				<rdf:value>
				ANP8, ANP9, and ANP10:  
				Calculation of the concentration of ANP in the plasma (ANPC) from the rate of 
				entry of ANP into the plasma (ANP1).  The time constant for build-up of ANP in 
				the circulation is determined by ANPTC in Block 9.  ANPC is normalized to 1.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ANP8_to_ANP10">
				<rdf:value>
				ANP8, ANP9, and ANP10:  
				Calculation of the concentration of ANP in the plasma (ANPC) from the rate of 
				entry of ANP into the plasma (ANP1).  The time constant for build-up of ANP in 
				the circulation is determined by ANPTC in Block 9.  ANPC is normalized to 1.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="ANP1"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="ANPC" 	initial_value="1.0"	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="ANPTC"	units="minute" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="ANP8_to_ANP10">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>ANPC</ci>
				</apply>
				<apply>
					<divide/>
					<apply>
						<minus/>
						<ci>ANP1</ci>
						<ci>ANPC</ci>
					</apply>
					<ci>ANPTC</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="ANP_in_plasma" component_2="ANP_into_circulation"/>
		<map_variables variable_1="ANP1" variable_2="ANP1"/>
	</connection>
	<connection>
		<map_components component_1="ANP_in_plasma" component_2="atrial_natriuretic_peptide"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="ANP_in_plasma" component_2="atrial_natriuretic_peptide_parameter_values"/>
		<map_variables variable_1="ANPTC" variable_2="ANPTC"/>
	</connection>

<!-- ========================================	ANP EFFECT ON RENAL AFFERENT ARTERIOLAR RESISTANCE	============================================= -->
	<component 	name="ANP_effect_on_renal_afferent_arteriolar_resistance" 
				cmeta:id="ANP_effect_on_renal_afferent_arteriolar_resistance">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#ANP_effect_on_renal_afferent_arteriolar_resistance">
				<rdf:value>
				ANP11:  
				This curve calculates a multiplier factor (ANPX) for determining the effect 
				of ANP on the afferent arteriolar resistance of the kidneys.  The upper limit 
				of ANPX is ANPXUL.  

				ANP 12:  
				This block sets the lower limit of ANPX equal to -1.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ANP11">
				<rdf:value>
				ANP11:  
				This curve calculates a multiplier factor (ANPX) for determining the effect 
				of ANP on the afferent arteriolar resistance of the kidneys.  The upper limit 
				of ANPX is ANPXUL.  
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ANP12">
				<rdf:value>
				ANP 12:  
				This block sets the lower limit of ANPX equal to -1.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="ANPC"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="ANP_effect_on_renal_afferent_arteriolar_resistance_ANPX"
					name="ANPX" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="ANPXUL"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="ANPX1"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="ANP11">
				<eq/>
				<ci>ANPX1</ci>
				<apply>
					<minus/>
					<ci>ANPXUL</ci>
					<apply>
						<divide/>
						<ci>ANPXUL</ci>
						<apply>
							<times/>
							<cn cellml:units="dimensionless">0.5555556</cn>
							<apply>
								<plus/>
								<cn cellml:units="dimensionless">1</cn>
								<ci>ANPC</ci>
							</apply>
						</apply>
					</apply>
				</apply>
			</apply>
			<apply id="ANP12">
				<eq/>
				<ci>ANPX</ci>
				<piecewise>
					<piece>
						<apply>
							<minus/>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
						<apply>
							<lt/>
							<ci>ANPX1</ci>
							<apply>
								<minus/>
								<cn cellml:units="dimensionless">1</cn>
							</apply>
						</apply>
					</piece>
					<otherwise>
						<ci>ANPX1</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="ANP_effect_on_renal_afferent_arteriolar_resistance" component_2="ANP_in_plasma"/>
		<map_variables variable_1="ANPC" variable_2="ANPC"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="ANP_effect_on_renal_afferent_arteriolar_resistance" component_2="atrial_natriuretic_peptide_parameter_values"/>
		<map_variables variable_1="ANPXUL" variable_2="ANPXUL"/>
	</connection>

<!-- =============================================	ATRIAL NATRIURETIC PEPTIDE PARAMETER VALUES 		===================================== -->
	<component 	name="atrial_natriuretic_peptide_parameter_values"
				cmeta:id="atrial_natriuretic_peptide_parameter_values">
      <variable name="ANPKNS" 	units="dimensionless" 	initial_value="0"			private_interface="none"	public_interface="out"/>	<!-- overriding value of ANP secretion rate -->
      <variable name="ANPINF" 	units="dimensionless" 	initial_value="0"			private_interface="none"	public_interface="out"/>	<!-- rate of exogenous ANP infusion -->
      <variable name="ANPTC" 	units="minute" 	initial_value="4"			private_interface="none"	public_interface="out"/>	<!-- time constant, ANP accumulation and destruction [P] -->
      <variable name="ANPXUL" 	units="dimensionless" 	initial_value="10"			private_interface="none"	public_interface="out"/>	<!-- ANPX upper limit [P] -->
	</component>

<!-- ============================================================================================================================================================ -->
<!-- ========================================================	AUTONOMICS MODEL		=========================================================== -->
	<component 	name="autonomics" 
				cmeta:id="autonomics">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#autonomics">
				<rdf:value>
				Autonomic Control Of The Circulation
				Autonomic control of the circulation primarily operates through the sympathetic
				system, though to a slight extent through parasympathetic signals to the heart.  
				These have been lumped together, and there are basically three separate feedback 
				mechanisms in this computational block.  These are:  (1)  feedback from the 
				baroreceptor control system; (2) feedback from the peripheral chemoreceptors in 
				the carotid and aortic bodies,; and (3) feedback control of the circulatory system 
				caused by central nervous system ischemia, that is, ischemia of the vasomotor center 
				of the brainstem.  Several other inputs that affect the autonomic nervous system are 
				also included.  These are: activation of the autonomic nervous system during exercise; 
				baroreceptor feedback effects from pulmonary artery pressure (PPA), left atrial 
				pressure (PLA), and an effect of low blood PO2 (PO2ART).

				Note:  Not shown in the diagram is also a variable (STA) that is normally zero.  
				When it is set to any level above zero, the value of the general autonomic multiplier (AU) 
				becomes fixed to the value of STA. 
				WHERE DO I PUT THIS NOTE?????

				Encapsulation grouping component containing all the components in the Autonomics Model. The inputs and 
				outputs of the Autonomics Model must be passed by this component.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

		<variable name="time"	units="minute"	private_interface="out" public_interface="in"/>

<!-- Inputs from components in other models -->
		<variable name="PA"	units="mmHg" private_interface="out" public_interface="in"/>
		<variable name="PO2ART"	units="mmHg" private_interface="out" public_interface="in"/>
		<variable name="PLA"	units="mmHg" private_interface="out" public_interface="in"/>
		<variable name="PRA"	units="mmHg" private_interface="out" public_interface="in"/>
		<variable name="PPA"	units="mmHg" private_interface="out" public_interface="in"/>

<!-- Outputs to components in other models -->
		<variable name="PA1" 	units="mmHg" private_interface="in" public_interface="out"/>
		<variable name="VVR" 	units="litre" private_interface="in" public_interface="out"/>
		<variable name="AUH" 	units="dimensionless" private_interface="in" public_interface="out"/>
		<variable name="AUR" 	units="dimensionless" private_interface="in" public_interface="out"/>
		<variable name="AUM" 	units="dimensionless" private_interface="in" public_interface="out"/>
		<variable name="AOM" 	units="dimensionless" private_interface="in" public_interface="out"/>
		<variable name="AVE" 	units="dimensionless" private_interface="in" public_interface="out"/>
		<variable name="AU" 	units="dimensionless" private_interface="in" public_interface="out"/>
	</component>

<!-- OUTPUT CONNECTIONS -->
	<connection>
		<map_components component_1="autonomics" component_2="pressure_driving_autonomic_receptors"/>
		<map_variables variable_1="PA1" variable_2="PA1"/>
		<map_variables variable_1="PA" variable_2="PA"/>
	</connection>
	<connection>
		<map_components component_1="autonomics" component_2="autonomic_drive_on_target_organs_and_tissues"/>
		<map_variables variable_1="VVR" variable_2="VVR"/>
		<map_variables variable_1="AUH" variable_2="AUH"/>
		<map_variables variable_1="AUR" variable_2="AUR"/>
		<map_variables variable_1="AUM" variable_2="AUM"/>
		<map_variables variable_1="AOM" variable_2="AOM"/>
		<map_variables variable_1="AVE" variable_2="AVE"/>
	</connection>
	<connection>
		<map_components component_1="autonomics" component_2="actual_autonomic_stimulation"/>
		<map_variables variable_1="AU" variable_2="AU"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>


<!-- ========================================	PRESSURE DRIVING AUTONOMIC RECEPTORS, PA1		============================================= -->
	<component 	name="pressure_driving_autonomic_receptors" 
				cmeta:id="pressure_driving_autonomic_receptors">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#pressure_driving_autonomic_receptors">
				<rdf:value>
				AU1:  
				Calculation of the effective systemic arterial pressure (PA1) by subtracting 
				any pressure drop (EXE) between the output point of the heart where the pressure 
				is equal to PA and the remainder of the aortic tree where the pressure will be 
				equal to PA1.  This block allows simulation of aortic constriction at its root.

				AU2:  
				A block that will allow one to set the effective systemic arterial pressure (PA1) 
				to any constant value desired by increasing the value CRRFLX to any value above zero.  
				As long as it remains at zero, there is no effect.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AU1_and_AU2">
				<rdf:value>
				AU1:  
				Calculation of the effective systemic arterial pressure (PA1) by subtracting 
				any pressure drop (EXE) between the output point of the heart where the pressure 
				is equal to PA and the remainder of the aortic tree where the pressure will be 
				equal to PA1.  This block allows simulation of aortic constriction at its root.

				AU2:  
				A block that will allow one to set the effective systemic arterial pressure (PA1) 
				to any constant value desired by increasing the value CRRFLX to any value above zero.  
				As long as it remains at zero, there is no effect.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PA"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="pressure_driving_autonomic_receptors_PA1"
					name="PA1" 	units="mmHg" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="CRRFLX"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="EXE"	units="mmHg" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="AU1_and_AU2">
				<eq/>
				<ci>PA1</ci>
				<piecewise>
					<piece>
						<ci>CRRFLX</ci>
						<apply>
							<gt/>
							<ci>CRRFLX</ci>
							<cn cellml:units="mmHg">0.0000001</cn>
						</apply>
					</piece>
					<otherwise>
						<apply>
							<minus/>
							<ci>PA</ci>
							<ci>EXE</ci>
						</apply>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
<!-- see Autonomics connections -->

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="pressure_driving_autonomic_receptors" component_2="autonomics_parameter_values"/>
		<map_variables variable_1="CRRFLX" variable_2="CRRFLX"/>
		<map_variables variable_1="EXE" variable_2="EXE"/>
	</connection>

<!-- ========================================	CHEMORECEPTORS - EFFECT	OF PA	============================================= -->
	<component 	name="chemoreceptors_effect_of_PA" 
				cmeta:id="chemoreceptors_effect_of_PA">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#chemoreceptors_effect_of_PA">
				<rdf:value>
				AU4:  
				Calculation of the nervous output from the chemoreceptors (AUC) at the 
				different systemic arterial pressure levels (PA1).  
				
				AU19:  
				Sensitivity control for increasing or decreasing the degree of response of 
				AUC to chemoreceptor nervous output.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AU4_and_AU19">
				<rdf:value>
				AU4:  
				Calculation of the nervous output from the chemoreceptors (AUC) at the 
				different systemic arterial pressure levels (PA1).  
				
				AU19:  
				Sensitivity control for increasing or decreasing the degree of response of 
				AUC to chemoreceptor nervous output.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PA1"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="AUC" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="AUC1"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="AU4_and_AU19">
				<eq/>
				<ci>AUC</ci>
				<piecewise>
					<piece>
						<apply>
							<times/>
							<cn cellml:units="per_mmHg">0.005</cn>
							<apply>
								<minus/>
								<cn cellml:units="mmHg">80</cn>
								<ci>PA1</ci>
							</apply>
							<ci>AUC1</ci>
						</apply>
						<apply>
							<and/>
							<apply>
								<lt/>
								<ci>PA1</ci>
								<cn cellml:units="mmHg">80</cn>
							</apply>
							<apply>
								<geq/>
								<ci>PA1</ci>
								<cn cellml:units="mmHg">40</cn>
							</apply>
						</apply>
					</piece>
					<piece>
						<apply>
							<times/>
							<cn cellml:units="dimensionless">0.2</cn>
							<ci>AUC1</ci>
						</apply>
						<apply>
							<lt/>
							<ci>PA1</ci>
							<cn cellml:units="mmHg">40</cn>
						</apply>
					</piece>
					<otherwise>
						<cn cellml:units="dimensionless">0</cn>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="chemoreceptors_effect_of_PA" component_2="pressure_driving_autonomic_receptors"/>
		<map_variables variable_1="PA1" variable_2="PA1"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="chemoreceptors_effect_of_PA" component_2="autonomics_parameter_values"/>
		<map_variables variable_1="AUC1" variable_2="AUC1"/>
	</connection>

<!-- ========================================	CHEMORECEPTORS - EFFECT	OF ARTERIAL PO2	============================================= -->
	<component 	name="chemoreceptors_effect_of_art_PO2" 
				cmeta:id="chemoreceptors_effect_of_art_PO2">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#chemoreceptors_effect_of_art_PO2">
				<rdf:value>
				AU20:  
				Calculation of a nervous factor (AUC2) for effecting autonomic control of 
				the circulation depending on the peripheral level of oxygen in the blood (PO2ART).  
				O2CHMO is a sensitivity controller.

				AU21:  
				Addition of the chemoreflex output (AUC) caused by activation of the chemoreceptors 
				by low arterial pressure plus the chemoreceptor output (AUC2) caused by reduced 
				arterial oxygen saturation (PO2ART).  The output of Block 21 is equal to AUC3.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AU20">
				<rdf:value>
				AU20:  
				Calculation of a nervous factor (AUC2) for effecting autonomic control of 
				the circulation depending on the peripheral level of oxygen in the blood (PO2ART).  
				O2CHMO is a sensitivity controller.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AU21">
				<rdf:value>
				AU21:  
				Addition of the chemoreflex output (AUC) caused by activation of the chemoreceptors 
				by low arterial pressure plus the chemoreceptor output (AUC2) caused by reduced 
				arterial oxygen saturation (PO2ART).  The output of Block 21 is equal to AUC3.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PO2ART"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="AUC"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="AUC3" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="O2CHMO"	units="per_mmHg" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="AUC2"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="AU20">
				<eq/>
				<ci>AUC2</ci>
				<piecewise>
					<piece>
						<apply>
							<times/>
							<ci>O2CHMO</ci>
							<apply>
								<minus/>
								<cn cellml:units="mmHg">80</cn>
								<ci>PO2ART</ci>
							</apply>
						</apply>
						<apply>
							<and/>
							<apply>
								<lt/>
								<ci>PO2ART</ci>
								<cn cellml:units="mmHg">80</cn>
							</apply>
							<apply>
								<geq/>
								<ci>PO2ART</ci>
								<cn cellml:units="mmHg">40</cn>
							</apply>
						</apply>
					</piece>
					<piece>
						<apply>
							<times/>
							<ci>O2CHMO</ci>
							<cn cellml:units="mmHg">40</cn>
						</apply>
						<apply>
							<lt/>
							<ci>PO2ART</ci>
							<cn cellml:units="mmHg">40</cn>
						</apply>
					</piece>
					<otherwise>
						<cn cellml:units="dimensionless">0</cn>
					</otherwise>
				</piecewise>
			</apply>
			<apply id="AU21">
				<eq/>
				<ci>AUC3</ci>
				<apply>
					<plus/>
					<ci>AUC</ci>
					<ci>AUC2</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="chemoreceptors_effect_of_art_PO2" component_2="autonomics"/>
		<map_variables variable_1="PO2ART" variable_2="PO2ART"/>
	</connection>
	<connection>
		<map_components component_1="chemoreceptors_effect_of_art_PO2" component_2="chemoreceptors_effect_of_PA"/>
		<map_variables variable_1="AUC" variable_2="AUC"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="chemoreceptors_effect_of_art_PO2" component_2="autonomics_parameter_values"/>
		<map_variables variable_1="O2CHMO" variable_2="O2CHMO"/>
	</connection>

<!-- ========================================	BARO REFLEX / ARTERIAL BARORECEPTORS	============================================= -->
<!-- ========================================	FIX!!!! - MISSING AU17 and AU14-16!!!	============================================= -->
	<component 	name="arterial_baroreceptor_reflex" 
				cmeta:id="arterial_baroreceptor_reflex">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#arterial_baroreceptor_reflex">
				<rdf:value>
				AU3:  
				Calculation of the nervous output from the baroreceptors (AUB) at the different 
				systemic arterial pressure levels (PA1).

				AU6, AU7, and AU8:  
				Sensitivity control of the effect of baroreceptor reflex output (AUB) on the 
				autonomic nervous system.  The output of this sensitivity controller is AU6A, 
				and the degree of sensitivity control is equal to AUX.

				AU9, AU10, and AU11:  
				Time delay in the buildup of sympathetic output (AU6) that results from changes 
				in baroreceptor reflex nervous output (AU6A).  The time constant of this delay 
				circuit is equal to BAROTC. 

				AU14, AU15, and AU16:  
				Calculation of adaptation of the baroreceptor feedback mechanism (AU4) over a 
				period of hours.  The time constant of this adaptation is equal to AUK.
				THIS IS COMMENTED OUT BECAUSE IT IS NOT IN THE MODSIM CODE

				AU17:  
				This block sets AU6 equal to AU6A irrespective of the time constant for buildup 
				of the nervous effect of the baroreceptor reflex when the iteration interval for 
				solution of the equations is greater than .16666.  This prevents some instability 
				when the equations are being calculated for long-term instead of short-term changes.

				AU18:  
				Damping of baroreceptor autonomic feedback output (AU6) when long-term solutions are 
				being calculated, to prevent oscillation in the circuit.  The output after the damping 
				is AU6C.  MDMP sets the degree of damping.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AU3">
				<rdf:value>
				AU3:  
				Calculation of the nervous output from the baroreceptors (AUB) at the different 
				systemic arterial pressure levels (PA1).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AU6_AU7_and_part_AU8">
				<rdf:value>
				AU6, AU7, and AU8:  
				Sensitivity control of the effect of baroreceptor reflex output (AUB) on the 
				autonomic nervous system.  The output of this sensitivity controller is AU6A, 
				and the degree of sensitivity control is equal to AUX.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#rest_AU8">
				<rdf:value>
				AU6, AU7, and AU8:  
				Sensitivity control of the effect of baroreceptor reflex output (AUB) on the 
				autonomic nervous system.  The output of this sensitivity controller is AU6A, 
				and the degree of sensitivity control is equal to AUX.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AU9_to_AU11">
				<rdf:value>
				AU9, AU10, and AU11:  
				Time delay in the buildup of sympathetic output (AU6) that results from changes 
				in baroreceptor reflex nervous output (AU6A).  The time constant of this delay 
				circuit is equal to BAROTC. 
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AU14_to_AU16">
				<rdf:value>
				AU14, AU15, and AU16:  
				Calculation of adaptation of the baroreceptor feedback mechanism (AU4) over a 
				period of hours.  The time constant of this adaptation is equal to AUK.
				THIS IS COMMENTED OUT BECAUSE IT IS NOT IN THE MODSIM CODE
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AU18">
				<rdf:value>
				AU18:  
				Damping of baroreceptor autonomic feedback output (AU6) when long-term solutions are 
				being calculated, to prevent oscillation in the circuit.  The output after the damping 
				is AU6C.  MDMP sets the degree of damping.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PA1"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="AU6C" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="AUX"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="AUK"	units="per_minute" private_interface="none" public_interface="in"/>
		<variable name="BAROTC"	units="minute" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="AUB"	units="dimensionless" private_interface="none" public_interface="none"/>
		<variable name="A1B"	units="dimensionless" private_interface="none" public_interface="none"/>
		<variable name="AU6A"	units="dimensionless" private_interface="none" public_interface="none"/>
<!--		<variable name="AU8"	units="per_minute" private_interface="none" public_interface="none"/>
		<variable name="AU2"	units="dimensionless" private_interface="none" public_interface="none"/> -->
		<variable name="AU4"	initial_value="-0.060024"	units="dimensionless" private_interface="none" public_interface="none"/>
		<variable name="AU6"	initial_value="1.00132"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="AU3">
				<eq/>
				<ci>AUB</ci>
				<piecewise>
					<piece>
						<apply>
							<times/>
							<cn cellml:units="per_mmHg">0.016667</cn>
							<apply>
								<minus/>
								<cn cellml:units="mmHg">160</cn>
								<ci>PA1</ci>
							</apply>
						</apply>
						<apply>
							<and/>
							<apply>
								<lt/>
								<ci>PA1</ci>
								<cn cellml:units="mmHg">160</cn>
							</apply>
							<apply>
								<geq/>
								<ci>PA1</ci>
								<cn cellml:units="mmHg">80</cn>
							</apply>
						</apply>
					</piece>
					<piece>
						<cn cellml:units="dimensionless">1.3336</cn>
						<apply>
							<lt/>
							<ci>PA1</ci>
							<cn cellml:units="mmHg">80</cn>
						</apply>
					</piece>
					<otherwise>
						<cn cellml:units="dimensionless">0</cn>
					</otherwise>
				</piecewise>
			</apply>
			<apply id="AU6_AU7_and_part_AU8">
				<eq/>
				<ci>A1B</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<apply>
							<minus/>
							<ci>AUB</ci>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
						<ci>AUX</ci>
					</apply>
					<cn cellml:units="dimensionless">1</cn>
				</apply>
			</apply>
			<apply id="rest_AU8">
				<eq/>
				<ci>AU6A</ci>
				<apply>
					<minus/>
					<ci>A1B</ci>
					<ci>AU4</ci>
				</apply>
			</apply>
			<apply id="AU9_to_AU11">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>AU6</ci>
				</apply>
				<apply>
					<divide/>
					<apply>
						<minus/>
						<ci>AU6A</ci>
						<ci>AU6</ci>
					</apply>
					<ci>BAROTC</ci>
				</apply>
			</apply>
<!--			<apply id="AU14">
                <eq/>
                <ci>AU2</ci>
                <apply>
                    <minus/>
                    <ci>AU6</ci>
                    <cn cellml:units="dimensionless">1</cn>
                </apply>
            </apply>
			<apply id="AU15">
                <eq/>
                <ci>AU8</ci>
                <apply>
                    <times/>
                    <ci>AUK</ci>
                    <ci>AU2</ci>
                </apply>
            </apply>
			<apply id="AU16">
                <eq/>
                <apply>
                    <diff/>
                    <bvar>
                        <ci>time</ci>
                    </bvar>
                    <ci>AU4</ci>
                </apply>
                <ci>AU8</ci>
            </apply> -->
			<apply id="AU18">
				<eq/>
				<ci>AU6C</ci>
				<ci>AU6</ci>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="arterial_baroreceptor_reflex" component_2="pressure_driving_autonomic_receptors"/>
		<map_variables variable_1="PA1" variable_2="PA1"/>
	</connection>
	<connection>
		<map_components component_1="arterial_baroreceptor_reflex" component_2="autonomics"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="arterial_baroreceptor_reflex" component_2="autonomics_parameter_values"/>
		<map_variables variable_1="AUX" variable_2="AUX"/>
		<map_variables variable_1="AUK" variable_2="AUK"/>
		<map_variables variable_1="BAROTC" variable_2="BAROTC"/>
	</connection>

<!-- ========================================	CNS ISCHEMIC REFLEX	============================================= -->
	<component 	name="CNS_ischemic_reflex" 
				cmeta:id="CNS_ischemic_reflex">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#CNS_ischemic_reflex">
				<rdf:value>
				AU5:  
				Calculation of the nervous output (AUN) caused by activation of the central 
				nervous system ischemic reflex, resulting from reduced systemic arterial 
				pressure (PA1).

				AU22:  
				Control of the sensitivity of the CNS ischemic reflex output by the sensitivity 
				controller AUN1.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AU5_and_AU22">
				<rdf:value>
				AU5:  
				Calculation of the nervous output (AUN) caused by activation of the central 
				nervous system ischemic reflex, resulting from reduced systemic arterial 
				pressure (PA1).

				AU22:  
				Control of the sensitivity of the CNS ischemic reflex output by the sensitivity 
				controller AUN1.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PA1"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="AUN" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="AUN1"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="AU5_and_AU22">
				<eq/>
				<ci>AUN</ci>
				<piecewise>
					<piece>
						<apply>
							<times/>
							<cn cellml:units="per_mmHg">0.04</cn>
							<apply>
								<minus/>
								<cn cellml:units="mmHg">40</cn>
								<ci>PA1</ci>
							</apply>
							<ci>AUN1</ci>
						</apply>
						<apply>
							<lt/>
							<ci>PA1</ci>
							<cn cellml:units="mmHg">40</cn>
						</apply>
					</piece>
					<otherwise>
						<cn cellml:units="dimensionless">0</cn>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="CNS_ischemic_reflex" component_2="pressure_driving_autonomic_receptors"/>
		<map_variables variable_1="PA1" variable_2="PA1"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="CNS_ischemic_reflex" component_2="autonomics_parameter_values"/>
		<map_variables variable_1="AUN1" variable_2="AUN1"/>
	</connection>

<!-- ==============================	STRETCH RECEPTORS - RESPONSE TO PRESSURE IN PULMONARY VASCULATURE	==================================== -->
	<component 	name="autonomic_response_to_vasculature_pressure" 
				cmeta:id="autonomic_response_to_vasculature_pressure">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#autonomic_response_to_vasculature_pressure">
				<rdf:value>
				AU24, AU25, AU26, AU27, and AU28:  
				Calculation of an additional factor (AULP) that affects the total autonomic 
				response, caused by stretch receptors in the pulmonary vasculature.  These 
				are in response to left atrial pressure (PLA), right atrial pressure (PRA), 
				and pulmonary arterial pressure (PPA).  The sensitivity controller for these 
				effects is AULPM in Block 27.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AU24_to_AU28">
				<rdf:value>
				AU24, AU25, AU26, AU27, and AU28:  
				Calculation of an additional factor (AULP) that affects the total autonomic 
				response, caused by stretch receptors in the pulmonary vasculature.  These 
				are in response to left atrial pressure (PLA), right atrial pressure (PRA), 
				and pulmonary arterial pressure (PPA).  The sensitivity controller for these 
				effects is AULPM in Block 27.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PLA"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="PRA"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="PPA"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="AULP" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="AULPM"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="AU24_to_AU28">
				<eq/>
				<ci>AULP</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<apply>
							<minus/>
							<apply>
								<divide/>
								<cn cellml:units="mmHg">15</cn>
								<apply>
									<plus/>
									<ci>PLA</ci>
									<ci>PRA</ci>
									<ci>PPA</ci>
								</apply>
							</apply>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
						<ci>AULPM</ci>
					</apply>
					<cn cellml:units="dimensionless">1</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="autonomic_response_to_vasculature_pressure" component_2="autonomics"/>
		<map_variables variable_1="PLA" variable_2="PLA"/>
		<map_variables variable_1="PRA" variable_2="PRA"/>
		<map_variables variable_1="PPA" variable_2="PPA"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="autonomic_response_to_vasculature_pressure" component_2="autonomics_parameter_values"/>
		<map_variables variable_1="AULPM" variable_2="AULPM"/>
	</connection>

<!-- ========================================	EFFECT OF EXERCISE ON AUTONOMIC OUTPUT	============================================= -->
	<component 	name="autonomic_response_to_exercise" 
				cmeta:id="autonomic_response_to_exercise">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#autonomic_response_to_exercise">
				<rdf:value>
				AU29, AU30, AU31, and AU32:  
				Effect of the exercise nervous signal (EXC) on autonomic output.  The 
				exponent (EXCXP) in Block 29 provides a curve fitting effect of exercise on the 
				autonomic output, and the factor (EXCML) is a sensitivity multiplier effect.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AU29_to_AU32">
				<rdf:value>
				AU29, AU30, AU31, and AU32:  
				Effect of the exercise nervous signal (EXC) on autonomic output.  The 
				exponent (EXCXP) in Block 29 provides a curve fitting effect of exercise on the 
				autonomic output, and the factor (EXCML) is a sensitivity multiplier effect.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Outputs to other components -->
		<variable name="AUEX" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="EXC"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="EXCXP"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="AU29_to_AU32">
				<eq/>
				<ci>AUEX</ci>
				<apply>
					<power/>
					<ci>EXC</ci>
					<ci>EXCXP</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="autonomic_response_to_exercise" component_2="autonomics_parameter_values"/>
		<map_variables variable_1="EXC" variable_2="EXC"/>
		<map_variables variable_1="EXCXP" variable_2="EXCXP"/>
	</connection>

<!-- ========================================	TOTAL AUTONOMIC STIMULATION	============================================= -->
	<component 	name="total_autonomic_stimulation" 
				cmeta:id="total_autonomic_stimulation">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#total_autonomic_stimulation">
				<rdf:value>
				AU23:  
				Summation of the different nervous output controls of autonomic stimulation, AUC3 
				from the chemoreceptor component, AU6C from the arterial baroreceptor reflex component, 
				and the output of Block 22 from the CNS ischemic reflex component.

				AU33:  
				Summation of all of the different factors affecting autonomic stimulation 
				of the circulation, giving a total output of AUTTL. 

				AU34:  
				Limitation of the lower level of autonomic stimulation of the circulatory system 
				so that this cannot fall below the level of zero.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AU23_and_AU33">
				<rdf:value>
				AU23:  
				Summation of the different nervous output controls of autonomic stimulation, AUC3 
				from the chemoreceptor component, AU6C from the arterial baroreceptor reflex component, 
				and the output of Block 22 from the CNS ischemic reflex component.

				AU33:  
				Summation of all of the different factors affecting autonomic stimulation 
				of the circulation, giving a total output of AUTTL. 
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AU34">
				<rdf:value>
				AU34:  
				Limitation of the lower level of autonomic stimulation of the circulatory system 
				so that this cannot fall below the level of zero.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="AUC3"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="AU6C"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="AUN"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="AULP"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="AUEX"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="AUTTL" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable name="AUTTL1"	units="dimensionless" private_interface="none" public_interface="none"/>

<!-- Parameters from parameter_file -->
		<variable name="EXCML"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="AU23_and_AU33">
				<eq/>
				<ci>AUTTL1</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<apply>
							<minus/>
							<apply>
								<times/>
								<ci>AUEX</ci>
								<ci>AULP</ci>
								<apply>
									<plus/>
									<ci>AUC3</ci>
									<ci>AU6C</ci>
									<ci>AUN</ci>
								</apply>
							</apply>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
						<ci>EXCML</ci>
					</apply>
					<cn cellml:units="dimensionless">1</cn>
				</apply>
			</apply>
			<apply id="AU34">
				<eq/>
				<ci>AUTTL</ci>
				<piecewise>
					<piece>
						<cn cellml:units="dimensionless">0</cn>
						<apply>
							<lt/>
							<ci>AUTTL1</ci>
							<cn cellml:units="dimensionless">0</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>AUTTL1</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="total_autonomic_stimulation" component_2="chemoreceptors_effect_of_art_PO2"/>
		<map_variables variable_1="AUC3" variable_2="AUC3"/>
	</connection>
	<connection>
		<map_components component_1="total_autonomic_stimulation" component_2="arterial_baroreceptor_reflex"/>
		<map_variables variable_1="AU6C" variable_2="AU6C"/>
	</connection>
	<connection>
		<map_components component_1="total_autonomic_stimulation" component_2="CNS_ischemic_reflex"/>
		<map_variables variable_1="AUN" variable_2="AUN"/>
	</connection>
	<connection>
		<map_components component_1="total_autonomic_stimulation" component_2="autonomic_response_to_vasculature_pressure"/>
		<map_variables variable_1="AULP" variable_2="AULP"/>
	</connection>
	<connection>
		<map_components component_1="total_autonomic_stimulation" component_2="autonomic_response_to_exercise"/>
		<map_variables variable_1="AUEX" variable_2="AUEX"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="total_autonomic_stimulation" component_2="autonomics_parameter_values"/>
		<map_variables variable_1="EXCML" variable_2="EXCML"/>
	</connection>

<!-- ========================================	ACTUAL AUTONOMIC STIMULATION		============================================= -->
	<component 	name="actual_autonomic_stimulation" 
				cmeta:id="actual_autonomic_stimulation">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#actual_autonomic_stimulation">
				<rdf:value>
				AU35, AU36, and AU37:  
				This is a time-delay circuit to delay the peripheral changes that occur in the 
				circulatory system for a fraction of a minute after changes in the nervous component 
				take place.  This results from the need to build up autonomic transmitter substance 
				and for the different organs to respond.  The output after this delay circuit is AU1.  
				The time constant of the delay is AUDMP.

				AU38:  
				This is a curve fitting step to fit the output strength of functional reaction to 
				sympathetic stimulation (AU) to the input level of nervous stimulation (AU1).  
				The maximum level of AU is set by the equation in this block to equal AUMAX.  
				AUSLPC determines the slope of the relationship.

				AU39:  
				This sets the minimum level of AU (the output functional reaction) equal to a 
				minimum value of AUMIN.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AU35">
				<rdf:value>
				AU35, AU36, and AU37:  
				This is a time-delay circuit to delay the peripheral changes that occur in the 
				circulatory system for a fraction of a minute after changes in the nervous component 
				take place.  This results from the need to build up autonomic transmitter substance 
				and for the different organs to respond.  The output after this delay circuit is AU1.  
				The time constant of the delay is AUDMP.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AU36_and_AU37">
				<rdf:value>
				AU35, AU36, and AU37:  
				This is a time-delay circuit to delay the peripheral changes that occur in the 
				circulatory system for a fraction of a minute after changes in the nervous component 
				take place.  This results from the need to build up autonomic transmitter substance 
				and for the different organs to respond.  The output after this delay circuit is AU1.  
				The time constant of the delay is AUDMP.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AU38">
				<rdf:value>
				AU38:  
				This is a curve fitting step to fit the output strength of functional reaction to 
				sympathetic stimulation (AU) to the input level of nervous stimulation (AU1).  
				The maximum level of AU is set by the equation in this block to equal AUMAX.  
				AUSLPC determines the slope of the relationship.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AU39">
				<rdf:value>
				AU39:  
				This sets the minimum level of AU (the output functional reaction) equal to a 
				minimum value of AUMIN.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="AUTTL"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="actual_autonomic_stimulation_AU"
					name="AU" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="AUDMP"	units="minute" private_interface="none" public_interface="in"/>
		<variable name="AUMAX"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="AUMIN"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="AUSLP"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="DAU"	units="per_minute" private_interface="none" public_interface="none"/>
		<variable name="AU1"	initial_value="1.00007"	units="dimensionless" private_interface="none" public_interface="none"/>
		<variable name="AUT"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="AU35">
				<eq/>
				<ci>DAU</ci>
				<apply>
					<divide/>
					<apply>
						<minus/>
						<ci>AUTTL</ci>
						<ci>AU1</ci>
					</apply>
					<ci>AUDMP</ci>
				</apply>
			</apply>
			<apply id="AU36_and_AU37">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>AU1</ci>
				</apply>
				<ci>DAU</ci>
			</apply>
			<apply id="AU38">
				<eq/>
				<ci>AUT</ci>
				<apply>
					<minus/>
					<ci>AUMAX</ci>
					<apply>
						<divide/>
						<apply>
							<minus/>
							<ci>AUMAX</ci>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
						<apply>
							<exp/>
							<apply>
								<times/>
								<ci>AUSLP</ci>
								<apply>
									<minus/>
									<ci>AU1</ci>
									<cn cellml:units="dimensionless">1</cn>
								</apply>
							</apply>
						</apply>
					</apply>
				</apply>
			</apply>
			<apply id="AU39">
				<eq/>
				<ci>AU</ci>
				<piecewise>
					<piece>
						<ci>AUMIN</ci>
						<apply>
							<lt/>
							<ci>AUT</ci>
							<ci>AUMIN</ci>
						</apply>
					</piece>
					<otherwise>
						<ci>AUT</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="actual_autonomic_stimulation" component_2="total_autonomic_stimulation"/>
		<map_variables variable_1="AUTTL" variable_2="AUTTL"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="actual_autonomic_stimulation" component_2="autonomics_parameter_values"/>
		<map_variables variable_1="AUDMP" variable_2="AUDMP"/>
		<map_variables variable_1="AUMAX" variable_2="AUMAX"/>
		<map_variables variable_1="AUMIN" variable_2="AUMIN"/>
		<map_variables variable_1="AUSLP" variable_2="AUSLP"/>
	</connection>

<!-- ==============================	AUTONOMIC DRIVE ON THE VARIOUS TARGET ORGANS AND TISSUES	================================= -->
<!-- ==============================	FIX!!! - AU47 AND AU48 NOT IN ORIGINAL CODE BUT ARE ON DIAGRAM!!!!	================================= -->
	<component 	name="autonomic_drive_on_target_organs_and_tissues" 
				cmeta:id="autonomic_drive_on_target_organs_and_tissues">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#autonomic_drive_on_target_organs_and_tissues">
				<rdf:value>
				AU40 and AU41:  
				Calculation of the effect on venous vascular resistance (VVR) of different 
				levels of autonomic functional reaction (AU).  The sensitivity control is AUL, 
				and VV9 determines the range.

				AU42:  
				A step to reduce the output effect of normal autonomic reaction (AU) equal to 
				zero (AUO) so that differences from control levels can be activated in 
				Blocks 43, 45, 47, 50, and 53.

				AU43 and AU44:  
				Sensitivity control for the autonomic effect on the heart (AUH).  The sensitivity 
				is controlled by AUV.

				AU45 and AU46:  
				Sensitivity control of the autonomic effect on heart rate (AUR).  The sensitivity 
				is controlled by AUS.

				AU47 and AU48:
				Calculation of the autonomic effect on muscle metabolism (AOM).  The sensitivity 
				control for this variable is O2A.

				AU50, AU51, and AU52:  
				Calculation of an autonomic multiplier effect that is used at multiple points in 
				the circulatory system (AUM).  The values AUM1 and AUM2 are curve fitting controls.

				AU53 and AU54:  
				Sensitivity control for adjusting the autonomic multiplier effect on the 
				venous tree (AVE).  The variable (AUY) controls the sensitivity.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AU40_and_AU41">
				<rdf:value>
				AU40 and AU41:  
				Calculation of the effect on venous vascular resistance (VVR) of different 
				levels of autonomic functional reaction (AU).  The sensitivity control is AUL, 
				and VV9 determines the range.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AU42">
				<rdf:value>
				AU42:  
				A step to reduce the output effect of normal autonomic reaction (AU) equal to 
				zero (AUO) so that differences from control levels can be activated in 
				Blocks 43, 45, 47, 50, and 53.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AU43_and_AU44">
				<rdf:value>
				AU43 and AU44:  
				Sensitivity control for the autonomic effect on the heart (AUH).  The sensitivity 
				is controlled by AUV.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AU45_and_AU46">
				<rdf:value>
				AU45 and AU46:  
				Sensitivity control of the autonomic effect on heart rate (AUR).  The sensitivity 
				is controlled by AUS.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AU47_and_AU48">
				<rdf:value>
				AU47 and AU48:
				Calculation of the autonomic effect on muscle metabolism (AOM).  The sensitivity 
				control for this variable is O2A.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AU50_to_AU52">
				<rdf:value>
				AU50, AU51, and AU52:  
				Calculation of an autonomic multiplier effect that is used at multiple points in 
				the circulatory system (AUM).  The values AUM1 and AUM2 are curve fitting controls.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#AU53_and_AU54">
				<rdf:value>
				AU53 and AU54:  
				Sensitivity control for adjusting the autonomic multiplier effect on the 
				venous tree (AVE).  The variable (AUY) controls the sensitivity.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="AU"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="autonomic_drive_on_target_organs_and_tissues_VVR"
					name="VVR" 	units="litre" private_interface="none" public_interface="out"/>
		<variable 	cmeta:id="autonomic_drive_on_target_organs_and_tissues_AUH"
					name="AUH" 	units="dimensionless" private_interface="none" public_interface="out"/>
		<variable 	cmeta:id="autonomic_drive_on_target_organs_and_tissues_AUR"
					name="AUR" 	units="dimensionless" private_interface="none" public_interface="out"/>
		<variable 	cmeta:id="autonomic_drive_on_target_organs_and_tissues_AOM"
					name="AOM" 	units="dimensionless" private_interface="none" public_interface="out"/>
		<variable 	cmeta:id="autonomic_drive_on_target_organs_and_tissues_AUM"
					name="AUM" 	units="dimensionless" private_interface="none" public_interface="out"/>
		<variable 	cmeta:id="autonomic_drive_on_target_organs_and_tissues_AVE"
					name="AVE" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="VV9"	units="litre" private_interface="none" public_interface="in"/>
		<variable name="AUL"	units="litre" private_interface="none" public_interface="in"/>
		<variable name="AUV"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="AUS"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="O2A"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="AUM1"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="AUM2"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="AUY"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="AUO"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="AU40_and_AU41">
				<eq/>
				<ci>VVR</ci>
				<apply>
					<plus/>
					<apply>
						<minus/>
						<ci>VV9</ci>
						<apply>
							<times/>
							<ci>AU</ci>
							<ci>AUL</ci>
						</apply>
					</apply>
					<ci>AUL</ci>
				</apply>
			</apply>
			<apply id="AU42">
				<eq/>
				<ci>AUO</ci>
				<apply>
					<minus/>
					<ci>AU</ci>
					<cn cellml:units="dimensionless">1</cn>
				</apply>
			</apply>
			<apply id="AU43_and_AU44">
				<eq/>
				<ci>AUH</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<ci>AUO</ci>
						<ci>AUV</ci>
					</apply>
					<cn cellml:units="dimensionless">1</cn>
				</apply>
			</apply>
			<apply id="AU45_and_AU46">
				<eq/>
				<ci>AUR</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<ci>AUO</ci>
						<ci>AUS</ci>
					</apply>
					<cn cellml:units="dimensionless">1</cn>
				</apply>
			</apply>
			<apply id="AU47_and_AU48">
				<eq/>
				<ci>AOM</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<ci>AUO</ci>
						<ci>O2A</ci>
					</apply>
					<cn cellml:units="dimensionless">1</cn>
				</apply>
			</apply>
			<apply id="AU50_to_AU52">
				<eq/>
				<ci>AUM</ci>
				<apply>
					<power/>
					<apply>
						<plus/>
						<apply>
							<times/>
							<ci>AUO</ci>
							<ci>AUM1</ci>
						</apply>
						<cn cellml:units="dimensionless">1</cn>
					</apply>
					<ci>AUM2</ci>
				</apply>
			</apply>
			<apply id="AU53_and_AU54">
				<eq/>
				<ci>AVE</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<ci>AUO</ci>
						<ci>AUY</ci>
					</apply>
					<cn cellml:units="dimensionless">1</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="autonomic_drive_on_target_organs_and_tissues" component_2="actual_autonomic_stimulation"/>
		<map_variables variable_1="AU" variable_2="AU"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="autonomic_drive_on_target_organs_and_tissues" component_2="autonomics_parameter_values"/>
		<map_variables variable_1="VV9" variable_2="VV9"/>
		<map_variables variable_1="AUL" variable_2="AUL"/>
		<map_variables variable_1="AUV" variable_2="AUV"/>
		<map_variables variable_1="AUS" variable_2="AUS"/>
		<map_variables variable_1="O2A" variable_2="O2A"/>
		<map_variables variable_1="AUM1" variable_2="AUM1"/>
		<map_variables variable_1="AUM2" variable_2="AUM2"/>
		<map_variables variable_1="AUY" variable_2="AUY"/>
	</connection>

<!-- ===================================================	AUTONOMICS PARAMETER VALUES	===================================================== -->
	<component	name="autonomics_parameter_values"
				cmeta:id="autonomics_parameter_values">
		<variable name="VV9" 		units="litre" 	initial_value="2.51"		private_interface="none"	public_interface="out"/>	<!-- basic venous volume, without autonomic drive [P] -->	  
		<variable name="AUL" 		units="litre" 	initial_value="1.5"			private_interface="none"	public_interface="out"/>	<!-- curve fitting coefficient, calculation VVR [P] -->
		<variable name="AULPM" 		units="dimensionless" 	initial_value="0"			private_interface="none"	public_interface="out"/>	<!-- sensitivity controller of AULP [P] -->
		<variable name="AUY" 		units="dimensionless" 	initial_value="0"			private_interface="none"	public_interface="out"/>	<!-- sensitivity of sympathetic control of veins -->
		<variable name="AUV" 		units="dimensionless" 	initial_value="0.55"		private_interface="none"	public_interface="out"/>	<!-- blood volume shifted from unstressed to stressed -->
		<variable name="AUS" 		units="dimensionless" 	initial_value="1"			private_interface="none"	public_interface="out"/>	<!-- sensitivity of sympathetic control of heart rate [P] -->
		<variable name="O2A" 		units="dimensionless" 	initial_value="0.1"			private_interface="none"	public_interface="out"/>	<!-- sensitivity controller of AOM, autonomic on metabolism [P] -->
		<variable name="AUM1" 		units="dimensionless" 	initial_value="3"			private_interface="none"	public_interface="out"/>	<!-- curve fitting coefficient, calculation AUM [P] -->
		<variable name="AUM2" 		units="dimensionless" 	initial_value="1"			private_interface="none"	public_interface="out"/>	<!-- curve fitting exponent, calculation AUM [P] -->
		<variable name="AUDMP" 		units="minute" 	initial_value="0.3"			private_interface="none"	public_interface="out"/>	<!-- damping factor for AU1 [P] -->
		<variable name="AUMAX" 		units="dimensionless" 	initial_value="5.0"			private_interface="none"	public_interface="out"/>	<!-- maximal autonomic output [P] -->
		<variable name="AUMIN" 		units="dimensionless" 	initial_value="0.4"			private_interface="none"	public_interface="out"/>	<!-- minimal autonomic output [P] -->
		<variable name="AUSLP" 		units="dimensionless" 	initial_value="1.5"			private_interface="none"	public_interface="out"/>	<!-- curve fitting coefficient, calculation AU [P] -->
		<variable name="EXC" 		units="dimensionless" 	initial_value="1"			private_interface="none"	public_interface="out"/>	<!-- level of exercise activity [P] -->
		<variable name="EXCML" 		units="dimensionless" 	initial_value="0.01"		private_interface="none"	public_interface="out"/>	<!-- sensitivity controller of exercise on autonomics [P] -->
		<variable name="EXCXP" 		units="dimensionless" 	initial_value="1.0"			private_interface="none"	public_interface="out"/>	<!-- curve fitting exponent, autonomic effect of exercise [P] -->
		<variable name="AUN1" 		units="dimensionless" 	initial_value="0.5"			private_interface="none"	public_interface="out"/>	<!-- sensitivity controller of AUN [P] -->
		<variable name="MDMP" 		units="dimensionless" 	initial_value="0"			private_interface="none"	public_interface="out"/>	<!-- damping factor of AU6 [P] -->
		<variable name="BAROTC" 	units="minute" 	initial_value="0.16"		private_interface="none"	public_interface="out"/>	<!-- time constant, baroreceptor (AU6) [P] -->
		<variable name="AUK" 		units="per_minute" 	initial_value="0.004"		private_interface="none"	public_interface="out"/>	<!-- time constant of baroreceptor adaptation [P] -->
		<variable name="AUX" 		units="dimensionless" 	initial_value="1"			private_interface="none"	public_interface="out"/>	<!-- sensitivity controller of arterial baroreceptors [P] -->
		<variable name="O2CHMO" 	units="per_mmHg" 	initial_value="0.01"		private_interface="none"	public_interface="out"/>	<!-- O2 chemoreceptors sensitivity controller [P] -->
		<variable name="AUC1" 		units="dimensionless" 	initial_value="0.3"			private_interface="none"	public_interface="out"/>	<!-- sensitivity controller of AUC [P] -->
		<variable name="CRRFLX" 	units="mmHg" 	initial_value="0"			private_interface="none"	public_interface="out"/>	<!-- overriding value of PA1 (if > 0) [P] -->
		<variable name="EXE" 		units="mmHg" 	initial_value="0"			private_interface="none"	public_interface="out"/>	<!-- driving pressure on autonomic due to exercise [P] -->
	</component>

<!-- ============================================================================================================================================================ -->

<!-- ========================================================	CAPILLARY DYNAMICS MODEL	=========================================================== -->
	<component 	name="capillary_dynamics" 
				cmeta:id="capillary_dynamics">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#capillary_dynamics">
				<rdf:value>
				CAPILLARY DYNAMICS, TISSUE FLUID, AND TISSUE PROTEIN

				This portion of the model calculates the movement of fluid and protein through the
				capillary membrane.  It also calculates the volumes of fluid in the free fluid space 
				of the interstitium and in the gel fluid space.  It calculates the pressures in both 
				of these fluids as well as the so-called solid tissue pressure caused by the compression 
				of solid elements against other portions of the interstitium.  In addition, the quantities 
				of proteins and their concentrations in both the free fluid and the gel fluid are calculated. 
				And, finally, the flow of both fluid and proteins in the lymph system are computed, as well 
				as the overall body protein balance.

				Encapsulation grouping component containing all the components in the Capillary Dynamics Model. The inputs and 
				outputs of the Capillary Dynamics Model must be passed by this component.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

		<variable 	cmeta:id="environment_time"
					name="time"	units="minute"	private_interface="out" public_interface="in"/>

<!-- Inputs from components in other models -->
		<variable name="VEC"	units="litre" private_interface="out" public_interface="in"/>
		<variable name="PPD"	units="gram_per_minute" private_interface="out" public_interface="in"/>
		<variable name="RVS"	units="mmHg_minute_per_L" private_interface="out" public_interface="in"/>
		<variable name="DFP"	units="L_per_minute" private_interface="out" public_interface="in"/>
		<variable name="VPF"	units="litre" private_interface="out" public_interface="in"/>
		<variable name="BFN"	units="L_per_minute" private_interface="out" public_interface="in"/>
		<variable name="PVS"	units="mmHg" private_interface="out" public_interface="in"/>

<!-- Outputs to components in other models -->
		<variable name="PC" 	units="mmHg" private_interface="in" public_interface="out"/>
		<variable name="CPP" 	units="gram_per_L" private_interface="in" public_interface="out"/>
		<variable name="PPC" 	units="mmHg" private_interface="in" public_interface="out"/>
		<variable name="VP" 	units="litre" private_interface="in" public_interface="out"/>
	</component>

<!-- OUTPUT CONNECTIONS -->
<!--	<connection>
		<map_components component_1="capillary_dynamics" component_2="capillary_pressure"/>
		<map_variables variable_1="PC" variable_2="PC"/>
	</connection> -->
	<connection>
		<map_components component_1="capillary_dynamics" component_2="plasma_protein_concentration"/>
		<map_variables variable_1="CPP" variable_2="CPP"/>
	</connection>
	<connection>
		<map_components component_1="capillary_dynamics" component_2="plasma_colloid_osmotic_pressure"/>
		<map_variables variable_1="PPC" variable_2="PPC"/>
	</connection>
<!--	<connection>
		<map_components component_1="capillary_dynamics" component_2="plasma_volume"/>
		<map_variables variable_1="VP" variable_2="VP"/>
	</connection> -->

<!-- ========================================	CAPILLARY MEMBRANE DYNAMICS	============================================= -->
	<component 	name="capillary_membrane_dynamics" 
				cmeta:id="capillary_membrane_dynamics">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#capillary_membrane_dynamics">
				<rdf:value>
				Containment grouping component for "capillary_pressure" and 
				"rate_of_fluid_out_of_capillaries".
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
	</component>

<!-- ========================================	CAPILLARY PRESSURE		============================================= -->
	<component 	name="capillary_pressure" 
				cmeta:id="capillary_pressure">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#capillary_pressure">
				<rdf:value>
				CP1 and CP2:  
				The capillary pressure (PC) is equal to the resistance to blood flow in the
				small veins (RVS) times the blood flow in the small veins (BFN), times a constant 
				to represent the additional normal flow through the muscles and kidneys, plus
				the pressure in the large vein circulation.  The value of the capillary pressure (PC)
				is assumed to be the same in all tissues of the body.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP1_and_CP2">
				<rdf:value>
				CP1 and CP2:  
				The capillary pressure (PC) is equal to the resistance to blood flow in the
				small veins (RVS) times the blood flow in the small veins (BFN), times a constant 
				to represent the additional normal flow through the muscles and kidneys, plus
				the pressure in the large vein circulation.  The value of the capillary pressure (PC)
				is assumed to be the same in all tissues of the body.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="RVS"	units="mmHg_minute_per_L" private_interface="none" public_interface="in"/>
		<variable name="BFN"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="PVS"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="capillary_pressure_PC"
					name="PC"		units="mmHg" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP1_and_CP2">
                <eq/>
                <ci>PC</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<ci>RVS</ci>
						<cn cellml:units="dimensionless">1.7</cn>
						<ci>BFN</ci>
					</apply>
					<ci>PVS</ci>
				</apply>
            </apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="capillary_pressure" component_2="capillary_dynamics"/>
		<map_variables variable_1="PC" variable_2="PC"/>
		<map_variables variable_1="RVS" variable_2="RVS"/>
		<map_variables variable_1="BFN" variable_2="BFN"/>
		<map_variables variable_1="PVS" variable_2="PVS"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- ========================================	RATE OF FLUID OUT OF CAPILLARIES	============================================= -->
	<component 	name="rate_of_fluid_out_of_capillaries" 
				cmeta:id="rate_of_fluid_out_of_capillaries">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#rate_of_fluid_out_of_capillaries">
				<rdf:value>
				CP3:  
				The pressure gradient for filtration of fluid across the capillary membranes (PCGR) 
				is equal to the capillary pressure (PC), plus the colloid osmotic pressure of the 
				tissue gel (PTC), minus the plasma colloid osmotic pressure (PPC), minus the hydrostatic
				pressure of the gel (PGH).

				CP4:  
				The rate of filtration of fluid out of the capillaries of the systemic circulation (CFILTR)
				is equal to the pressure gradient across the capillary membranes (PCGR) times the capillary
				filtration coefficient (CFC).

				CP5:  
				The total rate of movement of fluid out of all the systemic capillaries of the body (VTC) is
				equal to the rate of filtration from the systemic capillaries (CFILTR) plus the rate of 
				leakage of whole plasma though leaky capillaries (VTCPL).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP3_to_CP5">
				<rdf:value>
				CP3:  
				The pressure gradient for filtration of fluid across the capillary membranes (PCGR) 
				is equal to the capillary pressure (PC), plus the colloid osmotic pressure of the 
				tissue gel (PTC), minus the plasma colloid osmotic pressure (PPC), minus the hydrostatic
				pressure of the gel (PGH).

				CP4:  
				The rate of filtration of fluid out of the capillaries of the systemic circulation (CFILTR)
				is equal to the pressure gradient across the capillary membranes (PCGR) times the capillary
				filtration coefficient (CFC).

				CP5:  
				The total rate of movement of fluid out of all the systemic capillaries of the body (VTC) is
				equal to the rate of filtration from the systemic capillaries (CFILTR) plus the rate of 
				leakage of whole plasma though leaky capillaries (VTCPL).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PC"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="PGH"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="PTC"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="PPC"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="VTCPL"	units="L_per_minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="VTC" 	units="L_per_minute" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="CFC"	units="L_per_minute_per_mmHg" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP3_to_CP5">
				<eq/>
				<ci>VTC</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<apply>
							<plus/>
							<apply>
								<minus/>
								<apply>
									<minus/>
									<ci>PC</ci>
									<ci>PPC</ci>
								</apply>
								<ci>PGH</ci>
							</apply>
							<ci>PTC</ci>
						</apply>
						<ci>CFC</ci>
					</apply>
					<ci>VTCPL</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="rate_of_fluid_out_of_capillaries" component_2="capillary_pressure"/>
		<map_variables variable_1="PC" variable_2="PC"/>
	</connection>
	<connection>
		<map_components component_1="rate_of_fluid_out_of_capillaries" component_2="hydrostatic_pressure_of_tissue_gel"/>
		<map_variables variable_1="PGH" variable_2="PGH"/>
	</connection>
	<connection>
		<map_components component_1="rate_of_fluid_out_of_capillaries" component_2="total_osmotic_pressure_of_tissue_gel"/>
		<map_variables variable_1="PTC" variable_2="PTC"/>
	</connection>
	<connection>
		<map_components component_1="rate_of_fluid_out_of_capillaries" component_2="plasma_colloid_osmotic_pressure"/>
		<map_variables variable_1="PPC" variable_2="PPC"/>
	</connection>
	<connection>
		<map_components component_1="rate_of_fluid_out_of_capillaries" component_2="plasma_leakage"/>
		<map_variables variable_1="VTCPL" variable_2="VTCPL"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="rate_of_fluid_out_of_capillaries" component_2="capillary_dynamics_parameter_values"/>
		<map_variables variable_1="CFC" variable_2="CFC"/>
	</connection>

<!-- ========================================	PLASMA VOLUME AND PROTEIN	============================================= -->
	<component 	name="plasma_volume_and_protein" 
				cmeta:id="plasma_volume_and_protein">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#plasma_volume_and_protein">
				<rdf:value>
				Containment grouping component for "plasma_volume", "plasma_protein_concentration",
				"protein_destruction_and_formation", "plasma_leakage", "protein_influx_into_interstitium",
				"total_plasma_protein" and "plasma_colloid_osmotic_pressure".
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
	</component>

<!-- ========================================	PLASMA VOLUME	============================================= -->
	<component 	name="plasma_volume" 
				cmeta:id="plasma_volume">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#plasma_volume">
				<rdf:value>
				CP10:  
				The rate of change of plasma volume (VPD) is equal to the rate of inflow of 
				fluid into the plasma by way of the lymph (VTL) minus the rate of loss of 
				fluid from the systemic tissue capillaries (VTC), minus the rate of loss of 
				fluid from the pulmonary capillaries (DFP), and plus any rate of transfusion 
				of plasma into the circulation.

				CP11:  
				The plasma volume (VP) is determined by integrating the rate of change of the 
				plasma volume (VPD) with respect to time.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP10">
				<rdf:value>
				CP10:  
				The rate of change of plasma volume (VPD) is equal to the rate of inflow of 
				fluid into the plasma by way of the lymph (VTL) minus the rate of loss of 
				fluid from the systemic tissue capillaries (VTC), minus the rate of loss of 
				fluid from the pulmonary capillaries (DFP), and plus any rate of transfusion 
				of plasma into the circulation.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP11">
				<rdf:value>
				CP11:  
				The plasma volume (VP) is determined by integrating the rate of change of the 
				plasma volume (VPD) with respect to time.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="DFP"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="VTC"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="VTL"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="plasma_volume_VP"
					name="VP" 	initial_value="3.00449"	units="litre" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="TRPL"	units="L_per_minute" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="VPD"	units="L_per_minute" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP10">
				<eq/>
				<ci>VPD</ci>
				<apply>
					<plus/>
					<apply>
						<minus/>
						<apply>
							<minus/>
							<ci>VTL</ci>
							<ci>VTC</ci>
						</apply>
						<ci>DFP</ci>
					</apply>
					<ci>TRPL</ci>
				</apply>
			</apply>
			<apply id="CP11">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>VP</ci>
				</apply>
				<ci>VPD</ci>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="plasma_volume" component_2="capillary_dynamics"/>
		<map_variables variable_1="VP" variable_2="VP"/>
		<map_variables variable_1="DFP" variable_2="DFP"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>
	<connection>
		<map_components component_1="plasma_volume" component_2="rate_of_fluid_out_of_capillaries"/>
		<map_variables variable_1="VTC" variable_2="VTC"/>
	</connection>
	<connection>
		<map_components component_1="plasma_volume" component_2="lymph_flow"/>
		<map_variables variable_1="VTL" variable_2="VTL"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="plasma_volume" component_2="capillary_dynamics_parameter_values"/>
		<map_variables variable_1="TRPL" variable_2="TRPL"/>
	</connection>

<!-- ========================================	PLASMA PROTEIN CONCENTRATION	============================================= -->
	<component 	name="plasma_protein_concentration" 
				cmeta:id="plasma_protein_concentration">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#plasma_protein_concentration">
				<rdf:value>
				CP35:  
				The concentration of protein in the plasma (CPP) is equal to the total quantity 
				of protein in the plasma (RPR) divided by the plasma volume (VP).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP35">
				<rdf:value>
				CP35:  
				The concentration of protein in the plasma (CPP) is equal to the total quantity 
				of protein in the plasma (RPR) divided by the plasma volume (VP).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PRP"	units="gram" private_interface="none" public_interface="in"/>
		<variable name="VP"	units="litre" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="plasma_protein_concentration_CPP"
					name="CPP" 	units="gram_per_L" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP35">
				<eq/>
				<ci>CPP</ci>
				<apply>
					<divide/>
					<ci>PRP</ci>
					<ci>VP</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="plasma_protein_concentration" component_2="total_plasma_protein"/>
		<map_variables variable_1="PRP" variable_2="PRP"/>
	</connection>
	<connection>
		<map_components component_1="plasma_protein_concentration" component_2="plasma_volume"/>
		<map_variables variable_1="VP" variable_2="VP"/>
	</connection>

<!-- ========================================	PROTEIN DESTRUCTION AND FORMATION	============================================= -->
	<component 	name="protein_destruction_and_formation" 
				cmeta:id="protein_destruction_and_formation">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#protein_destruction_and_formation">
				<rdf:value>
				CP37 and CP38:  
				A factor related to the rate of destruction of protein by the liver (CPPD) is 
				equal to plasma protein concentration CPP) minus a critical protein limiting value (CPR). 
				Block CP38 limits the rate of destruction of protein by the liver to a lower limit of zero.

				CP39 and CP40:  
				Curve-fitting blocks to calculate the rate of destruction of protein by the 
				liver (LPPRDS) from the factor (CPPD) calculated in Block 37.  The curve-fitting 
				constants are LPDE and LPK.

				CP41:  
				Net rate of protein exchange between the liver and the plasma (DLP) is equal to the 
				rate of production of protein by the liver (LPPR) minus the rate of destruction of 
				protein by the liver (LPPRDS).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP37_and_CP38">
				<rdf:value>
				CP37 and CP38:  
				A factor related to the rate of destruction of protein by the liver (CPPD) is 
				equal to plasma protein concentration CPP) minus a critical protein limiting value (CPR). 
				Block CP38 limits the rate of destruction of protein by the liver to a lower limit of zero.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP39_to_CP41">
				<rdf:value>
				CP39 and CP40:  
				Curve-fitting blocks to calculate the rate of destruction of protein by the 
				liver (LPPRDS) from the factor (CPPD) calculated in Block 37.  The curve-fitting 
				constants are LPDE and LPK.

				CP41:  
				Net rate of protein exchange between the liver and the plasma (DLP) is equal to the 
				rate of production of protein by the liver (LPPR) minus the rate of destruction of 
				protein by the liver (LPPRDS).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="CPP"	units="gram_per_L" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="DLP" 	units="gram_per_minute" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="CPR"	units="gram_per_L" private_interface="none" public_interface="in"/>
		<variable name="LPPR"	units="gram_per_minute" private_interface="none" public_interface="in"/>
		<variable name="LPDE"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="LPK"	units="L_per_minute" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="CPPD"	units="gram_per_L" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP37_and_CP38">
				<eq/>
				<ci>CPPD</ci>
				<piecewise>
					<piece>
						<cn cellml:units="gram_per_L">0</cn>
						<apply>
							<lt/>
							<apply>
								<minus/>
								<ci>CPP</ci>
								<ci>CPR</ci>
							</apply>
							<cn cellml:units="gram_per_L">0</cn>
						</apply>
					</piece>
					<otherwise>
						<apply>
							<minus/>
							<ci>CPP</ci>
							<ci>CPR</ci>
						</apply>
					</otherwise>
				</piecewise>
			</apply>
			<apply id="CP39_to_CP41">
				<eq/>
				<ci>DLP</ci>
				<apply>
					<minus/>
					<ci>LPPR</ci>
					<apply>
						<times/>
						<apply>
							<power/>
							<ci>CPPD</ci>
							<ci>LPDE</ci>
						</apply>
						<ci>LPK</ci>
					</apply>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="protein_destruction_and_formation" component_2="plasma_protein_concentration"/>
		<map_variables variable_1="CPP" variable_2="CPP"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="protein_destruction_and_formation" component_2="capillary_dynamics_parameter_values"/>
		<map_variables variable_1="CPR" variable_2="CPR"/>
		<map_variables variable_1="LPPR" variable_2="LPPR"/>
		<map_variables variable_1="LPDE" variable_2="LPDE"/>
		<map_variables variable_1="LPK" variable_2="LPK"/>
	</connection>

<!-- ========================================	PLASMA LEAKAGE	============================================= -->
	<component 	name="plasma_leakage" 
				cmeta:id="plasma_leakage">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#plasma_leakage">
				<rdf:value>
				CP25 and CP26:  
				Calculation of a pressure gradient to cause whole plasma leakage through the 
				capillary membranes (PRCD), calculated by adding the capillary pressure (PC) and
				subtracting a critical capillary pressure (PCR) below which no whole plasma will leak.
				Block CP26 limits the rate of plasma leakage (PRCD) to a lower level of zero.

				CP27 and CP28:  
				The rate of leakage of whole plasma through the capillary membrane (VTCPL) is equal 
				to the pressure gradient for leakage of plasma (PRCD) times a constant (CPK) and this 
				product raised to a power (PCE).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP25_and_CP26">
				<rdf:value>
				CP25 and CP26:  
				Calculation of a pressure gradient to cause whole plasma leakage through the 
				capillary membranes (PRCD), calculated by adding the capillary pressure (PC) and
				subtracting a critical capillary pressure (PCR) below which no whole plasma will leak.
				Block CP26 limits the rate of plasma leakage (PRCD) to a lower level of zero.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP27_and_CP28">
				<rdf:value>
				CP27 and CP28:  
				The rate of leakage of whole plasma through the capillary membrane (VTCPL) is equal 
				to the pressure gradient for leakage of plasma (PRCD) times a constant (CPK) and this 
				product raised to a power (PCE).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PC"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="VTCPL" 	units="L_per_minute" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="PCR"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="CPK"	units="L_per_minute_per_mmHg" private_interface="none" public_interface="in"/>
		<variable name="PCE"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="PRCD"	units="mmHg" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP25_and_CP26">
				<eq/>
				<ci>PRCD</ci>
				<piecewise>
					<piece>
						<cn cellml:units="mmHg">0</cn>
						<apply>
							<lt/>
							<apply>
								<minus/>
								<ci>PC</ci>
								<ci>PCR</ci>
							</apply>
							<cn cellml:units="mmHg">0</cn>
						</apply>
					</piece>
					<otherwise>
						<apply>
							<minus/>
							<ci>PC</ci>
							<ci>PCR</ci>
						</apply>
					</otherwise>
				</piecewise>
			</apply>
			<apply id="CP27_and_CP28">
				<eq/>
				<ci>VTCPL</ci>
				<apply>
					<power/>
					<apply>
						<times/>
						<ci>PRCD</ci>
						<ci>CPK</ci>
					</apply>
					<ci>PCE</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="plasma_leakage" component_2="capillary_pressure"/>
		<map_variables variable_1="PC" variable_2="PC"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="plasma_leakage" component_2="capillary_dynamics_parameter_values"/>
		<map_variables variable_1="PCR" variable_2="PCR"/>
		<map_variables variable_1="CPK" variable_2="CPK"/>
		<map_variables variable_1="PCE" variable_2="PCE"/>
	</connection>

<!-- ========================================	PROTEIN INFLUX INTO INTERSTITIUM	============================================= -->
	<component 	name="protein_influx_into_interstitium" 
				cmeta:id="protein_influx_into_interstitium">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#protein_influx_into_interstitium">
				<rdf:value>
				CP29:  
				Rate of leakage of plasma protein in the leaking whole plasma into the interstitium 
				from the circulating plasma (TVCPL) equals the volume of plasma leaking (VTCPL) 
				times the concentration of protein in the plasma (CPP).

				CP30 and CP31:  
				The rate of diffusion of protein through the capillary pores (PLPRDF) is equal 
				to the difference between plasma concentration of protein (CPP) minus the concentration 
				of protein in the interstitial free fluid (CPI) times a constant in Block CP31.

				CP32:  
				Rate of influx of protein into the interstitium from the plasma in the capillaries (DPC)
				is equal to the rate of protein leaking in the whole plasma (VTCPL) plus the rate of 
				diffusion of protein through the capillary pores (PLPRDF).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP29_to_CP32">
				<rdf:value>
				CP29:  
				Rate of leakage of plasma protein in the leaking whole plasma into the interstitium 
				from the circulating plasma (TVCPL) equals the volume of plasma leaking (VTCPL) 
				times the concentration of protein in the plasma (CPP).

				CP30 and CP31:  
				The rate of diffusion of protein through the capillary pores (PLPRDF) is equal 
				to the difference between plasma concentration of protein (CPP) minus the concentration 
				of protein in the interstitial free fluid (CPI) times a constant in Block CP31.

				CP32:  
				Rate of influx of protein into the interstitium from the plasma in the capillaries (DPC)
				is equal to the rate of protein leaking in the whole plasma (VTCPL) plus the rate of 
				diffusion of protein through the capillary pores (PLPRDF).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="VTCPL"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="CPP"	units="gram_per_L" private_interface="none" public_interface="in"/>
		<variable name="CPI"	units="gram_per_L" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="DPC" 	units="gram_per_minute" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP29_to_CP32">
				<eq/>
				<ci>DPC</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<ci>VTCPL</ci>
						<ci>CPP</ci>
					</apply>
					<apply>
						<times/>
						<apply>
							<minus/>
							<ci>CPP</ci>
							<ci>CPI</ci>
						</apply>
						<cn cellml:units="L_per_minute">0.00104</cn>
					</apply>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="protein_influx_into_interstitium" component_2="plasma_leakage"/>
		<map_variables variable_1="VTCPL" variable_2="VTCPL"/>
	</connection>
	<connection>
		<map_components component_1="protein_influx_into_interstitium" component_2="plasma_protein_concentration"/>
		<map_variables variable_1="CPP" variable_2="CPP"/>
	</connection>
	<connection>
		<map_components component_1="protein_influx_into_interstitium" component_2="interstitial_protein_concentration"/>
		<map_variables variable_1="CPI" variable_2="CPI"/>
	</connection>

<!-- ========================================	TOTAL PLASMA PROTEIN	============================================= -->
	<component 	name="total_plasma_protein" 
				cmeta:id="total_plasma_protein">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#total_plasma_protein">
				<rdf:value>
				CP33:  The rate of change of the quantity of protein in the plasma (DPP) 
				is equal to the net rate of formation of protein by the liver (DLP), plus 
				the rate of return of protein to the circulation in the lymph (DPL), minus 
				the loss of protein from the circulation into the systemic interstitium (DPC), 
				minus the rate of loss of protein through the pulmonary capillary membranes (PPD).

				CP34:  
				The total quantity of protein in the plasma (PRP) is determined by integrating 
				the rate of change of the protein in the plasma (DPP) with respect to time.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP33">
				<rdf:value>
				CP33:  The rate of change of the quantity of protein in the plasma (DPP) 
				is equal to the net rate of formation of protein by the liver (DLP), plus 
				the rate of return of protein to the circulation in the lymph (DPL), minus 
				the loss of protein from the circulation into the systemic interstitium (DPC), 
				minus the rate of loss of protein through the pulmonary capillary membranes (PPD).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP34">
				<rdf:value>
				CP34:  
				The total quantity of protein in the plasma (PRP) is determined by integrating 
				the rate of change of the protein in the plasma (DPP) with respect to time.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="DPC"	units="gram_per_minute" private_interface="none" public_interface="in"/>
		<variable name="PPD"	units="gram_per_minute" private_interface="none" public_interface="in"/>
		<variable name="DPL"	units="gram_per_minute" private_interface="none" public_interface="in"/>
		<variable name="DLP"	units="gram_per_minute" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="PRP" 	initial_value="216.243"	units="gram" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="TRPL"	units="L_per_minute" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="DPP"	units="gram_per_minute" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP33">
				<eq/>
				<ci>DPP</ci>
				<apply>
					<plus/>
					<apply>
						<minus/>
						<apply>
							<minus/>
							<apply>
								<plus/>
								<ci>DLP</ci>
								<ci>DPL</ci>
							</apply>
							<ci>DPC</ci>
						</apply>
						<ci>PPD</ci>
					</apply>
					<apply>
						<times/>
						<ci>TRPL</ci>
						<cn cellml:units="gram_per_L">72</cn>
					</apply>
				</apply>
			</apply>
			<apply id="CP34">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>PRP</ci>
				</apply>
				<ci>DPP</ci>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="total_plasma_protein" component_2="protein_influx_into_interstitium"/>
		<map_variables variable_1="DPC" variable_2="DPC"/>
	</connection>
	<connection>
		<map_components component_1="total_plasma_protein" component_2="lymph_protein_flow"/>
		<map_variables variable_1="DPL" variable_2="DPL"/>
	</connection>
	<connection>
		<map_components component_1="total_plasma_protein" component_2="protein_destruction_and_formation"/>
		<map_variables variable_1="DLP" variable_2="DLP"/>
	</connection>
	<connection>
		<map_components component_1="total_plasma_protein" component_2="capillary_dynamics"/>
		<map_variables variable_1="PPD" variable_2="PPD"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="total_plasma_protein" component_2="capillary_dynamics_parameter_values"/>
		<map_variables variable_1="TRPL" variable_2="TRPL"/>
	</connection>

<!-- ========================================	PLASMA COLLOID OSMOTIC PRESSURE		============================================= -->
	<component 	name="plasma_colloid_osmotic_pressure" 
				cmeta:id="plasma_colloid_osmotic_pressure">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#plasma_colloid_osmotic_pressure">
				<rdf:value>
				CP36:  
				The plasma colloid osmotic pressure (PPC) is calculated in this block from 
				the concentration of protein in the plasma (CPP).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP36">
				<rdf:value>
				CP36:  
				The plasma colloid osmotic pressure (PPC) is calculated in this block from 
				the concentration of protein in the plasma (CPP).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="CPP"	units="gram_per_L" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="plasma_colloid_osmotic_pressure_PPC"
					name="PPC" 	units="mmHg" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP36">
				<eq/>
				<ci>PPC</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<cn cellml:units="L_mmHg_per_gram">0.28</cn>
						<ci>CPP</ci>
					</apply>
					<apply>
						<times/>
						<cn cellml:units="L2_mmHg_per_gram2">0.0019</cn>
						<apply>
							<power/>
							<ci>CPP</ci>
							<cn cellml:units="dimensionless">2</cn>
						</apply>
					</apply>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="plasma_colloid_osmotic_pressure" component_2="plasma_protein_concentration"/>
		<map_variables variable_1="CPP" variable_2="CPP"/>
	</connection>

<!-- ========================================	SYSTEMIC TISSUE FLUID VOLUME AND PROTEIN	============================================= -->
	<component 	name="systemic_tissue_fluid_volume_and_protein" 
				cmeta:id="systemic_tissue_fluid_volume_and_protein">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#systemic_tissue_fluid_volume_and_protein">
				<rdf:value>
				Containment grouping component for "total_systemic_fluid_volume",
				"interstitial_fluid_volume", "total_interstitial_protein",
				"interstitial_protein_concentration", "interstitial_colloid_osmotic_pressure"
				and "lymph_protein_flow".
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
	</component>

<!-- ========================================	TOTAL SYSTEMIC FLUID VOLUME		============================================= -->
	<component 	name="total_systemic_fluid_volume" 
				cmeta:id="total_systemic_fluid_volume">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#total_systemic_fluid_volume">
				<rdf:value>
				CP6:  
				The total fluid volume in the systemic circulation portion of the body (VTS) 
				is equal to the total extracellular fluid volume (VEC) minus plasma volume (VP) 
				and minus pulmonary extracellular fluid volume (VPF).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP6">
				<rdf:value>
				CP6:  
				The total fluid volume in the systemic circulation portion of the body (VTS) 
				is equal to the total extracellular fluid volume (VEC) minus plasma volume (VP) 
				and minus pulmonary extracellular fluid volume (VPF).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="VEC"	units="litre" private_interface="none" public_interface="in"/>
		<variable name="VP"	units="litre" private_interface="none" public_interface="in"/>
		<variable name="VPF"	units="litre" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="VTS" 	units="litre" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP6">
				<eq/>
				<ci>VTS</ci>
				<apply>
					<minus/>
					<apply>
						<minus/>
						<ci>VEC</ci>
						<ci>VP</ci>
					</apply>
					<ci>VPF</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="total_systemic_fluid_volume" component_2="capillary_dynamics"/>
		<map_variables variable_1="VEC" variable_2="VEC"/>
		<map_variables variable_1="VPF" variable_2="VPF"/>
	</connection>
	<connection>
		<map_components component_1="total_systemic_fluid_volume" component_2="plasma_volume"/>
		<map_variables variable_1="VP" variable_2="VP"/>
	</connection>

<!-- ========================================	INTERSTITIAL FLUID VOLUME	============================================= -->
	<component 	name="interstitial_fluid_volume" 
				cmeta:id="interstitial_fluid_volume">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#interstitial_fluid_volume">
				<rdf:value>
				CP7, CP7A, CP7B, CP7C, CP7D, and CP7E:  
				Calculation of the effect of tissue space stress relaxation on volume of fluid 
				in the interstitial space (VTS1) after higher or lower than normal volumes
				(VTS greater or lower than 12) have existed in the tissue spaces for prolonged 
				periods of time.  The sensitivity control for the extent of tissue space stress
				relaxation is TSSLML, and the reciprocal of the time constant of the effect 
				is TSSLTC.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP7_to_CP7D">
				<rdf:value>
				CP7, CP7A, CP7B, CP7C, CP7D, and CP7E:  
				Calculation of the effect of tissue space stress relaxation on volume of fluid 
				in the interstitial space (VTS1) after higher or lower than normal volumes
				(VTS greater or lower than 12) have existed in the tissue spaces for prolonged 
				periods of time.  The sensitivity control for the extent of tissue space stress
				relaxation is TSSLML, and the reciprocal of the time constant of the effect 
				is TSSLTC.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP7E">
				<rdf:value>
				CP7, CP7A, CP7B, CP7C, CP7D, and CP7E:  
				Calculation of the effect of tissue space stress relaxation on volume of fluid 
				in the interstitial space (VTS1) after higher or lower than normal volumes
				(VTS greater or lower than 12) have existed in the tissue spaces for prolonged 
				periods of time.  The sensitivity control for the extent of tissue space stress
				relaxation is TSSLML, and the reciprocal of the time constant of the effect 
				is TSSLTC.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="VTS"	units="litre" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="VTS1" 	units="litre" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="TSSLML"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="TSSLTC"	units="per_minute" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="VTS2"	initial_value="0.0"	units="litre" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP7_to_CP7D">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>VTS2</ci>
				</apply>
				<apply>
					<times/>
					<apply>
						<minus/>
						<apply>
							<times/>
							<apply>
								<minus/>
								<ci>VTS</ci>
								<cn cellml:units="litre">12</cn>
							</apply>
							<ci>TSSLML</ci>
						</apply>
						<ci>VTS2</ci>
					</apply>
					<ci>TSSLTC</ci>
				</apply>
			</apply>
			<apply id="CP7E">
				<eq/>
				<ci>VTS1</ci>
				<apply>
					<minus/>
					<ci>VTS</ci>
					<ci>VTS2</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="interstitial_fluid_volume" component_2="total_systemic_fluid_volume"/>
		<map_variables variable_1="VTS" variable_2="VTS"/>
	</connection>
	<connection>
		<map_components component_1="interstitial_fluid_volume" component_2="capillary_dynamics"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="interstitial_fluid_volume" component_2="capillary_dynamics_parameter_values"/>
		<map_variables variable_1="TSSLML" variable_2="TSSLML"/>
		<map_variables variable_1="TSSLTC" variable_2="TSSLTC"/>
	</connection>

<!-- ========================================	TOTAL INTERSTITIAL PROTEIN	============================================= -->
	<component 	name="total_interstitial_protein" 
				cmeta:id="total_interstitial_protein">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#total_interstitial_protein">
				<rdf:value>
				CP42:  
				The rate of change of protein in the systemic interstitium (DPI) is equal to 
				the rate of leakage from the plasma of protein through the systemic capillary
				membranes (DPC) minus the rate of return of the protein from the systemic 
				interstitium by way of the lymphatics (DPL).

				CP43:  
				The total tissue protein (TSP) is calculated by integrating the rate of 
				change of protein in the interstitium (DPI) with respect to time.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP42">
				<rdf:value>
				CP42:  
				The rate of change of protein in the systemic interstitium (DPI) is equal to 
				the rate of leakage from the plasma of protein through the systemic capillary
				membranes (DPC) minus the rate of return of the protein from the systemic 
				interstitium by way of the lymphatics (DPL).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP43">
				<rdf:value>
				CP43:  
				The total tissue protein (TSP) is calculated by integrating the rate of 
				change of protein in the interstitium (DPI) with respect to time.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="DPC"	units="gram_per_minute" private_interface="none" public_interface="in"/>
		<variable name="DPL"	units="gram_per_minute" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="TSP" 	initial_value="279.945"	units="gram" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable name="DPI"	units="gram_per_minute" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP42">
				<eq/>
				<ci>DPI</ci>
				<apply>
					<minus/>
					<ci>DPC</ci>
					<ci>DPL</ci>
				</apply>
			</apply>
			<apply id="CP43">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>TSP</ci>
				</apply>
				<ci>DPI</ci>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="total_interstitial_protein" component_2="lymph_protein_flow"/>
		<map_variables variable_1="DPL" variable_2="DPL"/>
	</connection>
	<connection>
		<map_components component_1="total_interstitial_protein" component_2="protein_influx_into_interstitium"/>
		<map_variables variable_1="DPC" variable_2="DPC"/>
	</connection>
	<connection>
		<map_components component_1="total_interstitial_protein" component_2="capillary_dynamics"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- ========================================	INTERSTITIAL PROTEIN CONCENTRATION		============================================= -->
	<component 	name="interstitial_protein_concentration" 
				cmeta:id="interstitial_protein_concentration">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#interstitial_protein_concentration">
				<rdf:value>
				CP44:  
				The concentration of protein in the interstitium (CPI) is equal to the total 
				quantity of protein in the interstitium (TSP) divided by the total volume of 
				fluid in the systemic interstitium (VTS).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP44">
				<rdf:value>
				CP44:  
				The concentration of protein in the interstitium (CPI) is equal to the total 
				quantity of protein in the interstitium (TSP) divided by the total volume of 
				fluid in the systemic interstitium (VTS).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="TSP"	units="gram" private_interface="none" public_interface="in"/>
		<variable name="VTS"	units="litre" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="CPI" 	units="gram_per_L" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP44">
				<eq/>
				<ci>CPI</ci>
				<apply>
					<divide/>
					<ci>TSP</ci>
					<ci>VTS</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="interstitial_protein_concentration" component_2="total_interstitial_protein"/>
		<map_variables variable_1="TSP" variable_2="TSP"/>
	</connection>
	<connection>
		<map_components component_1="interstitial_protein_concentration" component_2="total_systemic_fluid_volume"/>
		<map_variables variable_1="VTS" variable_2="VTS"/>
	</connection>

<!-- ========================================	INTERSTITIAL COLLOID OSMOTIC PRESSURE	============================================= -->
	<component 	name="interstitial_colloid_osmotic_pressure" 
				cmeta:id="interstitial_colloid_osmotic_pressure">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#interstitial_colloid_osmotic_pressure">
				<rdf:value>
				CP45:  
				The colloid osmotic pressure of the free fluid in the interstitium (PTCPR) is 
				calculated in this block from the concentration of protein in the interstitium (CPI).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP45">
				<rdf:value>
				CP45:  
				The colloid osmotic pressure of the free fluid in the interstitium (PTCPR) is 
				calculated in this block from the concentration of protein in the interstitium (CPI).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="CPI"	units="gram_per_L" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="PTCPR" 	units="mmHg" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP45">
				<eq/>
				<ci>PTCPR</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<cn cellml:units="L_mmHg_per_gram">0.28</cn>
						<ci>CPI</ci>
					</apply>
					<apply>
						<times/>
						<cn cellml:units="L2_mmHg_per_gram2">0.0019</cn>
						<apply>
							<power/>
							<ci>CPI</ci>
							<cn cellml:units="dimensionless">2</cn>
						</apply>
					</apply>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="interstitial_colloid_osmotic_pressure" component_2="interstitial_protein_concentration"/>
		<map_variables variable_1="CPI" variable_2="CPI"/>
	</connection>

<!-- ========================================	LYMPH PROTEIN FLOW	============================================= -->
	<component 	name="lymph_protein_flow" 
				cmeta:id="lymph_protein_flow">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#lymph_protein_flow">
				<rdf:value>
				CP46:  
				The rate of return of protein to the circulation by way of the lymph (DPL) is 
				equal to the concentration of protein in the systemic interstitium (CPI) times 
				the rate of lymph flow from the interstitium (VTL).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP46">
				<rdf:value>
				CP46:  
				The rate of return of protein to the circulation by way of the lymph (DPL) is 
				equal to the concentration of protein in the systemic interstitium (CPI) times 
				the rate of lymph flow from the interstitium (VTL).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="CPI"	units="gram_per_L" private_interface="none" public_interface="in"/>
		<variable name="VTL"	units="L_per_minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="DPL" 	units="gram_per_minute" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP46">
				<eq/>
				<ci>DPL</ci>
				<apply>
					<times/>
					<ci>CPI</ci>
					<ci>VTL</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="lymph_protein_flow" component_2="interstitial_protein_concentration"/>
		<map_variables variable_1="CPI" variable_2="CPI"/>
	</connection>
	<connection>
		<map_components component_1="lymph_protein_flow" component_2="lymph_flow"/>
		<map_variables variable_1="VTL" variable_2="VTL"/>
	</connection>

<!-- ========================================	TISSUE GEL AND FLUID, AND LYMPH FLOW	============================================= -->
	<component 	name="tissue_gel_and_fluid_and_lymph_flow" 
				cmeta:id="tissue_gel_and_fluid_and_lymph_flow">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#tissue_gel_and_fluid_and_lymph_flow">
				<rdf:value>
				Containment grouping component for "hydrostatic_pressure_of_tissue_gel",
				"total_osmotic_pressure_of_tissue_gel", "total_tissue_pressure",
				"interstial_free_fluid_pressure", "interstitial_solid_tissue_pressure",
				"lymph_flow", "interstitial_gel_volume" and "interstitial_free_fluid_volume".
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
	</component>

<!-- ========================================	HYDROSTATIC PRESSURE OF TISSUE GEL	============================================= -->
	<component 	name="hydrostatic_pressure_of_tissue_gel" 
				cmeta:id="hydrostatic_pressure_of_tissue_gel">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#hydrostatic_pressure_of_tissue_gel">
				<rdf:value>
				CP13 and CP14:  
				Calculation of the concentration of hyaluronic acid in the interstitium (CHY) 
				from the total quantity of hyaluronic acid in the interstitium (HYL) and the 
				total volume of fluid in the interstitium (VTS).  The exponent CMPTSS describes 
				the non-linearity of this effect.

				CP15 and CP16:  
				Calculation of the hydrostatic pressure in the tissue gel (PGH) from the 
				concentration of hyaluronic acid in the interstitium (CHY) and the total 
				tissue pressure (PTT).  (The hyaluronic acid acts as an elastic body that
				expands, and, therefore, creates a negative pressure.)
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP13_and_CP14">
				<rdf:value>
				CP13 and CP14:  
				Calculation of the concentration of hyaluronic acid in the interstitium (CHY) 
				from the total quantity of hyaluronic acid in the interstitium (HYL) and the 
				total volume of fluid in the interstitium (VTS).  The exponent CMPTSS describes 
				the non-linearity of this effect.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP15_and_CP16">
				<rdf:value>
				CP15 and CP16:  
				Calculation of the hydrostatic pressure in the tissue gel (PGH) from the 
				concentration of hyaluronic acid in the interstitium (CHY) and the total 
				tissue pressure (PTT).  (The hyaluronic acid acts as an elastic body that
				expands, and, therefore, creates a negative pressure.)
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="VTS"	units="litre" private_interface="none" public_interface="in"/>
		<variable name="PTT"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="CHY" 	units="gram_per_L" private_interface="none" public_interface="out"/>
		<variable name="PGH" 	units="mmHg" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="HYL"	units="gram" private_interface="none" public_interface="in"/>
		<variable name="CMPTSS"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="PGHF"	units="L_mmHg_per_gram" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP13_and_CP14">
				<eq/>
				<ci>CHY</ci>
				<apply>
					<power/>
					<apply>
						<divide/>
						<apply>
							<divide/>
							<ci>HYL</ci>
							<ci>VTS</ci>
						</apply>
						<cn cellml:units="dimensionless">5</cn>
					</apply>
					<ci>CMPTSS</ci>
				</apply>
			</apply>
			<apply id="CP15_and_CP16">
				<eq/>
				<ci>PGH</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<ci>CHY</ci>
						<ci>PGHF</ci>
					</apply>
					<ci>PTT</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="hydrostatic_pressure_of_tissue_gel" component_2="total_tissue_pressure"/>
		<map_variables variable_1="PTT" variable_2="PTT"/>
	</connection>
	<connection>
		<map_components component_1="hydrostatic_pressure_of_tissue_gel" component_2="total_systemic_fluid_volume"/>
		<map_variables variable_1="VTS" variable_2="VTS"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="hydrostatic_pressure_of_tissue_gel" component_2="capillary_dynamics_parameter_values"/>
		<map_variables variable_1="HYL" variable_2="HYL"/>
		<map_variables variable_1="CMPTSS" variable_2="CMPTSS"/>
		<map_variables variable_1="PGHF" variable_2="PGHF"/>
	</connection>

<!-- ========================================	TOTAL OSMOTIC PRESSURE OF TISSUE GEL	============================================= -->
	<component 	name="total_osmotic_pressure_of_tissue_gel" 
				cmeta:id="total_osmotic_pressure_of_tissue_gel">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#total_osmotic_pressure_of_tissue_gel">
				<rdf:value>
				CP17:  
				The osmotic pressure caused by the hyaluronic acid in the gel (POSHYL) 
				is equal to the concentration of hyaluronic acid in the gel (CHY) times 
				a constant.

				CP18:  
				The total osmotic pressure of the tissue gel (PTC) is equal to the osmotic 
				pressure caused by the hyaluronic acid in the gel (POSHYL) times the colloid 
				osmotic pressure caused by the plasma protein in the free fluid of the 
				interstitium (PTCPR) times a constant (GCOPF).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP17">
				<rdf:value>
				CP17:  
				The osmotic pressure caused by the hyaluronic acid in the gel (POSHYL) 
				is equal to the concentration of hyaluronic acid in the gel (CHY) times 
				a constant.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP18">
				<rdf:value>
				CP18:  
				The total osmotic pressure of the tissue gel (PTC) is equal to the osmotic 
				pressure caused by the hyaluronic acid in the gel (POSHYL) times the colloid 
				osmotic pressure caused by the plasma protein in the free fluid of the 
				interstitium (PTCPR) times a constant (GCOPF).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="CHY"	units="gram_per_L" private_interface="none" public_interface="in"/>
		<variable name="PTCPR"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="POSHYL" 	units="mmHg" private_interface="none" public_interface="out"/>
		<variable name="PTC" 	units="mmHg" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="GCOPF"	units="per_mmHg" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP17">
				<eq/>
				<ci>POSHYL</ci>
				<apply>
					<times/>
					<ci>CHY</ci>
					<cn cellml:units="L_mmHg_per_gram">2</cn>
				</apply>
			</apply>
			<apply id="CP18">
				<eq/>
				<ci>PTC</ci>
				<apply>
					<times/>
					<ci>POSHYL</ci>
					<ci>PTCPR</ci>
					<ci>GCOPF</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="total_osmotic_pressure_of_tissue_gel" component_2="hydrostatic_pressure_of_tissue_gel"/>
		<map_variables variable_1="CHY" variable_2="CHY"/>
	</connection>
	<connection>
		<map_components component_1="total_osmotic_pressure_of_tissue_gel" component_2="interstitial_colloid_osmotic_pressure"/>
		<map_variables variable_1="PTCPR" variable_2="PTCPR"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="total_osmotic_pressure_of_tissue_gel" component_2="capillary_dynamics_parameter_values"/>
		<map_variables variable_1="GCOPF" variable_2="GCOPF"/>
	</connection>

<!-- ========================================	TOTAL TISSUE PRESSURE	============================================= -->
	<component 	name="total_tissue_pressure" 
				cmeta:id="total_tissue_pressure">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#total_tissue_pressure">
				<rdf:value>
				CP12:  
				Calculation of the total tissue pressure (PTT) as a function of the total 
				interstitial fluid volume (VTS1).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP12">
				<rdf:value>
				CP12:  
				Calculation of the total tissue pressure (PTT) as a function of the total 
				interstitial fluid volume (VTS1).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="VTS1"	units="litre" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="PTT" 	units="mmHg" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="VTSF"	units="litre" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP12">
				<eq/>
				<ci>PTT</ci>
				<apply>
					<times/>
					<apply>
						<power/>
						<apply>
							<divide/>
							<apply>
								<minus/>
								<ci>VTS1</ci>
								<ci>VTSF</ci>
							</apply>
							<ci>VTSF</ci>
						</apply>
						<cn cellml:units="dimensionless">2</cn>
					</apply>
					<cn cellml:units="mmHg">1</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="total_tissue_pressure" component_2="interstitial_fluid_volume"/>
		<map_variables variable_1="VTS1" variable_2="VTS1"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="total_tissue_pressure" component_2="capillary_dynamics_parameter_values"/>
		<map_variables variable_1="VTSF" variable_2="VTSF"/>
	</connection>

<!-- ========================================	INTERSTITIAL FREE FLUID PRESSURE	============================================= -->
	<component 	name="interstial_free_fluid_pressure" 
				cmeta:id="interstial_free_fluid_pressure">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#interstial_free_fluid_pressure">
				<rdf:value>
				CP19:  
				The pressure in the free interstitial fluid (PIF) is equal to the hydrostatic 
				pressure in the tissue gel (PGH) minus the colloid osmotic pressure of the 
				hyaluronic acid in the tissue gel (POSHYL).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP19">
				<rdf:value>
				CP19:  
				The pressure in the free interstitial fluid (PIF) is equal to the hydrostatic 
				pressure in the tissue gel (PGH) minus the colloid osmotic pressure of the 
				hyaluronic acid in the tissue gel (POSHYL).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PGH"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="POSHYL"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="PIF" 	units="mmHg" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP19">
				<eq/>
				<ci>PIF</ci>
				<apply>
					<minus/>
					<ci>PGH</ci>
					<ci>POSHYL</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="interstial_free_fluid_pressure" component_2="total_osmotic_pressure_of_tissue_gel"/>
		<map_variables variable_1="POSHYL" variable_2="POSHYL"/>
	</connection>
	<connection>
		<map_components component_1="interstial_free_fluid_pressure" component_2="hydrostatic_pressure_of_tissue_gel"/>
		<map_variables variable_1="PGH" variable_2="PGH"/>
	</connection>

<!-- ========================================	INTERSTITIAL SOLID TISSUE PRESSURE	============================================= -->
	<component 	name="interstitial_solid_tissue_pressure" 
				cmeta:id="interstitial_solid_tissue_pressure">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#interstitial_solid_tissue_pressure">
				<rdf:value>
				CP20:  
				The solid tissue pressure of the interstitium (PTS) is equal to the total 
				tissue pressure (PTT) minus the pressure in the free fluid of the interstitium (PIF).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP20">
				<rdf:value>
				CP20:  
				The solid tissue pressure of the interstitium (PTS) is equal to the total 
				tissue pressure (PTT) minus the pressure in the free fluid of the interstitium (PIF).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PIF"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="PTT"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="PTS" 	units="mmHg" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP20">
				<eq/>
				<ci>PTS</ci>
				<apply>
					<minus/>
					<ci>PTT</ci>
					<ci>PIF</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="interstitial_solid_tissue_pressure" component_2="interstial_free_fluid_pressure"/>
		<map_variables variable_1="PIF" variable_2="PIF"/>
	</connection>
	<connection>
		<map_components component_1="interstitial_solid_tissue_pressure" component_2="total_tissue_pressure"/>
		<map_variables variable_1="PTT" variable_2="PTT"/>
	</connection>

<!-- ========================================	LYMPH FLOW	============================================= -->
	<component 	name="lymph_flow" 
				cmeta:id="lymph_flow">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#lymph_flow">
				<rdf:value>
				CP21 and CP22:  
				The pressure gradient that promotes lymph flow (PLD) is equal to a constant (PLDF)
				that is determined by the pumping action of the lymphatics plus the interstitial 
				free fluid pressure (PIF), minus the total tissue pressure (PTT).  Block CP22 
				limits the upper level of this pressure gradient.

				CP23 and CP24:  
				The rate of lymph flow (VTL) is equal to the pressure gradient that causes 
				lymph flow (PLD) times a constant representing lymphatic conductance.  
				Block CP24 limits the lower level of lymph flow to zero.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP21">
				<rdf:value>
				CP21:  
				The pressure gradient that promotes lymph flow (PLD) is equal to a constant (PLDF)
				that is determined by the pumping action of the lymphatics plus the interstitial 
				free fluid pressure (PIF), minus the total tissue pressure (PTT).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP22">
				<rdf:value>
				CP22:  
				Block CP22 limits the upper level of this pressure gradient.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP23_and_CP24">
				<rdf:value>
]				CP23 and CP24:  
				The rate of lymph flow (VTL) is equal to the pressure gradient that causes 
				lymph flow (PLD) times a constant representing lymphatic conductance.  
				Block CP24 limits the lower level of lymph flow to zero.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PIF"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="PTT"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="VTL" 	units="L_per_minute" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="PLDF"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="PLD1"	units="mmHg" private_interface="none" public_interface="none"/>
		<variable name="PLD"	units="mmHg" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP21">
				<eq/>
				<ci>PLD1</ci>
				<apply>
					<minus/>
					<apply>
						<plus/>
						<ci>PIF</ci>
						<ci>PLDF</ci>
					</apply>
					<ci>PTT</ci>
				</apply>
			</apply>
			<apply id="CP22">
				<eq/>
				<ci>PLD</ci>
				<piecewise>
					<piece>
						<cn cellml:units="mmHg">7</cn>
						<apply>
							<gt/>
							<ci>PLD1</ci>
							<cn cellml:units="mmHg">7</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>PLD1</ci>
					</otherwise>
				</piecewise>
			</apply>
			<apply id="CP23_and_CP24">
				<eq/>
				<ci>VTL</ci>
				<piecewise>
					<piece>
						<cn cellml:units="L_per_minute">0</cn>
						<apply>
							<lt/>
							<ci>PLD</ci>
							<cn cellml:units="mmHg">0</cn>
						</apply>
					</piece>
					<otherwise>
						<apply>
							<times/>
							<ci>PLD</ci>
							<cn cellml:units="L_per_minute_per_mmHg">0.02</cn>
						</apply>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="lymph_flow" component_2="interstial_free_fluid_pressure"/>
		<map_variables variable_1="PIF" variable_2="PIF"/>
	</connection>
	<connection>
		<map_components component_1="lymph_flow" component_2="total_tissue_pressure"/>
		<map_variables variable_1="PTT" variable_2="PTT"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="lymph_flow" component_2="capillary_dynamics_parameter_values"/>
		<map_variables variable_1="PLDF" variable_2="PLDF"/>
	</connection>

<!-- ========================================	INTERSTITIAL GEL VOLUME	============================================= -->
	<component 	name="interstitial_gel_volume" 
				cmeta:id="interstitial_gel_volume">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#interstitial_gel_volume">
				<rdf:value>
				CP8:  
				This block gives a function curve that relates the volume of the tissue gel (VG) 
				to the total interstitial fluid volume (VTS).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP8">
				<rdf:value>
				CP8:  
				This block gives a function curve that relates the volume of the tissue gel (VG) 
				to the total interstitial fluid volume (VTS).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="VTS"	units="litre" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="VG" 	units="litre" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP8">
                <eq/>
                <ci>VG</ci>
                <piecewise>
                    <piece>
                        <cn cellml:units="litre">0</cn>
                        <apply>
                            <leq/>
                            <ci>VTS</ci>
                            <cn cellml:units="litre">0</cn>
                        </apply>
                    </piece>
                    <piece>
                        <apply>
                            <plus/>
                            <cn cellml:units="litre">0</cn>
                            <apply>
                                <divide/>
                                <apply>
                                    <times/>
                                    <apply>
                                        <minus/>
                                        <cn cellml:units="dimensionless">11.4</cn>
                                        <cn cellml:units="dimensionless">0</cn>
                                    </apply>
                                    <apply>
                                        <minus/>
                                        <ci>VTS</ci>
                                        <cn cellml:units="litre">0</cn>
                                    </apply>
                                </apply>
                                <apply>
                                    <minus/>
                                    <cn cellml:units="dimensionless">12</cn>
                                    <cn cellml:units="dimensionless">0</cn>
                                </apply>
                            </apply>
                        </apply>
                        <apply>
                            <and/>
                            <apply>
                                <gt/>
                                <ci>VTS</ci>
                                <cn cellml:units="litre">0</cn>
                            </apply>
                            <apply>
                                <leq/>
                                <ci>VTS</ci>
                                <cn cellml:units="litre">12</cn>
                            </apply>
                        </apply>
                    </piece>
                    <piece>
                        <apply>
                            <plus/>
                            <cn cellml:units="litre">11.4</cn>
                            <apply>
                                <divide/>
                                <apply>
                                    <times/>
                                    <apply>
                                        <minus/>
                                        <cn cellml:units="dimensionless">14</cn>
                                        <cn cellml:units="dimensionless">11.4</cn>
                                    </apply>
                                    <apply>
                                        <minus/>
                                        <ci>VTS</ci>
                                        <cn cellml:units="litre">12</cn>
                                    </apply>
                                </apply>
                                <apply>
                                    <minus/>
                                    <cn cellml:units="dimensionless">15</cn>
                                    <cn cellml:units="dimensionless">12</cn>
                                </apply>
                            </apply>
                        </apply>
                        <apply>
                            <and/>
                            <apply>
                                <gt/>
                                <ci>VTS</ci>
                                <cn cellml:units="litre">12</cn>
                            </apply>
                            <apply>
                                <leq/>
                                <ci>VTS</ci>
                                <cn cellml:units="litre">15</cn>
                            </apply>
                        </apply>
                    </piece>
                    <piece>
                        <apply>
                            <plus/>
                            <cn cellml:units="litre">14</cn>
                            <apply>
                                <divide/>
                                <apply>
                                    <times/>
                                    <apply>
                                        <minus/>
                                        <cn cellml:units="dimensionless">16</cn>
                                        <cn cellml:units="dimensionless">14</cn>
                                    </apply>
                                    <apply>
                                        <minus/>
                                        <ci>VTS</ci>
                                        <cn cellml:units="litre">15</cn>
                                    </apply>
                                </apply>
                                <apply>
                                    <minus/>
                                    <cn cellml:units="dimensionless">18</cn>
                                    <cn cellml:units="dimensionless">15</cn>
                                </apply>
                            </apply>
                        </apply>
                        <apply>
                            <and/>
                            <apply>
                                <gt/>
                                <ci>VTS</ci>
                                <cn cellml:units="litre">15</cn>
                            </apply>
                            <apply>
                                <leq/>
                                <ci>VTS</ci>
                                <cn cellml:units="litre">18</cn>
                            </apply>
                        </apply>
                    </piece>
                    <piece>
                        <apply>
                            <plus/>
                            <cn cellml:units="litre">16</cn>
                            <apply>
                                <divide/>
                                <apply>
                                    <times/>
                                    <apply>
                                        <minus/>
                                        <cn cellml:units="dimensionless">17.3</cn>
                                        <cn cellml:units="dimensionless">16</cn>
                                    </apply>
                                    <apply>
                                        <minus/>
                                        <ci>VTS</ci>
                                        <cn cellml:units="litre">18</cn>
                                    </apply>
                                </apply>
                                <apply>
                                    <minus/>
                                    <cn cellml:units="dimensionless">21</cn>
                                    <cn cellml:units="dimensionless">18</cn>
                                </apply>
                            </apply>
                        </apply>
                        <apply>
                            <and/>
                            <apply>
                                <gt/>
                                <ci>VTS</ci>
                                <cn cellml:units="litre">18</cn>
                            </apply>
                            <apply>
                                <leq/>
                                <ci>VTS</ci>
                                <cn cellml:units="litre">21</cn>
                            </apply>
                        </apply>
                    </piece>
                    <piece>
                        <apply>
                            <plus/>
                            <cn cellml:units="litre">17.3</cn>
                            <apply>
                                <divide/>
                                <apply>
                                    <times/>
                                    <apply>
                                        <minus/>
                                        <cn cellml:units="dimensionless">18</cn>
                                        <cn cellml:units="dimensionless">17.3</cn>
                                    </apply>
                                    <apply>
                                        <minus/>
                                        <ci>VTS</ci>
                                        <cn cellml:units="litre">21</cn>
                                    </apply>
                                </apply>
                                <apply>
                                    <minus/>
                                    <cn cellml:units="dimensionless">24</cn>
                                    <cn cellml:units="dimensionless">21</cn>
                                </apply>
                            </apply>
                        </apply>
                        <apply>
                            <and/>
                            <apply>
                                <gt/>
                                <ci>VTS</ci>
                                <cn cellml:units="litre">21</cn>
                            </apply>
                            <apply>
                                <leq/>
                                <ci>VTS</ci>
                                <cn cellml:units="litre">24</cn>
                            </apply>
                        </apply>
                    </piece>
                    <otherwise>
                        <cn cellml:units="litre">18</cn>
                    </otherwise>
                </piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="interstitial_gel_volume" component_2="total_systemic_fluid_volume"/>
		<map_variables variable_1="VTS" variable_2="VTS"/>
	</connection>

<!-- ========================================	INTERSTITIAL FREE FLUID VOLUME	============================================= -->
	<component 	name="interstitial_free_fluid_volume" 
				cmeta:id="interstitial_free_fluid_volume">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#interstitial_free_fluid_volume">
				<rdf:value>
				CP9:  
				The volume of free fluid in the interstitium (VIF) is equal to the total 
				interstitial fluid volume (VTS) minus the volume of fluid in the tissue gel (VG).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CP9">
				<rdf:value>
				CP9:  
				The volume of free fluid in the interstitium (VIF) is equal to the total 
				interstitial fluid volume (VTS) minus the volume of fluid in the tissue gel (VG).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="VTS"	units="litre" private_interface="none" public_interface="in"/>
		<variable name="VG"	units="litre" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="VIF" 	units="litre" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CP9">
				<eq/>
				<ci>VIF</ci>
				<apply>
					<minus/>
					<ci>VTS</ci>
					<ci>VG</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="interstitial_free_fluid_volume" component_2="total_systemic_fluid_volume"/>
		<map_variables variable_1="VTS" variable_2="VTS"/>
	</connection>
	<connection>
		<map_components component_1="interstitial_free_fluid_volume" component_2="interstitial_gel_volume"/>
		<map_variables variable_1="VG" variable_2="VG"/>
	</connection>
	
<!-- =================================================		CAPILLARY DYNAMICS PARAMETER VALUES		========================================== -->
	<component 	name="capillary_dynamics_parameter_values"
				cmeta:id="capillary_dynamics_parameter_values">
		<variable name="CFC" 		units="L_per_minute_per_mmHg" 	initial_value="0.01167"		private_interface="none"	public_interface="out"/>	<!-- capillary filtration coefficient [P] -->
		<variable name="TRPL"	 	units="L_per_minute" 	initial_value="0"			private_interface="none"	public_interface="out"/>	<!-- transfusion coefficient [P] -->
		<variable name="CPR" 		units="gram_per_L" 	initial_value="40"			private_interface="none"	public_interface="out"/>	<!-- critical plasma protein conc for protein destruction [P] -->
		<variable name="LPDE"	 	units="dimensionless" 	initial_value="8"			private_interface="none"	public_interface="out"/>	<!-- curve fitting coefficient, liver protein destruction [P] -->
		<variable name="PCE" 		units="dimensionless" 	initial_value="1"			private_interface="none"	public_interface="out"/>	<!-- curve fitting exponent, capillary leakage [P] -->
		<variable name="PCR" 		units="mmHg" 		initial_value="15"			private_interface="none"	public_interface="out"/>	<!-- critical capillary pressure for protein leakage [P] -->
		<variable name="LPK" 		units="L_per_minute" 	initial_value="2.728e-14"	private_interface="none"	public_interface="out"/>	<!-- curve fitting coefficient, liver protein destruction [P] -->
		<variable name="LPPR" 		units="gram_per_minute" initial_value="0.03"		private_interface="none"	public_interface="out"/>	<!-- rate of liver protein production [P] -->
		<variable name="CPK" 		units="L_per_minute_per_mmHg" 	initial_value="0.000253"	private_interface="none"	public_interface="out"/>	<!-- curve fitting exponent, , capillary leakage [P] -->
		<variable name="TSSLML" 	units="dimensionless" 	initial_value="0.15"		private_interface="none"	public_interface="out"/>	<!-- sensitivity controller of VTS [P] -->
		<variable name="TSSLTC" 	units="per_minute" 	initial_value="0.005"		private_interface="none"	public_interface="out"/>	<!-- VTS1 time constant [P] -->
		<variable name="HYL" 		units="gram" 	initial_value="60"			private_interface="none"	public_interface="out"/>	<!-- quantity of hyaluronic acid in tissues -->
		<variable name="CMPTSS" 	units="dimensionless" 	initial_value="2"			private_interface="none"	public_interface="out"/>	<!-- curve fitting exponent, calculation of CHY [P] -->
		<variable name="PGHF" 		units="L_mmHg_per_gram" initial_value="-2"			private_interface="none"	public_interface="out"/>	<!-- proportionality coefficent, CHY to PGH [P] -->
		<variable name="GCOPF" 		units="per_mmHg" 	initial_value="0.8092"		private_interface="none"	public_interface="out"/>	<!-- coefficient, calculation of PTC [P] -->
		<variable name="VTSF" 		units="litre" 		initial_value="6"			private_interface="none"	public_interface="out"/>	<!-- curve fitting coefficient, PTT [P] -->
		<variable name="PLDF" 		units="mmHg" 		initial_value="4.2"			private_interface="none"	public_interface="out"/>	<!-- constant pressure, computation of PLD [P] -->
	</component>


<!-- ============================================================================================================================================================ -->

<!-- ========================================================	CIRCULATORY DYNAMICS MODEL	=========================================================== -->
	<component 	name="circulatory_dynamics" 
				cmeta:id="circulatory_dynamics">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#circulatory_dynamics">
				<rdf:value>
				This section calculates the flow of blood around the circuit from arteries, to veins, 
				to heart, to lungs, and back to heart again.  It also calculates the resistances and 
				the effect of various factors on the resistances.  In other words, this section 
				presents the basic hemodynamics of the circulatory system.

				Encapsulation grouping component containing all the components in the Circulatory Dynamics Model.  
				The inputs and outputs of the Circulatory Dynamics Model must be passed by this component.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

		<variable name="time"	units="minute"	private_interface="out" public_interface="in"/>

<!-- Inputs from components in other models -->
		<variable name="ADHMV"	units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="AMM"	units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="ANU"	units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="ANUVN"	units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="ARM"	units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="ATRRFB"	units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="ATRVFB"	units="litre" private_interface="out" public_interface="in"/>
		<variable name="AU"	units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="AUH"	units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="AUM"	units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="AVE"	units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="HMD"	units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="HPL"	units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="HPR"	units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="MYOGRS"	units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="OSA"	units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="PAMK"	units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="PC"	units="mmHg" private_interface="out" public_interface="in"/>
		<variable name="RBF"	units="L_per_minute" private_interface="out" public_interface="in"/>
		<variable name="VIM"	units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="VP"	units="litre" private_interface="out" public_interface="in"/>
		<variable name="VRC"	units="litre" private_interface="out" public_interface="in"/>
		<variable name="VV6"	units="litre" private_interface="out" public_interface="in"/>
		<variable name="VV7"	units="litre" private_interface="out" public_interface="in"/>
		<variable name="VVR"	units="litre" private_interface="out" public_interface="in"/>

<!-- Outputs to components in other models -->
		<variable name="BFM" 	units="L_per_minute" private_interface="in" public_interface="out"/>
		<variable name="BFN" 	units="L_per_minute" private_interface="in" public_interface="out"/>
		<variable name="PA" 	units="mmHg" private_interface="in" public_interface="out"/>
		<variable name="PLA" 	units="mmHg" private_interface="in" public_interface="out"/>
		<variable name="PPA" 	units="mmHg" private_interface="in" public_interface="out"/>
		<variable name="PRA" 	units="mmHg" private_interface="in" public_interface="out"/>
		<variable name="PVS" 	units="mmHg" private_interface="in" public_interface="out"/>
		<variable name="QAO" 	units="L_per_minute" private_interface="in" public_interface="out"/>
		<variable name="QRO" 	units="L_per_minute" private_interface="in" public_interface="out"/>
		<variable name="QLO" 	units="L_per_minute" private_interface="in" public_interface="out"/>
		<variable name="RPA" 	units="mmHg_minute_per_L" private_interface="in" public_interface="out"/>
		<variable name="RPV" 	units="mmHg_minute_per_L" private_interface="in" public_interface="out"/>
		<variable name="RVS" 	units="mmHg_minute_per_L" private_interface="in" public_interface="out"/>
		<variable name="VVE" 	units="litre" private_interface="in" public_interface="out"/>
	</component>

<!-- OUTPUT CONNECTIONS -->
	<connection>
		<map_components component_1="circulatory_dynamics" component_2="blood_flow_through_NM_NR_tissues"/>
		<map_variables variable_1="BFN" variable_2="BFN"/>
	</connection>
	<connection>
		<map_components component_1="circulatory_dynamics" component_2="blood_flow_through_M_tissues"/>
		<map_variables variable_1="BFM" variable_2="BFM"/>
	</connection>
	<connection>
		<map_components component_1="circulatory_dynamics" component_2="arterial_pressure_and_pressure_gradient"/>
		<map_variables variable_1="PA" variable_2="PA"/>
	</connection>
<!--	<connection>
		<map_components component_1="circulatory_dynamics" component_2="venous_resistance"/>
		<map_variables variable_1="RVS" variable_2="RVS"/>
	</connection> -->
	<connection>
		<map_components component_1="circulatory_dynamics" component_2="venous_average_pressure"/>
		<map_variables variable_1="PVS" variable_2="PVS"/>
	</connection>
<!--	<connection>
		<map_components component_1="circulatory_dynamics" component_2="venous_excess_volume"/>
		<map_variables variable_1="VVE" variable_2="VVE"/>
	</connection> -->
<!--	<connection>
		<map_components component_1="circulatory_dynamics" component_2="left_ventricular_output"/>
		<map_variables variable_1="QLO" variable_2="QLO"/>
	</connection> -->
	<connection>
		<map_components component_1="circulatory_dynamics" component_2="right_ventricular_output"/>
		<map_variables variable_1="QRO" variable_2="QRO"/>
	</connection>
	<connection>
		<map_components component_1="circulatory_dynamics" component_2="left_atrial_pressure"/>
		<map_variables variable_1="PLA" variable_2="PLA"/>
	</connection>
	<connection>
		<map_components component_1="circulatory_dynamics" component_2="pulmonary_vasculature_pressure"/>
		<map_variables variable_1="PPA" variable_2="PPA"/>
	</connection>
	<connection>
		<map_components component_1="circulatory_dynamics" component_2="right_atrial_pressure"/>
		<map_variables variable_1="PRA" variable_2="PRA"/>
	</connection>
	<connection>
		<map_components component_1="circulatory_dynamics" component_2="pulmonary_venous_resistance"/>
		<map_variables variable_1="RPV" variable_2="RPV"/>
	</connection>
	<connection>
		<map_components component_1="circulatory_dynamics" component_2="pulmonary_arterial_resistance"/>
		<map_variables variable_1="RPA" variable_2="RPA"/>
	</connection>
<!--	<connection>
		<map_components component_1="circulatory_dynamics" component_2="systemic_blood_flow"/>
		<map_variables variable_1="QAO" variable_2="QAO"/>
	</connection> -->

<!-- ========================================	BLOOD VOLUME CHANGE	============================================= -->
	<component 	name="total_blood_volume_change" 
				cmeta:id="total_blood_volume_change">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#total_blood_volume_change">
				<rdf:value>
				CD75:  
				The blood volume change that must be distributed to the different segments of the 
				circulation since the last iteration (VBD) is calculated by subtracting the volumes 
				of the various vascular segments (VAS, VVS, VRA, VLA, and VPA) from the total blood
				volume, that is, plasma volume (VP) plus red cell volume (VRC).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD75">
				<rdf:value>
				CD75:  
				The blood volume change that must be distributed to the different segments of the 
				circulation since the last iteration (VBD) is calculated by subtracting the volumes 
				of the various vascular segments (VAS, VVS, VRA, VLA, and VPA) from the total blood
				volume, that is, plasma volume (VP) plus red cell volume (VRC).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="VP"		units="litre" private_interface="none" public_interface="in"/>
		<variable name="VRC"	units="litre" private_interface="none" public_interface="in"/>
		<variable name="VVS1"	units="litre" private_interface="none" public_interface="in"/>
		<variable name="VAS1"	units="litre" private_interface="none" public_interface="in"/>
		<variable name="VLA1"	units="litre" private_interface="none" public_interface="in"/>
		<variable name="VPA1"	units="litre" private_interface="none" public_interface="in"/>
		<variable name="VRA1"	units="litre" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="total_blood_volume_change_VBD"
					name="VBD" 	units="litre" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD75">
                <eq/>
                <ci>VBD</ci>
               	<apply>
					<divide/>
					<apply>
            	        <minus/>
            	        <apply>
            	            <minus/>
            	            <apply>
            	                <minus/>
            	                <apply>
            	                    <minus/>
            	                    <apply>
            	                        <minus/>
            	                        <apply>
            	                            <plus/>
            	                            <ci>VP</ci>
            	                            <ci>VRC</ci>
            	                        </apply>
            	                        <ci>VVS1</ci>
            	                    </apply>
            	                    <ci>VAS1</ci>
            	                </apply>
            	                <ci>VLA1</ci>
            	            </apply>
            	            <ci>VPA1</ci>
            	        </apply>
            	        <ci>VRA1</ci>
            	    </apply>
					<cn cellml:units="dimensionless">2</cn>
			   </apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="total_blood_volume_change" component_2="circulatory_dynamics"/>
		<map_variables variable_1="VP" variable_2="VP"/>
		<map_variables variable_1="VRC" variable_2="VRC"/>
	</connection>

<!-- ========================================	RIGHT ATRIUM		============================================= -->
	<component 	name="right_atrium" 
				cmeta:id="right_atrium">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#right_atrium">
				<rdf:value>
				Containment grouping component for "right_atrial_blood_volume", "right_atrial_pressure",
				and "autonomic_stimulation_effect_on_right_atrial_pressure".
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
	</component>

<!-- ========================================	RIGHT ATRIAL BLOOD VOLUME	============================================= -->
	<component 	name="right_atrial_blood_volume" 
				cmeta:id="right_atrial_blood_volume">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#right_atrial_blood_volume">
				<rdf:value>
				CD20:  
				The rate of change of blood volume in the right atrium (DRA) is equal to the rate 
				of blood flow into the right atrium from the veins (QVO) minus the rate of outflow 
				of blood from the right atrium through the right heart (QRO).

				CD21:  
				A temporary value for the volume of blood in the right atrium is calculated by 
				integrating the rate of change of blood volume in the right atrium (DRA).

				CD22:  
				The portion of any change in total blood volume (VBD) that is ascribable to the 
				right atrium is calculated by multiplying the total blood volume change (VBD) 
				since the last iteration times a constant.

				CD23:  
				The instantaneous volume of blood in the right atrium (VRA) is equal to the 
				temporary value calculated in CD21 plus the volume of blood caused by a change 
				in blood volume as calculated in CD22.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD20">
				<rdf:value>
				CD20:  
				The rate of change of blood volume in the right atrium (DRA) is equal to the rate 
				of blood flow into the right atrium from the veins (QVO) minus the rate of outflow 
				of blood from the right atrium through the right heart (QRO).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD21">
				<rdf:value>
				CD21:  
				A temporary value for the volume of blood in the right atrium is calculated by 
				integrating the rate of change of blood volume in the right atrium (DRA).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD22_and_CD23">
				<rdf:value>
				CD22:  
				The portion of any change in total blood volume (VBD) that is ascribable to the 
				right atrium is calculated by multiplying the total blood volume change (VBD) 
				since the last iteration times a constant.

				CD23:  
				The instantaneous volume of blood in the right atrium (VRA) is equal to the 
				temporary value calculated in CD21 plus the volume of blood caused by a change 
				in blood volume as calculated in CD22.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="QVO"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="QRO"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="VBD"	units="litre" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="right_atrial_blood_volume_VRA"
					name="VRA" 	units="litre" private_interface="none" public_interface="out"/>
		<variable name="VRA1"	initial_value="0.100043"	units="litre" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable name="DRA"	units="L_per_minute" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD20">
				<eq/>
				<ci>DRA</ci>
				<apply>
					<minus/>
					<ci>QVO</ci>
					<ci>QRO</ci>
				</apply>
			</apply>
			<apply id="CD21">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>VRA1</ci>
				</apply>
				<ci>DRA</ci>
			</apply>
			<apply id="CD22_and_CD23">
				<eq/>
				<ci>VRA</ci>
				<apply>
					<plus/>
					<ci>VRA1</ci>
					<apply>
						<times/>
						<ci>VBD</ci>
						<cn cellml:units="dimensionless">0.0574</cn>
					</apply>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="right_atrial_blood_volume" component_2="rate_of_blood_flow_from_veins_to_right_atrium"/>
		<map_variables variable_1="QVO" variable_2="QVO"/>
	</connection>
	<connection>
		<map_components component_1="right_atrial_blood_volume" component_2="right_ventricular_output"/>
		<map_variables variable_1="QRO" variable_2="QRO"/>
	</connection>
	<connection>
		<map_components component_1="right_atrial_blood_volume" component_2="total_blood_volume_change"/>
		<map_variables variable_1="VRA1" variable_2="VRA1"/>
		<map_variables variable_1="VBD" variable_2="VBD"/>
	</connection>
	<connection>
		<map_components component_1="right_atrial_blood_volume" component_2="circulatory_dynamics"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- ========================================	RIGHT ATRIAL PRESSURE	============================================= -->
	<component 	name="right_atrial_pressure" 
				cmeta:id="right_atrial_pressure">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#right_atrial_pressure">
				<rdf:value>
				CD24:  
				The volume of excess blood in the right atrium (VRE) is equal to the 
				instantaneous volume of blood in the right atrium (VRA) minus a constant value
				which represents the volume of blood in the right atrium when the atrium is 
				filled to a level that will cause no increase in atrial pressure and the 
				pressure is still zero.

				CD25:  
				Temporary right atrial pressure (PRA) at normal level of autonomic stimulation (AU=1) 
				is equal to the excess volume of blood in the right atrium (VRE) divided by a constant 
				value which represents the capacitance of the right atrium.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD24">
				<rdf:value>
				CD24:  
				The volume of excess blood in the right atrium (VRE) is equal to the 
				instantaneous volume of blood in the right atrium (VRA) minus a constant value
				which represents the volume of blood in the right atrium when the atrium is 
				filled to a level that will cause no increase in atrial pressure and the 
				pressure is still zero.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD25">
				<rdf:value>
				CD25:  
				Temporary right atrial pressure (PRA) at normal level of autonomic stimulation (AU=1) 
				is equal to the excess volume of blood in the right atrium (VRE) divided by a constant 
				value which represents the capacitance of the right atrium.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="VRA"	units="litre" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="right_atrial_pressure_PRA"
					name="PRA" 	units="mmHg" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable 	cmeta:id="right_atrial_pressure_VRE"
					name="VRE"	units="litre" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD24">
				<eq/>
				<ci>VRE</ci>
				<apply>
					<minus/>
					<ci>VRA</ci>
					<cn cellml:units="litre">0.1</cn>
				</apply>
			</apply>
			<apply id="CD25">
				<eq/>
				<ci>PRA</ci>
				<apply>
					<divide/>
					<ci>VRE</ci>
					<cn cellml:units="L_per_mmHg">0.005</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="right_atrial_pressure" component_2="right_atrial_blood_volume"/>
		<map_variables variable_1="VRA" variable_2="VRA"/>
	</connection>

<!-- ===============================	AUTONOMIC STIMULATION EFFECT ON RIGHT ATRIAL PRESSURE	======================================== -->
	<component 	name="autonomic_stimulation_effect_on_right_atrial_pressure" 
				cmeta:id="autonomic_stimulation_effect_on_right_atrial_pressure">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#autonomic_stimulation_effect_on_right_atrial_pressure">
				<rdf:value>
				CD25C, CD25D, CD25E, and CD25F:  
				Calculation of the shift of the temporary calculated right atrial pressure of PRA 
				to its actual value of PRA1 when the level of autonomic stimulation AU) changes to
				some other value besides the normal value of 1.0.  The value of HTAUML determines 
				the ratio of the slope of changing PRA1 to slope of changing PRA.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD25C_to_CD25F">
				<rdf:value>
				CD25C, CD25D, CD25E, and CD25F:  
				Calculation of the shift of the temporary calculated right atrial pressure of PRA 
				to its actual value of PRA1 when the level of autonomic stimulation AU) changes to
				some other value besides the normal value of 1.0.  The value of HTAUML determines 
				the ratio of the slope of changing PRA1 to slope of changing PRA.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PRA"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="AU"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="PRA1" 	units="mmHg" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="HTAUML"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD25C_to_CD25F">
				<eq/>
				<ci>PRA1</ci>
				<apply>
					<minus/>
					<apply>
						<times/>
						<apply>
							<plus/>
							<ci>PRA</ci>
							<cn cellml:units="mmHg">8</cn>
						</apply>
						<apply>
							<plus/>
							<apply>
								<times/>
								<ci>HTAUML</ci>
								<apply>
									<minus/>
									<ci>AU</ci>
									<cn cellml:units="dimensionless">1</cn>
								</apply>
							</apply>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
					</apply>
					<cn cellml:units="mmHg">8</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="autonomic_stimulation_effect_on_right_atrial_pressure" component_2="right_atrial_pressure"/>
		<map_variables variable_1="PRA" variable_2="PRA"/>
	</connection>
	<connection>
		<map_components component_1="autonomic_stimulation_effect_on_right_atrial_pressure" component_2="circulatory_dynamics"/>
		<map_variables variable_1="AU" variable_2="AU"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="autonomic_stimulation_effect_on_right_atrial_pressure" component_2="circulatory_dynamics_parameter_values"/>
		<map_variables variable_1="HTAUML" variable_2="HTAUML"/>
	</connection>

<!-- ========================================	RIGHT VENTIRICLE	============================================= -->
	<component 	name="right_ventricle" 
				cmeta:id="right_ventricle">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#right_ventricle">
				<rdf:value>
				Containment grouping component for "pressure_effect_on_right_ventricular_pumping",
				"pumping_effectiveness_of_right_ventricle" and "right_ventricular_output".
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
	</component>

<!-- ========================================	PRESSURE EFFECT ON RIGHT VENTRICULAR PUMPING	============================================= -->
	<component 	name="pressure_effect_on_right_ventricular_pumping" 
				cmeta:id="pressure_effect_on_right_ventricular_pumping">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#pressure_effect_on_right_ventricular_pumping">
				<rdf:value>
				CD68:  
				Calculation of a multiplier factor (PP2) from three factors that affect the
				ability of the right heart to withstand increasing output loads:  The effect 
				of the pulmonary arterial pressure itself (PPA), the effect of changes in heart 
				arterial oxygen saturation in the coronary blood flow (OSA), and the effect of 
				sympathetic stimulation (AUH).

				CD69:  
				Function curve relating the multiplier factor from CD68 (PP2) to a multiplier 
				factor for pumping strength of the right heart musculature (RVM).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD68">
				<rdf:value>
				CD68:  
				Calculation of a multiplier factor (PP2) from three factors that affect the
				ability of the right heart to withstand increasing output loads:  The effect 
				of the pulmonary arterial pressure itself (PPA), the effect of changes in heart 
				arterial oxygen saturation in the coronary blood flow (OSA), and the effect of 
				sympathetic stimulation (AUH).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD69">
				<rdf:value>
				CD69:  
				Function curve relating the multiplier factor from CD68 (PP2) to a multiplier 
				factor for pumping strength of the right heart musculature (RVM).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PPA"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="AUH"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="OSA"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="RVM" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable name="PP2"	units="mmHg" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD68">
				<eq/>
				<ci>PP2</ci>
				<apply>
					<divide/>
					<apply>
						<divide/>
						<ci>PPA</ci>
						<ci>AUH</ci>
					</apply>
					<ci>OSA</ci>
				</apply>
			</apply>
			<apply id="CD69">
                <eq/>
                <ci>RVM</ci>
                <piecewise>
                    <piece>
                        <cn cellml:units="dimensionless">1.06</cn>
                        <apply>
                            <leq/>
                            <ci>PP2</ci>
                            <cn cellml:units="mmHg">0</cn>
                        </apply>
                    </piece>
                    <piece>
                        <apply>
                            <plus/>
                            <cn cellml:units="dimensionless">1.06</cn>
                            <apply>
                                <divide/>
                                <apply>
                                    <times/>
                                    <apply>
                                        <minus/>
                                        <cn cellml:units="per_mmHg">0.97</cn>
                                        <cn cellml:units="per_mmHg">1.06</cn>
                                    </apply>
                                    <apply>
                                        <minus/>
                                        <ci>PP2</ci>
                                        <cn cellml:units="mmHg">0</cn>
                                    </apply>
                                </apply>
                                <apply>
                                    <minus/>
                                    <cn cellml:units="dimensionless">32</cn>
                                    <cn cellml:units="dimensionless">0</cn>
                                </apply>
                            </apply>
                        </apply>
                        <apply>
                            <and/>
                            <apply>
                                <gt/>
                                <ci>PP2</ci>
                                <cn cellml:units="mmHg">0</cn>
                            </apply>
                            <apply>
                                <leq/>
                                <ci>PP2</ci>
                                <cn cellml:units="mmHg">32</cn>
                            </apply>
                        </apply>
                    </piece>
                    <piece>
                        <apply>
                            <plus/>
                            <cn cellml:units="dimensionless">0.97</cn>
                            <apply>
                                <divide/>
                                <apply>
                                    <times/>
                                    <apply>
                                        <minus/>
                                        <cn cellml:units="per_mmHg">0.93</cn>
                                        <cn cellml:units="per_mmHg">0.97</cn>
                                    </apply>
                                    <apply>
                                        <minus/>
                                        <ci>PP2</ci>
                                        <cn cellml:units="mmHg">32</cn>
                                    </apply>
                                </apply>
                                <apply>
                                    <minus/>
                                    <cn cellml:units="dimensionless">38.4</cn>
                                    <cn cellml:units="dimensionless">32</cn>
                                </apply>
                            </apply>
                        </apply>
                        <apply>
                            <and/>
                            <apply>
                                <gt/>
                                <ci>PP2</ci>
                                <cn cellml:units="mmHg">32</cn>
                            </apply>
                            <apply>
                                <leq/>
                                <ci>PP2</ci>
                                <cn cellml:units="mmHg">38.4</cn>
                            </apply>
                        </apply>
                    </piece>
                    <piece>
                        <apply>
                            <plus/>
                            <cn cellml:units="dimensionless">0.93</cn>
                            <apply>
                                <divide/>
                                <apply>
                                    <times/>
                                    <apply>
                                        <minus/>
                                        <cn cellml:units="per_mmHg">0.8</cn>
                                        <cn cellml:units="per_mmHg">0.93</cn>
                                    </apply>
                                    <apply>
                                        <minus/>
                                        <ci>PP2</ci>
                                        <cn cellml:units="mmHg">38.4</cn>
                                    </apply>
                                </apply>
                                <apply>
                                    <minus/>
                                    <cn cellml:units="dimensionless">48</cn>
                                    <cn cellml:units="dimensionless">38.4</cn>
                                </apply>
                            </apply>
                        </apply>
                        <apply>
                            <and/>
                            <apply>
                                <gt/>
                                <ci>PP2</ci>
                                <cn cellml:units="mmHg">38.4</cn>
                            </apply>
                            <apply>
                                <leq/>
                                <ci>PP2</ci>
                                <cn cellml:units="mmHg">48</cn>
                            </apply>
                        </apply>
                    </piece>
                    <piece>
                        <apply>
                            <plus/>
                            <cn cellml:units="dimensionless">0.8</cn>
                            <apply>
                                <divide/>
                                <apply>
                                    <times/>
                                    <apply>
                                        <minus/>
                                        <cn cellml:units="per_mmHg">0.46</cn>
                                        <cn cellml:units="per_mmHg">0.8</cn>
                                    </apply>
                                    <apply>
                                        <minus/>
                                        <ci>PP2</ci>
                                        <cn cellml:units="mmHg">48</cn>
                                    </apply>
                                </apply>
                                <apply>
                                    <minus/>
                                    <cn cellml:units="dimensionless">60.8</cn>
                                    <cn cellml:units="dimensionless">48</cn>
                                </apply>
                            </apply>
                        </apply>
                        <apply>
                            <and/>
                            <apply>
                                <gt/>
                                <ci>PP2</ci>
                                <cn cellml:units="mmHg">48</cn>
                            </apply>
                            <apply>
                                <leq/>
                                <ci>PP2</ci>
                                <cn cellml:units="mmHg">60.8</cn>
                            </apply>
                        </apply>
                    </piece>
                    <piece>
                        <apply>
                            <plus/>
                            <cn cellml:units="dimensionless">0.46</cn>
                            <apply>
                                <divide/>
                                <apply>
                                    <times/>
                                    <apply>
                                        <minus/>
                                        <cn cellml:units="per_mmHg">0</cn>
                                        <cn cellml:units="per_mmHg">0.46</cn>
                                    </apply>
                                    <apply>
                                        <minus/>
                                        <ci>PP2</ci>
                                        <cn cellml:units="mmHg">60.8</cn>
                                    </apply>
                                </apply>
                                <apply>
                                    <minus/>
                                    <cn cellml:units="dimensionless">72</cn>
                                    <cn cellml:units="dimensionless">60.8</cn>
                                </apply>
                            </apply>
                        </apply>
                        <apply>
                            <and/>
                            <apply>
                                <gt/>
                                <ci>PP2</ci>
                                <cn cellml:units="mmHg">60.8</cn>
                            </apply>
                            <apply>
                                <leq/>
                                <ci>PP2</ci>
                                <cn cellml:units="mmHg">72</cn>
                            </apply>
                        </apply>
                    </piece>
                    <otherwise>
                        <cn cellml:units="dimensionless">0</cn>
                    </otherwise>
                </piecewise>
            </apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="pressure_effect_on_right_ventricular_pumping" component_2="pulmonary_vasculature_pressure"/>
		<map_variables variable_1="PPA" variable_2="PPA"/>
	</connection>
	<connection>
		<map_components component_1="pressure_effect_on_right_ventricular_pumping" component_2="circulatory_dynamics"/>
		<map_variables variable_1="AUH" variable_2="AUH"/>
		<map_variables variable_1="OSA" variable_2="OSA"/>
	</connection>

<!-- ========================================	PUMPING EFFECTIVENESS OF RIGHT VENTRICLE	============================================= -->
	<component 	name="pumping_effectiveness_of_right_ventricle" 
				cmeta:id="pumping_effectiveness_of_right_ventricle">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#pumping_effectiveness_of_right_ventricle">
				<rdf:value>
				CD70 and CD71:  
				Calculation of the proportion of the pumping effectiveness of the right heart that is 
				caused by left heart contraction.  This is determined by the normal proportion (QRF) 
				times the instantaneous output of the left heart (QLO) and divided by the normalized 
				output of the left heart (QLN) when all factors affecting left heart strength are normal.

				CD72 and CD73:  
				Calculation of the proportion of the right heart pumping effectiveness that is caused 
				by right heart musculature contraction itself, calculated from multiple factors that 
				affect right heart pumping including the normal proportion of right heart pumping that 
				is caused by left heart pumping (QRF), the strength of the right heart (HSR) relative 
				to its normal strength, the loading effect of pulmonary arterial pressure on the 
				right heart (RVM), the effect of autonomic stimulation on right heart strength (AUH), 
				the effect of possible deterioration of the right heart from shock and other factors (HMD),
				and the effect on right heart strength caused by hypertrophy of the right heart (HPR).

				CD74:  
				Calculation of the pumping effectiveness of the right heart (HPEF) by adding the 
				proportion of the pumping effectiveness caused by left heart function as calculated 
				from CD71 plus the proportion caused by pumping by the right heart as calculated 
				from CD73.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD70_to_CD74">
				<rdf:value>
				CD70 and CD71:  
				Calculation of the proportion of the pumping effectiveness of the right heart that is 
				caused by left heart contraction.  This is determined by the normal proportion (QRF) 
				times the instantaneous output of the left heart (QLO) and divided by the normalized 
				output of the left heart (QLN) when all factors affecting left heart strength are normal.

				CD72 and CD73:  
				Calculation of the proportion of the right heart pumping effectiveness that is caused 
				by right heart musculature contraction itself, calculated from multiple factors that 
				affect right heart pumping including the normal proportion of right heart pumping that 
				is caused by left heart pumping (QRF), the strength of the right heart (HSR) relative 
				to its normal strength, the loading effect of pulmonary arterial pressure on the 
				right heart (RVM), the effect of autonomic stimulation on right heart strength (AUH), 
				the effect of possible deterioration of the right heart from shock and other factors (HMD),
				and the effect on right heart strength caused by hypertrophy of the right heart (HPR).

				CD74:  
				Calculation of the pumping effectiveness of the right heart (HPEF) by adding the 
				proportion of the pumping effectiveness caused by left heart function as calculated 
				from CD71 plus the proportion caused by pumping by the right heart as calculated 
				from CD73.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

<!-- Inputs from other components -->
		<variable name="AUH"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="RVM"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="HMD"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="HPR"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="QLO"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="QLN"	units="L_per_minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="HPEF" 	units="L_per_minute" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="QRF"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="HSR"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD70_to_CD74">
				<eq/>
				<ci>HPEF</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<apply>
							<minus/>
							<cn cellml:units="L_per_minute">1</cn>
							<ci>QRF</ci>
						</apply>
						<ci>AUH</ci>
						<ci>RVM</ci>
						<ci>HSR</ci>
						<ci>HMD</ci>
						<ci>HPR</ci>
					</apply>
					<apply>
						<divide/>
						<apply>
							<times/>
							<ci>QRF</ci>
							<ci>QLO</ci>
						</apply>
						<ci>QLN</ci>
					</apply>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="pumping_effectiveness_of_right_ventricle" component_2="circulatory_dynamics"/>
		<map_variables variable_1="AUH" variable_2="AUH"/>
		<map_variables variable_1="HMD" variable_2="HMD"/>
		<map_variables variable_1="HPR" variable_2="HPR"/>
	</connection>
	<connection>
		<map_components component_1="pumping_effectiveness_of_right_ventricle" component_2="pressure_effect_on_right_ventricular_pumping"/>
		<map_variables variable_1="RVM" variable_2="RVM"/>
	</connection>
	<connection>
		<map_components component_1="pumping_effectiveness_of_right_ventricle" component_2="left_ventricular_output"/>
		<map_variables variable_1="QLO" variable_2="QLO"/>
		<map_variables variable_1="QLN" variable_2="QLN"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="pumping_effectiveness_of_right_ventricle" component_2="circulatory_dynamics_parameter_values"/>
		<map_variables variable_1="QRF" variable_2="QRF"/>
		<map_variables variable_1="HSR" variable_2="HSR"/>
	</connection>

<!-- ========================================	RIGHT VENTRICULAR OUTPUT	============================================= -->
	<component 	name="right_ventricular_output" 
				cmeta:id="right_ventricular_output">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#right_ventricular_output">
				<rdf:value>
				CD26:  
				Function curve that gives the output from the right heart (QRN) for any given 
				level of right atrial pressure (PRA1) when all conditions of the right heart 
				are normal.

				CD27:  Calculation of the actual output from the right heart (QRO) by multiplying 
				the normalized value for the output (QRN) times a value that represents the 
				instantaneous pumping effectiveness of the right heart (HPEF).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD26">
				<rdf:value>
				CD26:  
				Function curve that gives the output from the right heart (QRN) for any given 
				level of right atrial pressure (PRA1) when all conditions of the right heart 
				are normal.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD27">
				<rdf:value>
				CD27:  Calculation of the actual output from the right heart (QRO) by multiplying 
				the normalized value for the output (QRN) times a value that represents the 
				instantaneous pumping effectiveness of the right heart (HPEF).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PRA1"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="HPEF"	units="L_per_minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="right_ventricular_output_QRO"
					name="QRO" 	units="L_per_minute" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable name="QRN"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD26">
				<eq/>
				<ci>QRN</ci>
                <piecewise>
					<piece>
                        <cn cellml:units="dimensionless">0</cn>
                        <apply>
                            <leq/>
                            <ci>PRA1</ci>
                            <apply>
                                <minus/>
                                <cn cellml:units="mmHg">8</cn>
                            </apply>
                        </apply>
                    </piece>
                    <piece>
                        <apply>
                            <plus/>
                            <cn cellml:units="dimensionless">0</cn>
                            <apply>
                                <divide/>
                                <apply>
                                    <times/>
                                    <apply>
                                        <minus/>
                                        <cn cellml:units="per_mmHg">0.75</cn>
                                        <cn cellml:units="per_mmHg">0</cn>
                                    </apply>
                                    <apply>
                                        <minus/>
                                        <ci>PRA1</ci>
                                        <apply>
                                            <minus/>
                                            <cn cellml:units="mmHg">8</cn>
                                        </apply>
                                    </apply>
                                </apply>
                                <apply>
                                    <minus/>
                                    <apply>
                                        <minus/>
                                        <cn cellml:units="dimensionless">6</cn>
                                    </apply>
                                    <apply>
                                        <minus/>
                                        <cn cellml:units="dimensionless">8</cn>
                                    </apply>
                                </apply>
                            </apply>
                        </apply>
                        <apply>
                            <and/>
                            <apply>
                                <gt/>
                                <ci>PRA1</ci>
                                <apply>
                                    <minus/>
                                    <cn cellml:units="mmHg">8</cn>
                                </apply>
                            </apply>
                            <apply>
                                <leq/>
                                <ci>PRA1</ci>
                                <apply>
                                    <minus/>
                                    <cn cellml:units="mmHg">6</cn>
                                </apply>
                            </apply>
                        </apply>
                    </piece>
                    <piece>
                        <apply>
                            <plus/>
                            <cn cellml:units="dimensionless">0.75</cn>
                            <apply>
                                <divide/>
                                <apply>
                                    <times/>
                                    <apply>
                                        <minus/>
                                        <cn cellml:units="per_mmHg">2.6</cn>
                                        <cn cellml:units="per_mmHg">0.75</cn>
                                    </apply>
                                    <apply>
                                        <minus/>
                                        <ci>PRA1</ci>
                                        <apply>
                                            <minus/>
                                            <cn cellml:units="mmHg">6</cn>
                                        </apply>
                                    </apply>
                                </apply>
                                <apply>
                                    <minus/>
                                    <apply>
                                        <minus/>
                                        <cn cellml:units="dimensionless">2</cn>
                                    </apply>
                                    <apply>
                                        <minus/>
                                        <cn cellml:units="dimensionless">6</cn>
                                    </apply>
                                </apply>
                            </apply>
                        </apply>
                        <apply>
                            <and/>
                            <apply>
                                <gt/>
                                <ci>PRA1</ci>
                                <apply>
                                    <minus/>
                                    <cn cellml:units="mmHg">6</cn>
                                </apply>
                            </apply>
                            <apply>
                                <leq/>
                                <ci>PRA1</ci>
                                <apply>
                                    <minus/>
                                    <cn cellml:units="mmHg">2</cn>
                                </apply>
                            </apply>
                        </apply>
                    </piece>
                    <piece>
                        <apply>
                            <plus/>
                            <cn cellml:units="dimensionless">2.6</cn>
                            <apply>
                                <divide/>
                                <apply>
                                    <times/>
                                    <apply>
                                        <minus/>
                                        <cn cellml:units="per_mmHg">9.8</cn>
                                        <cn cellml:units="per_mmHg">2.6</cn>
                                    </apply>
                                    <apply>
                                        <minus/>
                                        <ci>PRA1</ci>
                                        <apply>
                                            <minus/>
                                            <cn cellml:units="mmHg">2</cn>
                                        </apply>
                                    </apply>
                                </apply>
                                <apply>
                                    <minus/>
                                    <cn cellml:units="dimensionless">4</cn>
                                    <apply>
                                        <minus/>
                                        <cn cellml:units="dimensionless">2</cn>
                                    </apply>
                                </apply>
                            </apply>
                        </apply>
                        <apply>
                            <and/>
                            <apply>
                                <gt/>
                                <ci>PRA1</ci>
                                <apply>
                                    <minus/>
                                    <cn cellml:units="mmHg">2</cn>
                                </apply>
                            </apply>
                            <apply>
                                <leq/>
                                <ci>PRA1</ci>
                                <cn cellml:units="mmHg">4</cn>
                            </apply>
                        </apply>
                    </piece>
                    <piece>
                        <apply>
                            <plus/>
                            <cn cellml:units="dimensionless">9.8</cn>
                            <apply>
                                <divide/>
                                <apply>
                                    <times/>
                                    <apply>
                                        <minus/>
                                        <cn cellml:units="per_mmHg">13.5</cn>
                                        <cn cellml:units="per_mmHg">9.8</cn>
                                    </apply>
                                    <apply>
                                        <minus/>
                                        <ci>PRA1</ci>
                                        <cn cellml:units="mmHg">4</cn>
                                    </apply>
                                </apply>
                                <apply>
                                    <minus/>
                                    <cn cellml:units="dimensionless">12</cn>
                                    <cn cellml:units="dimensionless">4</cn>
                                </apply>
                            </apply>
                        </apply>
                        <apply>
                            <and/>
                            <apply>
                                <gt/>
                                <ci>PRA1</ci>
                                <cn cellml:units="mmHg">4</cn>
                            </apply>
                            <apply>
                                <leq/>
                                <ci>PRA1</ci>
                                <cn cellml:units="mmHg">12</cn>
                            </apply>
                        </apply>
                    </piece>
                    <otherwise>
                        <cn cellml:units="dimensionless">13.5</cn>
                    </otherwise>
                </piecewise>
			</apply>
			<apply id="CD27">
				<eq/>
				<ci>QRO</ci>
				<apply>
					<times/>
					<ci>QRN</ci>
					<ci>HPEF</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="right_ventricular_output" component_2="autonomic_stimulation_effect_on_right_atrial_pressure"/>
		<map_variables variable_1="PRA1" variable_2="PRA1"/>
	</connection>
	<connection>
		<map_components component_1="right_ventricular_output" component_2="pumping_effectiveness_of_right_ventricle"/>
		<map_variables variable_1="HPEF" variable_2="HPEF"/>
	</connection>

<!-- ========================================	PULMONARY VASCULATURE	============================================= -->
	<component 	name="pulmonary_vasculature" 
				cmeta:id="pulmonary_vasculature">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#pulmonary_vasculature">
				<rdf:value>
				Containment grouping component for "pulmonary_vasculature_blood_volume", 
				"pulmonary_vasculature_pressure", "pulmonary_arterial_resistance",
				"pulmonary_venous_resistance", "total_pulmonary_vasculature_resistance",
				"pressure_gradient_through_the_lungs" and 
				"rate_of_blood_flow_from_pulmonary_veins_to_left_atrium".
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
	</component>

<!-- ========================================	PULMONARY VASCULATURE BLOOD VOLUME		============================================= -->
	<component 	name="pulmonary_vasculature_blood_volume" 
				cmeta:id="pulmonary_vasculature_blood_volume">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#pulmonary_vasculature_blood_volume">
				<rdf:value>
				CD28:  
				Rate of change of blood volume in the pulmonary arterial tree (DPA) is equal to the 
				rate of blood flow into the pulmonary arterial tree (QRO) minus the rate of blood flow 
				from the pulmonary arterial tree to the pulmonary venous tree (QPO).

				CD29:  
				A temporary value for the instantaneous volume of blood in the pulmonary arterial 
				tree is calculated by integrating the rate of change of blood volume in the pulmonary 
				arterial tree (DPA).

				CD30:  
				The portion ascribable to the pulmonary arteries of any total blood volume change (VBD) 
				that has occurred since the last iteration is calculated by multiplying the total volume
				change since the last iteration (VBD) times a constant proportionality factor.

				CD31:  
				The instantaneous volume of blood in the pulmonary arteria tree (VPA) is equal to the 
				temporary value calculated from Block CD29 plus the additional blood resulting from a
				blood volume change as calculated in CD30.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD28">
				<rdf:value>
				CD28:  
				Rate of change of blood volume in the pulmonary arterial tree (DPA) is equal to the 
				rate of blood flow into the pulmonary arterial tree (QRO) minus the rate of blood flow 
				from the pulmonary arterial tree to the pulmonary venous tree (QPO).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD29">
				<rdf:value>
				CD29:  
				A temporary value for the instantaneous volume of blood in the pulmonary arterial 
				tree is calculated by integrating the rate of change of blood volume in the pulmonary 
				arterial tree (DPA).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD30_and_CD31">
				<rdf:value>
				CD30:  
				The portion ascribable to the pulmonary arteries of any total blood volume change (VBD) 
				that has occurred since the last iteration is calculated by multiplying the total volume
				change since the last iteration (VBD) times a constant proportionality factor.

				CD31:  
				The instantaneous volume of blood in the pulmonary arteria tree (VPA) is equal to the 
				temporary value calculated from Block CD29 plus the additional blood resulting from a
				blood volume change as calculated in CD30.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="QRO"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="QPO"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="VBD"	units="litre" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="pulmonary_vasculature_blood_volume_VPA"
					name="VPA" 	units="litre" private_interface="none" public_interface="out"/>
		<variable name="VPA1"	initial_value="0.38131"	units="litre" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable name="DPA"	units="L_per_minute" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD28">
				<eq/>
				<ci>DPA</ci>
				<apply>
					<minus/>
					<ci>QRO</ci>
					<ci>QPO</ci>
				</apply>
			</apply>
			<apply id="CD29">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>VPA1</ci>
				</apply>
				<ci>DPA</ci>
			</apply>
			<apply id="CD30_and_CD31">
				<eq/>
				<ci>VPA</ci>
				<apply>
					<plus/>
					<ci>VPA1</ci>
					<apply>
						<times/>
						<ci>VBD</ci>
						<cn cellml:units="dimensionless">0.155</cn>
					</apply>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="pulmonary_vasculature_blood_volume" component_2="right_ventricular_output"/>
		<map_variables variable_1="QRO" variable_2="QRO"/>
	</connection>
	<connection>
		<map_components component_1="pulmonary_vasculature_blood_volume" component_2="rate_of_blood_flow_from_pulmonary_veins_to_left_atrium"/>
		<map_variables variable_1="QPO" variable_2="QPO"/>
	</connection>
	<connection>
		<map_components component_1="pulmonary_vasculature_blood_volume" component_2="total_blood_volume_change"/>
		<map_variables variable_1="VPA1" variable_2="VPA1"/>
		<map_variables variable_1="VBD" variable_2="VBD"/>
	</connection>
	<connection>
		<map_components component_1="pulmonary_vasculature_blood_volume" component_2="circulatory_dynamics"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- ========================================	PULMONARY VASCULATURE PRESSURE		============================================= -->
	<component 	name="pulmonary_vasculature_pressure" 
				cmeta:id="pulmonary_vasculature_pressure">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#pulmonary_vasculature_pressure">
				<rdf:value>
				CD32:  
				Excess volume of blood in the pulmonary arterial tree (VPE) is equal to the 
				instantaneous volume of blood in the pulmonary tree (VPA) minus a constant value 
				which represents the volume of blood in the pulmonary arterial tree when it is 
				filled but still at zero pressure.

				CD33:  
				The pulmonary arterial pressure (PPA)  is equal to the excess volume of blood in 
				the pulmonary arterial tree (VPE) divided by a constant which is equal to the 
				capacitance of the pulmonary arterial tree.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD32">
				<rdf:value>
				CD32:  
				Excess volume of blood in the pulmonary arterial tree (VPE) is equal to the 
				instantaneous volume of blood in the pulmonary tree (VPA) minus a constant value 
				which represents the volume of blood in the pulmonary arterial tree when it is 
				filled but still at zero pressure.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD33">
				<rdf:value>
				CD33:  
				The pulmonary arterial pressure (PPA)  is equal to the excess volume of blood in 
				the pulmonary arterial tree (VPE) divided by a constant which is equal to the 
				capacitance of the pulmonary arterial tree.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="VPA"	units="litre" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="pulmonary_vasculature_pressure_PPA"
					name="PPA" 	units="mmHg" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable name="VPE"	units="litre" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD32">
				<eq/>
				<ci>VPE</ci>
				<apply>
					<minus/>
					<ci>VPA</ci>
					<cn cellml:units="litre">0.30625</cn>
				</apply>
			</apply>
			<apply id="CD33">
				<eq/>
				<ci>PPA</ci>
				<apply>
					<divide/>
					<ci>VPE</ci>
					<cn cellml:units="L_per_mmHg">0.0048</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="pulmonary_vasculature_pressure" component_2="pulmonary_vasculature_blood_volume"/>
		<map_variables variable_1="VPA" variable_2="VPA"/>
	</connection>

<!-- ========================================	PULMONARY ARTERIAL RESISTANCE	============================================= -->
	<component 	name="pulmonary_arterial_resistance" 
				cmeta:id="pulmonary_arterial_resistance">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#pulmonary_arterial_resistance">
				<rdf:value>
				CD59, CD60, CD61, and CD62:  
				Calculation of the resistance through the pulmonary arterioles (RPA) caused by 
				changes in pulmonary arterial pressure (PPA).  CD60 gives a limit value for one 
				of the intermediate calculations, and CD61 gives an exponential effect of pressure 
				on natriuresis.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD59">
				<rdf:value>
				CD59, CD60, CD61, and CD62:  
				Calculation of the resistance through the pulmonary arterioles (RPA) caused by 
				changes in pulmonary arterial pressure (PPA).  CD60 gives a limit value for one 
				of the intermediate calculations, and CD61 gives an exponential effect of pressure 
				on natriuresis.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD60">
				<rdf:value>
				CD59, CD60, CD61, and CD62:  
				Calculation of the resistance through the pulmonary arterioles (RPA) caused by 
				changes in pulmonary arterial pressure (PPA).  CD60 gives a limit value for one 
				of the intermediate calculations, and CD61 gives an exponential effect of pressure 
				on natriuresis.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD61">
				<rdf:value>
				CD59, CD60, CD61, and CD62:  
				Calculation of the resistance through the pulmonary arterioles (RPA) caused by 
				changes in pulmonary arterial pressure (PPA).  CD60 gives a limit value for one 
				of the intermediate calculations, and CD61 gives an exponential effect of pressure 
				on natriuresis.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD62">
				<rdf:value>
				CD59, CD60, CD61, and CD62:  
				Calculation of the resistance through the pulmonary arterioles (RPA) caused by 
				changes in pulmonary arterial pressure (PPA).  CD60 gives a limit value for one 
				of the intermediate calculations, and CD61 gives an exponential effect of pressure 
				on natriuresis.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PPA"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="pulmonary_arterial_resistance_RPA"
					name="RPA" 	units="mmHg_minute_per_L" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable name="PP1T"	units="L_per_minute_per_mmHg" private_interface="none" public_interface="none"/>
		<variable name="PP1"	units="L_per_minute_per_mmHg" private_interface="none" public_interface="none"/>
		<variable name="CPA"	units="L_per_minute_per_mmHg" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD59">
				<eq/>
				<ci>PP1T</ci>
				<apply>
					<times/>
					<cn cellml:units="L_per_minute_per_mmHg2">0.026</cn>
					<ci>PPA</ci>
				</apply>
			</apply>
			<apply id="CD60">
				<eq/>
				<ci>PP1</ci>
				<piecewise>
					<piece>
						<cn cellml:units="L_per_minute_per_mmHg">0.00001</cn>
						<apply>
							<lt/>
							<ci>PP1T</ci>
							<cn cellml:units="L_per_minute_per_mmHg">0.00001</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>PP1T</ci>
					</otherwise>
				</piecewise>
			</apply>
			<apply id="CD61">
				<eq/>
				<ci>CPA</ci>
				<apply>
					<power/>
					<ci>PP1</ci>
					<cn cellml:units="dimensionless">0.5</cn>
				</apply>
			</apply>
			<apply id="CD62">
				<eq/>
				<ci>RPA</ci>
				<apply>
					<divide/>
					<cn cellml:units="dimensionless">1</cn>
					<ci>CPA</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="pulmonary_arterial_resistance" component_2="pulmonary_vasculature_pressure"/>
		<map_variables variable_1="PPA" variable_2="PPA"/>
	</connection>

<!-- ========================================	PULMONARY VENOUS RESISTANCE	============================================= -->
	<component 	name="pulmonary_venous_resistance" 
				cmeta:id="pulmonary_venous_resistance">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#pulmonary_venous_resistance">
				<rdf:value>
				CD63 and CD64:  
				Calculation of the resistance of blood flow through the pulmonary veins (RPV) as 
				a function of the left atrial pressure (PLA).  Basically an increase in left 
				atrial pressure distends the pulmonary veins and reduces the resistance.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD63">
				<rdf:value>
				CD63 and CD64:  
				Calculation of the resistance of blood flow through the pulmonary veins (RPV) as 
				a function of the left atrial pressure (PLA).  Basically an increase in left 
				atrial pressure distends the pulmonary veins and reduces the resistance.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD64">
				<rdf:value>
				CD63 and CD64:  
				Calculation of the resistance of blood flow through the pulmonary veins (RPV) as 
				a function of the left atrial pressure (PLA).  Basically an increase in left 
				atrial pressure distends the pulmonary veins and reduces the resistance.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PLA"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="pulmonary_venous_resistance_RPV"
					name="RPV" 	units="mmHg_minute_per_L" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable name="PL1"	units="mmHg" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD63">
				<eq/>
				<ci>PL1</ci>
				<apply>
					<plus/>
					<ci>PLA</ci>
					<cn cellml:units="mmHg">18</cn>
				</apply>
			</apply>
			<apply id="CD64">
				<eq/>
				<ci>RPV</ci>
				<apply>
					<divide/>
					<cn cellml:units="dimensionless">1</cn>
					<apply>
						<times/>
						<ci>PL1</ci>
						<cn cellml:units="L_per_minute_per_mmHg2">0.0357</cn>
					</apply>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="pulmonary_venous_resistance" component_2="left_atrial_pressure"/>
		<map_variables variable_1="PLA" variable_2="PLA"/>
	</connection>

<!-- ========================================	TOTAL PULMONARY VASCULAR RESISTANCE		============================================= -->
	<component 	name="total_pulmonary_vascular_resistance" 
				cmeta:id="total_pulmonary_vascular_resistance">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#total_pulmonary_vascular_resistance">
				<rdf:value>
				CD65:  
				The total resistance in the pulmonary circuit (RPT) is equal to the sum of the 
				pulmonary arterial resistance (RPA) plus the pulmonary venous resistance (RPV).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD65">
				<rdf:value>
				CD65:  
				The total resistance in the pulmonary circuit (RPT) is equal to the sum of the 
				pulmonary arterial resistance (RPA) plus the pulmonary venous resistance (RPV).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="RPV"	units="mmHg_minute_per_L" private_interface="none" public_interface="in"/>
		<variable name="RPA"	units="mmHg_minute_per_L" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="RPT" 	units="mmHg_minute_per_L" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD65">
				<eq/>
				<ci>RPT</ci>
				<apply>
					<plus/>
					<ci>RPV</ci>
					<ci>RPA</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="total_pulmonary_vascular_resistance" component_2="pulmonary_venous_resistance"/>
		<map_variables variable_1="RPV" variable_2="RPV"/>
	</connection>
	<connection>
		<map_components component_1="total_pulmonary_vascular_resistance" component_2="pulmonary_arterial_resistance"/>
		<map_variables variable_1="RPA" variable_2="RPA"/>
	</connection>

<!-- ========================================	PRESSURE GRADIENT THROUGH THE LUNGS		============================================= -->
	<component 	name="pressure_gradient_through_the_lungs" 
				cmeta:id="pressure_gradient_through_the_lungs">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#pressure_gradient_through_the_lungs">
				<rdf:value>
				CD34:  
				The pressure gradient through the lungs from the pulmonary arteries to the 
				pulmonary veins (PGL) is equal to the pressure in the pulmonary arteries (PPA) 
				minus the pressure in the left atrium (PLA).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD34">
				<rdf:value>
				CD34:  
				The pressure gradient through the lungs from the pulmonary arteries to the 
				pulmonary veins (PGL) is equal to the pressure in the pulmonary arteries (PPA) 
				minus the pressure in the left atrium (PLA).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PPA"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="PLA"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="PGL" 	units="mmHg" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD34">
				<eq/>
				<ci>PGL</ci>
				<apply>
					<minus/>
					<ci>PPA</ci>
					<ci>PLA</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="pressure_gradient_through_the_lungs" component_2="pulmonary_vasculature_pressure"/>
		<map_variables variable_1="PPA" variable_2="PPA"/>
	</connection>
	<connection>
		<map_components component_1="pressure_gradient_through_the_lungs" component_2="left_atrial_pressure"/>
		<map_variables variable_1="PLA" variable_2="PLA"/>
	</connection>

<!-- ===============================		RATE OF BLOOD FLOW FROM PULMONARY VEINS TO LEFT ATRIUM		====================================== -->
	<component 	name="rate_of_blood_flow_from_pulmonary_veins_to_left_atrium" 
				cmeta:id="rate_of_blood_flow_from_pulmonary_veins_to_left_atrium">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#rate_of_blood_flow_from_pulmonary_veins_to_left_atrium">
				<rdf:value>
				CD35:  
				Rate of outflow of blood from the pulmonary arterial tree (QPO) is equal to 
				the pressure gradient through the lungs (PGL) divided by the resistance to 
				blood flow through the lungs (RPT).

				CD35A:  
				Damping of QPO to allow rapid computation of long-term hemodynamics.  When 
				the value U equals 1.0 there is no damping.  Any larger value for U provides
				proportionate damping.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD35">
				<rdf:value>
				CD35:  
				Rate of outflow of blood from the pulmonary arterial tree (QPO) is equal to 
				the pressure gradient through the lungs (PGL) divided by the resistance to 
				blood flow through the lungs (RPT).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD35A">
				<rdf:value>
				CD35A:  
				Damping of QPO to allow rapid computation of long-term hemodynamics.  When 
				the value U equals 1.0 there is no damping.  Any larger value for U provides
				proportionate damping.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PGL"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="RPT"	units="mmHg_minute_per_L" private_interface="none" public_interface="in"/>
		<variable name="QLO"	units="L_per_minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="QPO" 	units="L_per_minute" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD35">
				<eq/>
				<ci>QPO</ci>
				<apply>
					<divide/>
					<ci>PGL</ci>
					<ci>RPT</ci>
				</apply>
			</apply>
<!--			<apply id="CD35A - DAMPING!!!">
				<eq/>
				<ci>QPO</ci>
				<apply>
					<plus/>
					<ci>QLO</ci>
					<apply>
						<divide/>
						<apply>
							<minus/>
							<ci>QPO</ci>
							<ci>QLO</ci>
						</apply>
						<ci>U</ci>
					</apply>
				</apply>
			</apply> -->
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="rate_of_blood_flow_from_pulmonary_veins_to_left_atrium" component_2="pressure_gradient_through_the_lungs"/>
		<map_variables variable_1="PGL" variable_2="PGL"/>
	</connection>
	<connection>
		<map_components component_1="rate_of_blood_flow_from_pulmonary_veins_to_left_atrium" component_2="total_pulmonary_vascular_resistance"/>
		<map_variables variable_1="RPT" variable_2="RPT"/>
	</connection>
	<connection>
		<map_components component_1="rate_of_blood_flow_from_pulmonary_veins_to_left_atrium" component_2="left_ventricular_output"/>
		<map_variables variable_1="QLO" variable_2="QLO"/>
	</connection>

<!-- ========================================	LEFT ATRIUM	============================================= -->
	<component 	name="left_atrium" 
				cmeta:id="left_atrium">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#left_atrium">
				<rdf:value>
				Containment grouping component for "left_atrial_blood_volume", "left_atrial_pressure"
				and "autonomic_stimulation_effect_on_left_atrial_pressure".
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
	</component>

<!-- ========================================	LEFT ATRIAL BLOOD VOLUME	============================================= -->
	<component 	name="left_atrial_blood_volume" 
				cmeta:id="left_atrial_blood_volume">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#left_atrial_blood_volume">
				<rdf:value>
				CD36:  
				The rate of change of blood volume in the left atrium (DLA) is equal to the rate 
				of blood flow into the left atrium from the pulmonary circulation (QPO) minus the 
				rate of blood flow out of the left atrium through the left heart (QLO).

				CD37:  
				Calculation of a temporary value for the instantaneous volume of blood in the
				left atrium by integrating the rate of blood volume change in the left atrium (DLA).

				CD38:  
				Calculation of the proportion of any blood volume change (VBD) that has occurred 
				since the last iteration that is distributed to the left atrium, calculated by 
				multiplying by a porprotionality constant.

				CD39:  
				The instantaneous volume of blood in the left atrium (VLA) is equal to the 
				temporary value calculated in CD37 plus the proportion of any blood volume 
				change that is attributable to the left atrium as calculated in CD38.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD36">
				<rdf:value>
				CD36:  
				The rate of change of blood volume in the left atrium (DLA) is equal to the rate 
				of blood flow into the left atrium from the pulmonary circulation (QPO) minus the 
				rate of blood flow out of the left atrium through the left heart (QLO).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD37">
				<rdf:value>
				CD37:  
				Calculation of a temporary value for the instantaneous volume of blood in the
				left atrium by integrating the rate of blood volume change in the left atrium (DLA).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD38_and_CD39">
				<rdf:value>
				CD38:  
				Calculation of the proportion of any blood volume change (VBD) that has occurred 
				since the last iteration that is distributed to the left atrium, calculated by 
				multiplying by a porprotionality constant.

				CD39:  
				The instantaneous volume of blood in the left atrium (VLA) is equal to the 
				temporary value calculated in CD37 plus the proportion of any blood volume 
				change that is attributable to the left atrium as calculated in CD38.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

<!-- Inputs from other components -->
		<variable name="QPO"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="QLO"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="VBD"	units="litre" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="left_atrial_blood_volume_VLA"
					name="VLA" 	units="litre" private_interface="none" public_interface="out"/>
		<variable name="VLA1"	initial_value="0.379883"	units="litre" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable name="DLA"	units="L_per_minute" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD36">
				<eq/>
				<ci>DLA</ci>
				<apply>
					<minus/>
					<ci>QPO</ci>
					<ci>QLO</ci>
				</apply>
			</apply>
			<apply id="CD37">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>VLA1</ci>
				</apply>
				<ci>DLA</ci>
			</apply>
			<apply id="CD38_and_CD39">
				<eq/>
				<ci>VLA</ci>
				<apply>
					<plus/>
					<ci>VLA1</ci>
					<apply>
						<times/>
						<ci>VBD</ci>
						<cn cellml:units="dimensionless">0.128</cn>
					</apply>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="left_atrial_blood_volume" component_2="rate_of_blood_flow_from_pulmonary_veins_to_left_atrium"/>
		<map_variables variable_1="QPO" variable_2="QPO"/>
	</connection>
	<connection>
		<map_components component_1="left_atrial_blood_volume" component_2="left_ventricular_output"/>
		<map_variables variable_1="QLO" variable_2="QLO"/>
	</connection>
	<connection>
		<map_components component_1="left_atrial_blood_volume" component_2="total_blood_volume_change"/>
		<map_variables variable_1="VLA1" variable_2="VLA1"/>
		<map_variables variable_1="VBD" variable_2="VBD"/>
	</connection>
	<connection>
		<map_components component_1="left_atrial_blood_volume" component_2="circulatory_dynamics"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- ========================================	LEFT ATRIAL PRESSURE	============================================= -->
	<component 	name="left_atrial_pressure" 
				cmeta:id="left_atrial_pressure">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#left_atrial_pressure">
				<rdf:value>
				CD40:  
				The excess blood volume in the left atrium (VLE) is equal to the instantaneous 
				volume of blood in the left atrium (VLA) minus a constant value which is the 
				volume of blood in the left atrium when it is filled with the pressure at zero.

				CD41:  
				The pressure in the left atrium (PLE) is equal to the instantaneous exces volume 
				in the left atrium (VLE) divided by a constant which is equal to the capacitance 
				of the left atrium.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD40">
				<rdf:value>
				CD40:  
				The excess blood volume in the left atrium (VLE) is equal to the instantaneous 
				volume of blood in the left atrium (VLA) minus a constant value which is the 
				volume of blood in the left atrium when it is filled with the pressure at zero.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD41">
				<rdf:value>
				CD41:  
				The pressure in the left atrium (PLE) is equal to the instantaneous exces volume 
				in the left atrium (VLE) divided by a constant which is equal to the capacitance 
				of the left atrium.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="VLA"	units="litre" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="left_atrial_pressure_PLA"
					name="PLA" 	units="mmHg" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable name="VLE"	units="litre" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD40">
				<eq/>
				<ci>VLE</ci>
				<apply>
					<minus/>
					<ci>VLA</ci>
					<cn cellml:units="litre">0.38</cn>
				</apply>
			</apply>
			<apply id="CD41">
				<eq/>
				<ci>PLA</ci>
				<apply>
					<divide/>
					<ci>VLE</ci>
					<cn cellml:units="L_per_mmHg">0.01</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="left_atrial_pressure" component_2="left_atrial_blood_volume"/>
		<map_variables variable_1="VLA" variable_2="VLA"/>
	</connection>

<!-- =================================	AUTONOMIC STIMULATION EFFECT ON LEFT ATRIAL PRESSURE	========================================= -->
	<component 	name="autonomic_stimulation_effect_on_left_atrial_pressure" 
				cmeta:id="autonomic_stimulation_effect_on_left_atrial_pressure">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#autonomic_stimulation_effect_on_left_atrial_pressure">
				<rdf:value>
				CD41A, CD41B, CD41C, and CD41D:  
				These blocks serve the same functions for the left heart that Blocks CD25C, CD25D, 
				CD25E, and CD25F serve for the right ventricle.  The value AU in Block CD41D is the 
				level of autonomic stimulation of the heart, and HTAUML is the multiplier constant
				for calculating the effect of changes in AU on the shift of left atrial pressure 
				effect from PLA to PLA1.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD41A_to_CD41D">
				<rdf:value>
				CD41A, CD41B, CD41C, and CD41D:  
				These blocks serve the same functions for the left heart that Blocks CD25C, CD25D, 
				CD25E, and CD25F serve for the right ventricle.  The value AU in Block CD41D is the 
				level of autonomic stimulation of the heart, and HTAUML is the multiplier constant
				for calculating the effect of changes in AU on the shift of left atrial pressure 
				effect from PLA to PLA1.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PLA"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="AU"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="PLA1" 	units="mmHg" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="HTAUML"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD41A_to_CD41D">
				<eq/>
				<ci>PLA1</ci>
				<apply>
					<minus/>
					<apply>
						<times/>
						<apply>
							<plus/>
							<ci>PLA</ci>
							<cn cellml:units="mmHg">4</cn>
						</apply>
						<apply>
							<plus/>
							<apply>
								<times/>
								<ci>HTAUML</ci>
								<apply>
									<minus/>
									<ci>AU</ci>
									<cn cellml:units="dimensionless">1</cn>
								</apply>
							</apply>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
					</apply>
					<cn cellml:units="mmHg">4</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="autonomic_stimulation_effect_on_left_atrial_pressure" component_2="left_atrial_pressure"/>
		<map_variables variable_1="PLA" variable_2="PLA"/>
	</connection>
	<connection>
		<map_components component_1="autonomic_stimulation_effect_on_left_atrial_pressure" component_2="circulatory_dynamics"/>
		<map_variables variable_1="AU" variable_2="AU"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="autonomic_stimulation_effect_on_left_atrial_pressure" component_2="circulatory_dynamics_parameter_values"/>
		<map_variables variable_1="HTAUML" variable_2="HTAUML"/>
	</connection>

<!-- ========================================	LEFT VENTRICLE		============================================= -->
	<component 	name="left_ventricle" 
				cmeta:id="left_ventricle">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#left_ventricle">
				<rdf:value>
				Containment grouping component for "pumping_effectiveness_of_left_ventricle",
				and "left_ventricular_output".
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
	</component>

<!-- ========================================	PUMPING EFFECTIVENESS OF LEFT VENTRICLE	============================================= -->
	<component 	name="pumping_effectiveness_of_left_ventricle" 
				cmeta:id="pumping_effectiveness_of_left_ventricle">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#pumping_effectiveness_of_left_ventricle">
				<rdf:value>
				CD66:  
				A temporary multiplier function (PA2) for the effectiveness of left heart pumping 
				is calculated from three factors:  Stimulation of the left heart by the autonomic 
				nervous system (AUH), effect on heart pumping caused by changes in arterial oxygen 
				saturation (OSA), effect on heart pumping caused by the loading effect of systemic 
				arterial pressure (PA).

				CD67:  
				Function curve relating the pumping effectiveness of the left heart (LVM) to the 
				multiplier function calculated in CD66 (PA2).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD66">
				<rdf:value>
				CD66:  
				A temporary multiplier function (PA2) for the effectiveness of left heart pumping 
				is calculated from three factors:  Stimulation of the left heart by the autonomic 
				nervous system (AUH), effect on heart pumping caused by changes in arterial oxygen 
				saturation (OSA), effect on heart pumping caused by the loading effect of systemic 
				arterial pressure (PA).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD67">
				<rdf:value>
				CD67:  
				Function curve relating the pumping effectiveness of the left heart (LVM) to the 
				multiplier function calculated in CD66 (PA2).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PA"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="AUH"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="OSA"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="LVM" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable name="PA2"	units="mmHg" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD66">
				<eq/>
				<ci>PA2</ci>
				<apply>
					<divide/>
					<ci>PA</ci>
					<apply>
						<times/>
						<ci>AUH</ci>
						<ci>OSA</ci>
					</apply>
				</apply>
			</apply>
			<apply id="CD67">
				<eq/>
				<ci>LVM</ci>
				<piecewise>
					<piece>
						<cn cellml:units="dimensionless">1.04</cn>
						<apply>
							<leq/>
							<ci>PA2</ci>
							<cn cellml:units="mmHg">0</cn>
						</apply>
					</piece>
					<piece>
						<apply>
							<plus/>
							<cn cellml:units="dimensionless">1.04</cn>
							<apply>
								<divide/>
								<apply>
									<times/>
									<apply>
										<minus/>
										<cn cellml:units="per_mmHg">1.025</cn>
										<cn cellml:units="per_mmHg">1.04</cn>
									</apply>
									<apply>
										<minus/>
										<ci>PA2</ci>
										<cn cellml:units="mmHg">0</cn>
									</apply>
								</apply>
								<apply>
									<minus/>
									<cn cellml:units="dimensionless">60</cn>
									<cn cellml:units="dimensionless">0</cn>
								</apply>
							</apply>
						</apply>
						<apply>
							<and/>
							<apply>
								<gt/>
								<ci>PA2</ci>
								<cn cellml:units="mmHg">0</cn>
							</apply>
							<apply>
								<leq/>
								<ci>PA2</ci>
								<cn cellml:units="mmHg">60</cn>
							</apply>
						</apply>
					</piece>
					<piece>
						<apply>
							<plus/>
							<cn cellml:units="dimensionless">1.025</cn>
							<apply>
								<divide/>
								<apply>
									<times/>
									<apply>
										<minus/>
										<cn cellml:units="per_mmHg">0.97</cn>
										<cn cellml:units="per_mmHg">1.025</cn>
									</apply>
									<apply>
										<minus/>
										<ci>PA2</ci>
										<cn cellml:units="mmHg">60</cn>
									</apply>
								</apply>
								<apply>
									<minus/>
									<cn cellml:units="dimensionless">125</cn>
									<cn cellml:units="dimensionless">60</cn>
								</apply>
							</apply>
						</apply>
						<apply>
							<and/>
							<apply>
								<gt/>
								<ci>PA2</ci>
								<cn cellml:units="mmHg">60</cn>
							</apply>
							<apply>
								<leq/>
								<ci>PA2</ci>
								<cn cellml:units="mmHg">125</cn>
							</apply>
						</apply>
					</piece>
					<piece>
						<apply>
							<plus/>
							<cn cellml:units="dimensionless">0.97</cn>
							<apply>
								<divide/>
								<apply>
									<times/>
									<apply>
										<minus/>
										<cn cellml:units="per_mmHg">0.88</cn>
										<cn cellml:units="per_mmHg">0.97</cn>
									</apply>
									<apply>
										<minus/>
										<ci>PA2</ci>
										<cn cellml:units="mmHg">125</cn>
									</apply>
								</apply>
								<apply>
									<minus/>
									<cn cellml:units="dimensionless">160</cn>
									<cn cellml:units="dimensionless">125</cn>
								</apply>
							</apply>
						</apply>
						<apply>
							<and/>
							<apply>
								<gt/>
								<ci>PA2</ci>
								<cn cellml:units="mmHg">125</cn>
							</apply>
							<apply>
								<leq/>
								<ci>PA2</ci>
								<cn cellml:units="mmHg">160</cn>
							</apply>
						</apply>
					</piece>
					<piece>
						<apply>
							<plus/>
							<cn cellml:units="dimensionless">0.88</cn>
							<apply>
								<divide/>
								<apply>
									<times/>
									<apply>
										<minus/>
										<cn cellml:units="per_mmHg">0.59</cn>
										<cn cellml:units="per_mmHg">0.88</cn>
									</apply>
									<apply>
										<minus/>
										<ci>PA2</ci>
										<cn cellml:units="mmHg">160</cn>
									</apply>
								</apply>
								<apply>
									<minus/>
									<cn cellml:units="dimensionless">200</cn>
									<cn cellml:units="dimensionless">160</cn>
								</apply>
							</apply>
						</apply>
						<apply>
							<and/>
							<apply>
								<gt/>
								<ci>PA2</ci>
								<cn cellml:units="mmHg">160</cn>
							</apply>
							<apply>
								<leq/>
								<ci>PA2</ci>
								<cn cellml:units="mmHg">200</cn>
							</apply>
						</apply>
					</piece>
					<piece>
						<apply>
							<plus/>
							<cn cellml:units="dimensionless">0.59</cn>
							<apply>
								<divide/>
								<apply>
									<times/>
									<apply>
										<minus/>
										<cn cellml:units="per_mmHg">0</cn>
										<cn cellml:units="per_mmHg">0.59</cn>
									</apply>
									<apply>
										<minus/>
										<ci>PA2</ci>
										<cn cellml:units="mmHg">200</cn>
									</apply>
								</apply>
								<apply>
									<minus/>
									<cn cellml:units="dimensionless">240</cn>
									<cn cellml:units="dimensionless">200</cn>
								</apply>
							</apply>
						</apply>
						<apply>
							<and/>
							<apply>
								<gt/>
								<ci>PA2</ci>
								<cn cellml:units="mmHg">200</cn>
							</apply>
							<apply>
								<leq/>
								<ci>PA2</ci>
								<cn cellml:units="mmHg">240</cn>
							</apply>
						</apply>
					</piece>
					<otherwise>
						<cn cellml:units="dimensionless">0</cn>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="pumping_effectiveness_of_left_ventricle" component_2="arterial_pressure_and_pressure_gradient"/>
		<map_variables variable_1="PA" variable_2="PA"/>
	</connection>
	<connection>
		<map_components component_1="pumping_effectiveness_of_left_ventricle" component_2="circulatory_dynamics"/>
		<map_variables variable_1="AUH" variable_2="AUH"/>
		<map_variables variable_1="OSA" variable_2="OSA"/>
	</connection>

<!-- ========================================	LEFT VENTRICULAR OUTPUT		============================================= -->
	<component 	name="left_ventricular_output" 
				cmeta:id="left_ventricular_output">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#left_ventricular_output">
				<rdf:value>
				CD42:  
				Function curve that gives the normalized rate of output of the left ventricle (QLN) 
				when the left ventricle is operating at a normal level of pumping effectiveness for 
				any given left atrial pressure (PLA).

				CD43:  
				The actual rate of output from the left ventricle (QLO) when the normalized rate (QLN) 
				is multiplied by various factors that alter the pumping effectiveness of the heart:  
				A multiplier that reduces the effectiveness because of pressure load on the heart (LVM), 
				a factor that changes the effectiveness of the heart because of abnormal left heart
				strength (HSL), a factor that increases the effectiveness of the heart because of
				hypertrophy (HPL), a factor that decreases the strength of the heart because of 
				deterioration of the heart in low blood flow states (HMD), and a factor that alters 
				the strength of the heart by increases or decreases in autonomic stimulation (AUH).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD42">
				<rdf:value>
				CD42:  
				Function curve that gives the normalized rate of output of the left ventricle (QLN) 
				when the left ventricle is operating at a normal level of pumping effectiveness for 
				any given left atrial pressure (PLA).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD43">
				<rdf:value>
				CD43:  
				The actual rate of output from the left ventricle (QLO) when the normalized rate (QLN) 
				is multiplied by various factors that alter the pumping effectiveness of the heart:  
				A multiplier that reduces the effectiveness because of pressure load on the heart (LVM), 
				a factor that changes the effectiveness of the heart because of abnormal left heart
				strength (HSL), a factor that increases the effectiveness of the heart because of
				hypertrophy (HPL), a factor that decreases the strength of the heart because of 
				deterioration of the heart in low blood flow states (HMD), and a factor that alters 
				the strength of the heart by increases or decreases in autonomic stimulation (AUH).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD43A_and_CD43B">
				<rdf:value>
				CD43:  
				The actual rate of output from the left ventricle (QLO) when the normalized rate (QLN) 
				is multiplied by various factors that alter the pumping effectiveness of the heart:  
				A multiplier that reduces the effectiveness because of pressure load on the heart (LVM), 
				a factor that changes the effectiveness of the heart because of abnormal left heart
				strength (HSL), a factor that increases the effectiveness of the heart because of
				hypertrophy (HPL), a factor that decreases the strength of the heart because of 
				deterioration of the heart in low blood flow states (HMD), and a factor that alters 
				the strength of the heart by increases or decreases in autonomic stimulation (AUH).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD43C">
				<rdf:value>
				CD43:  
				The actual rate of output from the left ventricle (QLO) when the normalized rate (QLN) 
				is multiplied by various factors that alter the pumping effectiveness of the heart:  
				A multiplier that reduces the effectiveness because of pressure load on the heart (LVM), 
				a factor that changes the effectiveness of the heart because of abnormal left heart
				strength (HSL), a factor that increases the effectiveness of the heart because of
				hypertrophy (HPL), a factor that decreases the strength of the heart because of 
				deterioration of the heart in low blood flow states (HMD), and a factor that alters 
				the strength of the heart by increases or decreases in autonomic stimulation (AUH).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PLA1"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="LVM"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="AUH"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="HMD"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="HPL"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="PLA"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="PA"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="left_ventricular_output_QLO"
					name="QLO" 	units="L_per_minute" private_interface="none" public_interface="out"/>
		<variable name="QLOT" 	units="L_per_minute" private_interface="none" public_interface="out"/>
		<variable name="QLN" 	units="L_per_minute" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="HSL"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="QLO1"	units="L_per_minute" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD42">
                <eq/>
                <ci>QLN</ci>
                <piecewise>
                    <piece>
                        <cn cellml:units="L_per_minute">0.01</cn>
                        <apply>
                            <leq/>
                            <ci>PLA1</ci>
                            <apply>
                                <minus/>
                                <cn cellml:units="mmHg">2</cn>
                            </apply>
                        </apply>
                    </piece>
                    <piece>
                        <apply>
                            <plus/>
                            <cn cellml:units="L_per_minute">0.01</cn>
                            <apply>
                                <divide/>
                                <apply>
                                    <times/>
                                    <apply>
                                        <minus/>
                                        <cn cellml:units="L_per_minute_per_mmHg">3.6</cn>
                                        <cn cellml:units="L_per_minute_per_mmHg">0.01</cn>
                                    </apply>
                                    <apply>
                                        <minus/>
                                        <ci>PLA1</ci>
                                        <apply>
                                            <minus/>
                                            <cn cellml:units="mmHg">2</cn>
                                        </apply>
                                    </apply>
                                </apply>
                                <apply>
                                    <minus/>
                                    <cn cellml:units="dimensionless">1</cn>
                                    <apply>
                                        <minus/>
                                        <cn cellml:units="dimensionless">2</cn>
                                    </apply>
                                </apply>
                            </apply>
                        </apply>
                        <apply>
                            <and/>
                            <apply>
                                <gt/>
                                <ci>PLA1</ci>
                                <apply>
                                    <minus/>
                                    <cn cellml:units="mmHg">2</cn>
                                </apply>
                            </apply>
                            <apply>
                                <leq/>
                                <ci>PLA1</ci>
                                <cn cellml:units="mmHg">1</cn>
                            </apply>
                        </apply>
                    </piece>
                    <piece>
                        <apply>
                            <plus/>
                            <cn cellml:units="L_per_minute">3.6</cn>
                            <apply>
                                <divide/>
                                <apply>
                                    <times/>
                                    <apply>
                                        <minus/>
                                        <cn cellml:units="L_per_minute_per_mmHg">9.4</cn>
                                        <cn cellml:units="L_per_minute_per_mmHg">3.6</cn>
                                    </apply>
                                    <apply>
                                        <minus/>
                                        <ci>PLA1</ci>
                                        <cn cellml:units="mmHg">1</cn>
                                    </apply>
                                </apply>
                                <apply>
                                    <minus/>
                                    <cn cellml:units="dimensionless">5</cn>
                                    <cn cellml:units="dimensionless">1</cn>
                                </apply>
                            </apply>
                        </apply>
                        <apply>
                            <and/>
                            <apply>
                                <gt/>
                                <ci>PLA1</ci>
                                <cn cellml:units="mmHg">1</cn>
                            </apply>
                            <apply>
                                <leq/>
                                <ci>PLA1</ci>
                                <cn cellml:units="mmHg">5</cn>
                            </apply>
                        </apply>
                    </piece>
                    <piece>
                        <apply>
                            <plus/>
                            <cn cellml:units="L_per_minute">9.4</cn>
                            <apply>
                                <divide/>
                                <apply>
                                    <times/>
                                    <apply>
                                        <minus/>
                                        <cn cellml:units="L_per_minute_per_mmHg">11.6</cn>
                                        <cn cellml:units="L_per_minute_per_mmHg">9.4</cn>
                                    </apply>
                                    <apply>
                                        <minus/>
                                        <ci>PLA1</ci>
                                        <cn cellml:units="mmHg">5</cn>
                                    </apply>
                                </apply>
                                <apply>
                                    <minus/>
                                    <cn cellml:units="dimensionless">8</cn>
                                    <cn cellml:units="dimensionless">5</cn>
                                </apply>
                            </apply>
                        </apply>
                        <apply>
                            <and/>
                            <apply>
                                <gt/>
                                <ci>PLA1</ci>
                                <cn cellml:units="mmHg">5</cn>
                            </apply>
                            <apply>
                                <leq/>
                                <ci>PLA1</ci>
                                <cn cellml:units="mmHg">8</cn>
                            </apply>
                        </apply>
                    </piece>
                    <piece>
                        <apply>
                            <plus/>
                            <cn cellml:units="L_per_minute">11.6</cn>
                            <apply>
                                <divide/>
                                <apply>
                                    <times/>
                                    <apply>
                                        <minus/>
                                        <cn cellml:units="L_per_minute_per_mmHg">13.5</cn>
                                        <cn cellml:units="L_per_minute_per_mmHg">11.6</cn>
                                    </apply>
                                    <apply>
                                        <minus/>
                                        <ci>PLA1</ci>
                                        <cn cellml:units="mmHg">8</cn>
                                    </apply>
                                </apply>
                                <apply>
                                    <minus/>
                                    <cn cellml:units="dimensionless">12</cn>
                                    <cn cellml:units="dimensionless">8</cn>
                                </apply>
                            </apply>
                        </apply>
                        <apply>
                            <and/>
                            <apply>
                                <gt/>
                                <ci>PLA1</ci>
                                <cn cellml:units="mmHg">8</cn>
                            </apply>
                            <apply>
                                <leq/>
                                <ci>PLA1</ci>
                                <cn cellml:units="mmHg">12</cn>
                            </apply>
                        </apply>
                    </piece>
                    <otherwise>
                        <cn cellml:units="L_per_minute">13.5</cn>
                    </otherwise>
                </piecewise>
			</apply>
			<apply id="CD43">
				<eq/>
				<ci>QLOT</ci>
				<apply>
					<times/>
					<ci>LVM</ci>
					<ci>QLN</ci>
					<ci>AUH</ci>
					<ci>HSL</ci>
					<ci>HMD</ci>
					<ci>HPL</ci>
				</apply>
			</apply>
			<apply id="CD43A_and_CD43B">
				<eq/>
				<ci>QLO1</ci>
				<apply>
					<divide/>
					<apply>
						<minus/>
						<ci>PLA</ci>
						<ci>PA</ci>
					</apply>
					<cn cellml:units="mmHg_minute_per_L">3</cn>
				</apply>
			</apply>
			<apply id="CD43C">
				<eq/>
				<ci>QLO</ci>
				<piecewise>
					<piece>
						<apply>
							<plus/>
							<ci>QLOT</ci>
							<ci>QLO1</ci>
						</apply>
						<apply>
							<gt/>
							<ci>QLO1</ci>
							<cn cellml:units="L_per_minute">0</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>QLOT</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="left_ventricular_output" component_2="autonomic_stimulation_effect_on_left_atrial_pressure"/>
		<map_variables variable_1="PLA1" variable_2="PLA1"/>
	</connection>
	<connection>
		<map_components component_1="left_ventricular_output" component_2="pumping_effectiveness_of_left_ventricle"/>
		<map_variables variable_1="LVM" variable_2="LVM"/>
	</connection>
	<connection>
		<map_components component_1="left_ventricular_output" component_2="circulatory_dynamics"/>
		<map_variables variable_1="QLO" variable_2="QLO"/>
		<map_variables variable_1="AUH" variable_2="AUH"/>
		<map_variables variable_1="HMD" variable_2="HMD"/>
		<map_variables variable_1="HPL" variable_2="HPL"/>
	</connection>
	<connection>
		<map_components component_1="left_ventricular_output" component_2="left_atrial_pressure"/>
		<map_variables variable_1="PLA" variable_2="PLA"/>
	</connection>
	<connection>
		<map_components component_1="left_ventricular_output" component_2="arterial_pressure_and_pressure_gradient"/>
		<map_variables variable_1="PA" variable_2="PA"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="left_ventricular_output" component_2="circulatory_dynamics_parameter_values"/>
		<map_variables variable_1="HSL" variable_2="HSL"/>
	</connection>

<!-- ========================================	SYSTEMIC VENOUS SYSTEM	============================================= -->
	<component 	name="systemic_venous_system" 
				cmeta:id="systemic_venous_system">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#systemic_venous_system">
				<rdf:value>
				Containment grouping component for "venous_blood_volume", 
				"angiotensin_induced_venous_constriction", "venous_excess_volume", 
				"venous_average_pressure", "venous_outflow_pressure_into_heart", 
				"resistance_from_veins_to_right_atrium", "rate_of_blood_flow_from_veins_to_right_atrium",
				"venous_resistance" and "NM_NR_venous_resistance".
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
	</component>

<!-- ========================================	VENOUS BLOOD VOLUME	============================================= -->
	<component 	name="venous_blood_volume" 
				cmeta:id="venous_blood_volume">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#venous_blood_volume">
				<rdf:value>
				CD11:  
				The rate of change of blood volume in the systemic veins (DVS) is equal to the 
				rate of blood flow into the veins from the arterial tree (QAO) minus the rate 
				of blood flow out of the veins (QVO).

				CD12:  
				A temporary value is calculated for the instantaneous volume of blood in the 
				veins by integrating the rate of change of the volume in the veins (DVS).

				CD13:  
				The portion of any change in blood volume that has occurred since the last iteration 
				that is ascribable to volume change in the veins is calculated by multiplying the 
				total volume change (VBD) times a constant.

				CD14:  
				The instantaneous volume of blood in the veins (VVS) is the sum of the temporary 
				calculation of instantaneous venous volume from CD12 plus the additional venous 
				volume change caused by change in total blood volume as calculated in CD13.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD11">
				<rdf:value>
				CD11:  
				The rate of change of blood volume in the systemic veins (DVS) is equal to the 
				rate of blood flow into the veins from the arterial tree (QAO) minus the rate 
				of blood flow out of the veins (QVO).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD12">
				<rdf:value>
				CD12:  
				A temporary value is calculated for the instantaneous volume of blood in the 
				veins by integrating the rate of change of the volume in the veins (DVS).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD13_and_CD14">
				<rdf:value>
				CD13:  
				The portion of any change in blood volume that has occurred since the last iteration 
				that is ascribable to volume change in the veins is calculated by multiplying the 
				total volume change (VBD) times a constant.

				CD14:  
				The instantaneous volume of blood in the veins (VVS) is the sum of the temporary 
				calculation of instantaneous venous volume from CD12 plus the additional venous 
				volume change caused by change in total blood volume as calculated in CD13.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="QAO"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="QVO"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="VBD"	units="litre" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="venous_blood_volume_VVS"
					name="VVS" 	units="litre" private_interface="none" public_interface="out"/>
		<variable name="VVS1"	initial_value="3.28246"	units="litre" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable name="DVS"	units="L_per_minute" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD11">
				<eq/>
				<ci>DVS</ci>
				<apply>
					<minus/>
					<ci>QAO</ci>
					<ci>QVO</ci>
				</apply>
			</apply>
			<apply id="CD12">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>VVS1</ci>
				</apply>
				<ci>DVS</ci>
			</apply>
			<apply id="CD13_and_CD14">
				<eq/>
				<ci>VVS</ci>
				<apply>
					<plus/>
					<ci>VVS1</ci>
					<apply>
						<times/>
						<ci>VBD</ci>
						<cn cellml:units="dimensionless">0.3986</cn>
					</apply>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="venous_blood_volume" component_2="systemic_blood_flow"/>
		<map_variables variable_1="QAO" variable_2="QAO"/>
	</connection>
	<connection>
		<map_components component_1="venous_blood_volume" component_2="rate_of_blood_flow_from_veins_to_right_atrium"/>
		<map_variables variable_1="QVO" variable_2="QVO"/>
	</connection>
	<connection>
		<map_components component_1="venous_blood_volume" component_2="total_blood_volume_change"/>
		<map_variables variable_1="VBD" variable_2="VBD"/>
		<map_variables variable_1="VVS1" variable_2="VVS1"/>
	</connection>
	<connection>
		<map_components component_1="venous_blood_volume" component_2="circulatory_dynamics"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- ========================================	ANGIOTENSIN-INDUCED VENOUS CONSTRICTION	============================================= -->
	<component 	name="angiotensin_induced_venous_constriction" 
				cmeta:id="angiotensin_induced_venous_constriction">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#angiotensin_induced_venous_constriction">
				<rdf:value>
				CD76 and CD77:  
				Calculation of the decrease in excess venous volume caused by angiotensin 
				constriction based on two factors:  A multiplier factor caused by changes in 
				concentration of angiotensin in the circulating blood (ANU) and a 
				sensitivity adjustment (ANY).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD76_and_CD77">
				<rdf:value>
				CD76 and CD77:  
				Calculation of the decrease in excess venous volume caused by angiotensin 
				constriction based on two factors:  A multiplier factor caused by changes in 
				concentration of angiotensin in the circulating blood (ANU) and a 
				sensitivity adjustment (ANY).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="ANU"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="VVA" 	units="litre" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="ANY"	units="litre" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD76_and_CD77">
				<eq/>
				<ci>VVA</ci>
				<apply>
					<times/>
					<apply>
						<minus/>
						<ci>ANU</ci>
						<cn cellml:units="dimensionless">1</cn>
					</apply>
					<ci>ANY</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="angiotensin_induced_venous_constriction" component_2="circulatory_dynamics"/>
		<map_variables variable_1="ANU" variable_2="ANU"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="angiotensin_induced_venous_constriction" component_2="circulatory_dynamics_parameter_values"/>
		<map_variables variable_1="ANY" variable_2="ANY"/>
	</connection>

<!-- ========================================	VENOUS EXCESS VOLUME	============================================= -->
	<component 	name="venous_excess_volume" 
				cmeta:id="venous_excess_volume">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#venous_excess_volume">
				<rdf:value>
				CD15:  
				The excess volume in the veins (VVE) is calculated by subtracting the maximum 
				volume of blood at zero venous pressure from the actual volume of blood in the 
				systemic venous system (VVS).  The maximum volume of blood in the venous system 
				at zero pressure is equal to the sum of several variable factors: a basic volume 
				when all other factors are normal (VVR), changes caused by atrial volume 
				receptor feedback (ATRVFB), changes caused by stress relaxation (VV6 and VV7), 
				and a change in basic volume of the venous system caused by constriction of the 
				venous system in response to circulating angiotensin from block CD77.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD15">
				<rdf:value>
				CD15:  
				The excess volume in the veins (VVE) is calculated by subtracting the maximum 
				volume of blood at zero venous pressure from the actual volume of blood in the 
				systemic venous system (VVS).  The maximum volume of blood in the venous system 
				at zero pressure is equal to the sum of several variable factors: a basic volume 
				when all other factors are normal (VVR), changes caused by atrial volume 
				receptor feedback (ATRVFB), changes caused by stress relaxation (VV6 and VV7), 
				and a change in basic volume of the venous system caused by constriction of the 
				venous system in response to circulating angiotensin from block CD77.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="VVS"	units="litre" private_interface="none" public_interface="in"/>
		<variable name="VVR"	units="litre" private_interface="none" public_interface="in"/>
		<variable name="VVA"	units="litre" private_interface="none" public_interface="in"/>
		<variable name="VV6"	units="litre" private_interface="none" public_interface="in"/>
		<variable name="VV7"	units="litre" private_interface="none" public_interface="in"/>
		<variable name="ATRVFB"	units="litre" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="venous_excess_volume_VVE"
					name="VVE" 	units="litre" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable 	cmeta:id="venous_excess_volume_VVE1"
					name="VVE1"	units="litre" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD15">
				<eq/>
				<ci>VVE1</ci>
				<apply>
					<minus/>
					<apply>
						<minus/>
						<apply>
							<minus/>
							<apply>
								<minus/>
								<apply>
									<minus/>
									<ci>VVS</ci>
									<ci>VVR</ci>
								</apply>
								<ci>VVA</ci>
							</apply>
							<ci>VV7</ci>
						</apply>
						<ci>VV6</ci>
					</apply>
					<ci>ATRVFB</ci>
				</apply>
			</apply>
			<apply id="CD15_cont">
				<eq/>
				<ci>VVE</ci>
				<piecewise>
					<piece>
						<cn cellml:units="litre">0.0001</cn>
						<apply>
							<lt/>
							<ci>VVE1</ci>
							<cn cellml:units="litre">0.0001</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>VVE1</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="venous_excess_volume" component_2="venous_blood_volume"/>
		<map_variables variable_1="VVS" variable_2="VVS"/>
	</connection>
	<connection>
		<map_components component_1="venous_excess_volume" component_2="circulatory_dynamics"/>
		<map_variables variable_1="VVE" variable_2="VVE"/>
		<map_variables variable_1="VVR" variable_2="VVR"/>
		<map_variables variable_1="VV6" variable_2="VV6"/>
		<map_variables variable_1="VV7" variable_2="VV7"/>
		<map_variables variable_1="ATRVFB" variable_2="ATRVFB"/>
	</connection>
	<connection>
		<map_components component_1="venous_excess_volume" component_2="angiotensin_induced_venous_constriction"/>
		<map_variables variable_1="VVA" variable_2="VVA"/>
	</connection>

<!-- ========================================	VENOUS AVERAGE PRESSURE	============================================= -->
	<component 	name="venous_average_pressure" 
				cmeta:id="venous_average_pressure">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#venous_average_pressure">
				<rdf:value>
				CD16, CD16A, and CD16B:  
				The average pressure in the venous system (PVS) is equal to the excess volume of 
				blood in the veins (VVE) divided by the capacitance of the venous system (CV).  
				The mathematics in these blocks are arranged so that when CV in block CD16A is 
				changed, the blood volume in the venous system does not change at the normal venous 
				pressure level of PVS (+ 3.7 mm Hg).

				CD16D:  
				This block prevents the average venous pressure (PVS) from falling below .001 mm Hg.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD16_to_CD16B">
				<rdf:value>
				CD16, CD16A, and CD16B:  
				The average pressure in the venous system (PVS) is equal to the excess volume of 
				blood in the veins (VVE) divided by the capacitance of the venous system (CV).  
				The mathematics in these blocks are arranged so that when CV in block CD16A is 
				changed, the blood volume in the venous system does not change at the normal venous 
				pressure level of PVS (+ 3.7 mm Hg).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD16D">
				<rdf:value>
				CD16D:  
				This block prevents the average venous pressure (PVS) from falling below .001 mm Hg.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="VVE"	units="litre" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="venous_average_pressure_PVS"
					name="PVS" 	units="mmHg" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="CV"	units="L_per_mmHg" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable 	cmeta:id="venous_average_pressure_PVS1"
					name="PVS1"	units="mmHg" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD16_to_CD16B">
				<eq/>
				<ci>PVS1</ci>
				<apply>
					<plus/>
					<cn cellml:units="mmHg">3.7</cn>
					<apply>
						<divide/>
						<apply>
							<minus/>
							<ci>VVE</ci>
							<cn cellml:units="litre">0.74</cn>
						</apply>
						<ci>CV</ci>
					</apply>
				</apply>
			</apply>
			<apply id="CD16D">
				<eq/>
				<ci>PVS</ci>
				<piecewise>
					<piece>
						<cn cellml:units="mmHg">0.0001</cn>
						<apply>
							<lt/>
							<ci>PVS1</ci>
							<cn cellml:units="mmHg">0.0001</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>PVS1</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="venous_average_pressure" component_2="venous_excess_volume"/>
		<map_variables variable_1="VVE" variable_2="VVE"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="venous_average_pressure" component_2="circulatory_dynamics_parameter_values"/>
		<map_variables variable_1="CV" variable_2="CV"/>
	</connection>

<!-- ========================================	VENOUS OUTFLOW PRESSURE INTO CHEST/HEART	============================================= -->
	<component 	name="venous_outflow_pressure_into_heart" 
				cmeta:id="venous_outflow_pressure_into_heart">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#venous_outflow_pressure_into_heart">
				<rdf:value>
				CD25A and CD25B:  
				Calculation of the outflow pressure from the systemic veins into the chest (PR1) 
				which is used for calculating the blood flow through the venous system in CD17.  
				This corrects for the collapse of veins that might occur at entry to the chest 
				when the right atrial pressure is negative, thus maintaining the output pressure 
				from the venous system above a minimum pressure level corresponding to the pressure 
				at which the veins collapse (PRILL).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD25A_and_CD25B">
				<rdf:value>
				CD25A and CD25B:  
				Calculation of the outflow pressure from the systemic veins into the chest (PR1) 
				which is used for calculating the blood flow through the venous system in CD17.  
				This corrects for the collapse of veins that might occur at entry to the chest 
				when the right atrial pressure is negative, thus maintaining the output pressure 
				from the venous system above a minimum pressure level corresponding to the pressure 
				at which the veins collapse (PRILL).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PRA"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="PR1" 	units="mmHg" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="PR1LL"	units="mmHg" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD25A_and_CD25B">
				<eq/>
				<ci>PR1</ci>
				<piecewise>
					<piece>
						<ci>PR1LL</ci>
						<apply>
							<lt/>
							<ci>PRA</ci>
							<ci>PR1LL</ci>
						</apply>
					</piece>
					<otherwise>
						<ci>PRA</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="venous_outflow_pressure_into_heart" component_2="right_atrial_pressure"/>
		<map_variables variable_1="PRA" variable_2="PRA"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="venous_outflow_pressure_into_heart" component_2="circulatory_dynamics_parameter_values"/>
		<map_variables variable_1="PR1LL" variable_2="PR1LL"/>
	</connection>

<!-- ========================================	RESISTANCE FROM VEINS TO RIGHT ATRIUM	============================================= -->
	<component 	name="resistance_from_veins_to_right_atrium" 
				cmeta:id="resistance_from_veins_to_right_atrium">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#resistance_from_veins_to_right_atrium">
				<rdf:value>
				CD18, CD18A, and CD18B:  
				These blocks calculate the resistance from the large veins to the right atrium (RVS).  
				Block CD18 takes into consideration the effect of the viscosity of the blood (VIM) when 
				the normal value for the viscosity is considered to be 1.0.  Block CD18A considers that
				the resistance (RVS) decreases in proportion to the square root of the level of large 
				vein pressure (PVS).  The numerical values in Blocks CD18 and CD18B are proportionality 
				constants.  This group of blocks is especially concerned with the reduction of venous 
				resistance when pressure increases the diameter of the veins.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD18_to_CD18B">
				<rdf:value>
				CD18, CD18A, and CD18B:  
				These blocks calculate the resistance from the large veins to the right atrium (RVS).  
				Block CD18 takes into consideration the effect of the viscosity of the blood (VIM) when 
				the normal value for the viscosity is considered to be 1.0.  Block CD18A considers that
				the resistance (RVS) decreases in proportion to the square root of the level of large 
				vein pressure (PVS).  The numerical values in Blocks CD18 and CD18B are proportionality 
				constants.  This group of blocks is especially concerned with the reduction of venous 
				resistance when pressure increases the diameter of the veins.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PVS"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="VIM"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="RVG" 	units="mmHg_minute_per_L" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD18_to_CD18B">
				<eq/>
				<ci>RVG</ci>
				<apply>
					<divide/>
					<cn cellml:units="mmHg_minute_per_L">0.74</cn>
					<apply>
						<power/>
						<apply>
							<divide/>
							<ci>PVS</ci>
							<apply>
								<times/>
								<ci>VIM</ci>
								<cn cellml:units="mmHg">3.7</cn>
							</apply>
						</apply>
						<cn cellml:units="dimensionless">0.5</cn>
					</apply>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="resistance_from_veins_to_right_atrium" component_2="venous_average_pressure"/>
		<map_variables variable_1="PVS" variable_2="PVS"/>
	</connection>
	<connection>
		<map_components component_1="resistance_from_veins_to_right_atrium" component_2="circulatory_dynamics"/>
		<map_variables variable_1="VIM" variable_2="VIM"/>
	</connection>

<!-- ========================================	RATE OF BLOOD FLOW FROM VEINS TO RIGHT ATRIUM	============================================= -->
	<component 	name="rate_of_blood_flow_from_veins_to_right_atrium" 
				cmeta:id="rate_of_blood_flow_from_veins_to_right_atrium">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#rate_of_blood_flow_from_veins_to_right_atrium">
				<rdf:value>
				CD17:  
				The temporary pressure gradient (PGV) from the midpoint of the veins to the exit 
				of the veins into the chest equals the venous pressure (PVS) minus the pressure 
				at the exit point (PR1).

				CD19:  
				The rate of blood flow out of the veins into the right atrium (QVO) is equal to 
				the pressure gradient through the venous system (PGV) divided by the resistance 
				to blood flow through the venous system (RVS).

				CD19A:  
				This block provides damping of the value QVO when running on the computer.  
				A damping value of X of 1.0 is no damping.  Any higher value causes damping.
				The value should be equal to 1.0 when studying rapid changes in circulatory 
				dynamics.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD17">
				<rdf:value>
				CD17:  
				The temporary pressure gradient (PGV) from the midpoint of the veins to the exit 
				of the veins into the chest equals the venous pressure (PVS) minus the pressure 
				at the exit point (PR1).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD19">
				<rdf:value>
				CD19:  
				The rate of blood flow out of the veins into the right atrium (QVO) is equal to 
				the pressure gradient through the venous system (PGV) divided by the resistance 
				to blood flow through the venous system (RVS).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD19A">
				<rdf:value>
				CD19A:  
				This block provides damping of the value QVO when running on the computer.  
				A damping value of X of 1.0 is no damping.  Any higher value causes damping.
				The value should be equal to 1.0 when studying rapid changes in circulatory 
				dynamics.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PVS"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="PR1"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="RVG"	units="mmHg_minute_per_L" private_interface="none" public_interface="in"/>
		<variable name="QRO"	units="L_per_minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="QVO" 	units="L_per_minute" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable name="PGV"	units="mmHg" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD17">
				<eq/>
				<ci>PGV</ci>
				<apply>
					<minus/>
					<ci>PVS</ci>
					<ci>PR1</ci>
				</apply>
			</apply>
			<apply id="CD19">
				<eq/>
				<ci>QVO</ci>
				<apply>
					<divide/>
					<ci>PGV</ci>
					<ci>RVG</ci>
				</apply>
			</apply>
<!--			<apply id="CD19A - DAMPING!!!">
				<eq/>
				<ci>QVO</ci>
				<apply>
					<plus/>
					<ci>QRO</ci>
					<apply>
						<divide/>
						<apply>
							<minus/>
							<ci>QVO</ci>
							<ci>QRO</ci>
						</apply>
						<ci>X</ci>
					</apply>
				</apply>
			</apply> -->
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="rate_of_blood_flow_from_veins_to_right_atrium" component_2="venous_average_pressure"/>
		<map_variables variable_1="PVS" variable_2="PVS"/>
	</connection>
	<connection>
		<map_components component_1="rate_of_blood_flow_from_veins_to_right_atrium" component_2="venous_outflow_pressure_into_heart"/>
		<map_variables variable_1="PR1" variable_2="PR1"/>
	</connection>
	<connection>
		<map_components component_1="rate_of_blood_flow_from_veins_to_right_atrium" component_2="resistance_from_veins_to_right_atrium"/>
		<map_variables variable_1="RVG" variable_2="RVG"/>
	</connection>
	<connection>
		<map_components component_1="rate_of_blood_flow_from_veins_to_right_atrium" component_2="right_ventricular_output"/>
		<map_variables variable_1="QRO" variable_2="QRO"/>
	</connection>

<!-- ========================================	VENOUS RESISTANCE	============================================= -->
	<component 	name="venous_resistance" 
				cmeta:id="venous_resistance">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#venous_resistance">
				<rdf:value>
				CD50, CD51, CD52, CD53, CD54, and CD55:  
				A curve-shaping series to calculate a resistance multiplier factor (RV1) from the 
				effect of vascular stretch in the venous system, based on two factors: the input 
				pressure to the venous system from the capillaries (PC) and a basal systemic venous
				multiplier (RVSM).  The damping factor in CD54 slows the response and prevents 
				oscillation of the system.
				NB - The damping in CD54 has not been coded!!!!

				CD56:  
				Calculation of the venous resistance (RVS) after modification of the basic venous 
				resistance multiplier factor (RV1) by various other multiplier factors:  a multiplier
				factor for the effect of angiotensin (ANUVN), a multiplier factor for the effect of 
				the autonomic nervous system (AVE), and a multiplier factor for the effect of blood
				viscosity on venous resistance (VIM).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD50_to_CD53">
				<rdf:value>
				CD50, CD51, CD52, CD53, CD54, and CD55:  
				A curve-shaping series to calculate a resistance multiplier factor (RV1) from the 
				effect of vascular stretch in the venous system, based on two factors: the input 
				pressure to the venous system from the capillaries (PC) and a basal systemic venous
				multiplier (RVSM).  The damping factor in CD54 slows the response and prevents 
				oscillation of the system.
				NB - The damping in CD54 has not been coded!!!!
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD55">
				<rdf:value>
				CD50, CD51, CD52, CD53, CD54, and CD55:  
				A curve-shaping series to calculate a resistance multiplier factor (RV1) from the 
				effect of vascular stretch in the venous system, based on two factors: the input 
				pressure to the venous system from the capillaries (PC) and a basal systemic venous
				multiplier (RVSM).  The damping factor in CD54 slows the response and prevents 
				oscillation of the system.
				NB - The damping in CD54 has not been coded!!!!
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD56">
				<rdf:value>
				CD56:  
				Calculation of the venous resistance (RVS) after modification of the basic venous 
				resistance multiplier factor (RV1) by various other multiplier factors:  a multiplier
				factor for the effect of angiotensin (ANUVN), a multiplier factor for the effect of 
				the autonomic nervous system (AVE), and a multiplier factor for the effect of blood
				viscosity on venous resistance (VIM).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PC"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="VIM"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="AVE"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="ANUVN"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="venous_resistance_RVS"
					name="RVS" 	units="mmHg_minute_per_L" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="CN7"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="CN2"	units="per_mmHg" private_interface="none" public_interface="in"/>
		<variable name="RVSM"	units="mmHg_minute_per_L" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable 	cmeta:id="venous_resistance_CN3"
					name="CN3"	units="dimensionless" private_interface="none" public_interface="none"/>
		<variable 	cmeta:id="venous_resistance_RV1"
					name="RV1"	units="mmHg_minute_per_L" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD50_to_CD53">
                <eq/>
                <ci>CN3</ci>
                <apply>
                    <times/>
                    <apply>
                        <plus/>
                        <apply>
                            <times/>
                            <apply>
                                <minus/>
                                <ci>PC</ci>
                                <cn cellml:units="mmHg">17</cn>
                            </apply>
                            <ci>CN7</ci>
                        </apply>
                        <cn cellml:units="mmHg">17</cn>
                    </apply>
                    <ci>CN2</ci>
                </apply>
			</apply>
			<apply id="CD55">
				<eq/>
				<ci>RV1</ci>
				<apply>
					<divide/>
					<ci>RVSM</ci>
					<ci>CN3</ci>
				</apply>
			</apply>
			<apply id="CD56">
				<eq/>
				<ci>RVS</ci>
				<apply>
					<times/>
					<ci>AVE</ci>
					<ci>RV1</ci>
					<ci>VIM</ci>
					<ci>ANUVN</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="venous_resistance" component_2="circulatory_dynamics"/>
		<map_variables variable_1="RVS" variable_2="RVS"/>
		<map_variables variable_1="PC" variable_2="PC"/>
		<map_variables variable_1="VIM" variable_2="VIM"/>
		<map_variables variable_1="AVE" variable_2="AVE"/>
		<map_variables variable_1="ANUVN" variable_2="ANUVN"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="venous_resistance" component_2="circulatory_dynamics_parameter_values"/>
		<map_variables variable_1="CN7" variable_2="CN7"/>
		<map_variables variable_1="CN2" variable_2="CN2"/>
		<map_variables variable_1="RVSM" variable_2="RVSM"/>
	</connection>

<!-- ========================================	NON-MUSCLE, NON-RENAL VENOUS RESISTANCE	============================================= -->
	<component 	name="NM_NR_venous_resistance" 
				cmeta:id="NM_NR_venous_resistance">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#NM_NR_venous_resistance">
				<rdf:value>
				CD57:  
				Calculation of that proportion of the renal venous resistance that is ascribable
				to blood flow through the systemic circulation besides the muscles and the kidneys,
				by multiplying the actual venous resistance (RVS) times a proportionality factor.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD57">
				<rdf:value>
				CD57:  
				Calculation of that proportion of the renal venous resistance that is ascribable
				to blood flow through the systemic circulation besides the muscles and the kidneys,
				by multiplying the actual venous resistance (RVS) times a proportionality factor.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="RVS"	units="mmHg_minute_per_L" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="NM_NR_venous_resistance_NNRVR"
					name="NNRVR" 	units="mmHg_minute_per_L" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD57">
				<eq/>
				<ci>NNRVR</ci>
				<apply>
					<times/>
					<ci>RVS</ci>
					<cn cellml:units="dimensionless">1.79</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="NM_NR_venous_resistance" component_2="venous_resistance"/>
		<map_variables variable_1="RVS" variable_2="RVS"/>
	</connection>

<!-- ========================================	SYSTEMIC ARTERIAL SYSTEM	============================================= -->
	<component 	name="systemic_arterial_system" 
				cmeta:id="systemic_arterial_system">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#systemic_arterial_system">
				<rdf:value>
				Containment grouping component for "arterial_blood_volume", 
				"arterial_pressure_and_pressure_gradient", "pressure_effect_on_arterial_distention", 
				"NR_systemic_arterial_resistance_multiplier" and "NM_NR_arterial_resistance".
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
	</component>

<!-- ========================================	ARTERIAL BLOOD VOLUME	============================================= -->
	<component 	name="arterial_blood_volume" 
				cmeta:id="arterial_blood_volume">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#arterial_blood_volume">
				<rdf:value>
				CD1:  
				The rate of change of blood volume in the aorta (DAS) is equal to the rate of 
				inflow to the aorta from the heart (QLO) minus the rate of outflow from the 
				aorta through the systemic circulation (QAO) plus any flow that occurs passively
				through the left ventricle (QLO1) because of a left atrial pressure that is 
				greater than aortic pressure, as occurs in the last stages of left ventricular
				failure.

				CD2:  
				Integration of the rate of change of volume in the aorta (DAS) gives an output 
				which is a temporary value for the volume of blood in the systemic arteries at
				any given instant.

				CD3:  
				This block calculates the portion of any change in blood volume that has occurred 
				since the last iteration (VBD) that is partitioned into the arteries.  The remainder
				is partitioned into other sections of the circulation.

				CD4:  
				The volume of blood in the arterial tree at any given instant (VAS) is equal to the
				temporary calculation in volume of blood as described in CD2 plus the portion of a
				blood volume change as calculated in CD3.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD1">
				<rdf:value>
				CD1:  
				The rate of change of blood volume in the aorta (DAS) is equal to the rate of 
				inflow to the aorta from the heart (QLO) minus the rate of outflow from the 
				aorta through the systemic circulation (QAO) plus any flow that occurs passively
				through the left ventricle (QLO1) because of a left atrial pressure that is 
				greater than aortic pressure, as occurs in the last stages of left ventricular
				failure.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD2">
				<rdf:value>
				CD2:  
				Integration of the rate of change of volume in the aorta (DAS) gives an output 
				which is a temporary value for the volume of blood in the systemic arteries at
				any given instant.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD3_and_CD4">
				<rdf:value>
				CD3:  
				This block calculates the portion of any change in blood volume that has occurred 
				since the last iteration (VBD) that is partitioned into the arteries.  The remainder
				is partitioned into other sections of the circulation.

				CD4:  
				The volume of blood in the arterial tree at any given instant (VAS) is equal to the
				temporary calculation in volume of blood as described in CD2 plus the portion of a
				blood volume change as calculated in CD3.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="QLO"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="QAO"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="VBD"	units="litre" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="arterial_blood_volume_VAS"
					name="VAS" 	units="litre" private_interface="none" public_interface="out"/>
		<variable name="VAS1"	initial_value="0.862514"	units="litre" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable name="DAS"	units="L_per_minute" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD1">
				<eq/>
				<ci>DAS</ci>
				<apply>
					<minus/>
					<ci>QLO</ci>
					<ci>QAO</ci>
				</apply>
			</apply>
			<apply id="CD2">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>VAS1</ci>
				</apply>
				<ci>DAS</ci>
			</apply>
			<apply id="CD3_and_CD4">
				<eq/>
				<ci>VAS</ci>
				<apply>
					<plus/>
					<ci>VAS1</ci>
					<apply>
						<times/>
						<ci>VBD</ci>
						<cn cellml:units="dimensionless">0.261</cn>
					</apply>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="arterial_blood_volume" component_2="left_ventricular_output"/>
		<map_variables variable_1="QLO" variable_2="QLO"/>
	</connection>
	<connection>
		<map_components component_1="arterial_blood_volume" component_2="systemic_blood_flow"/>
		<map_variables variable_1="QAO" variable_2="QAO"/>
	</connection>
	<connection>
		<map_components component_1="arterial_blood_volume" component_2="total_blood_volume_change"/>
		<map_variables variable_1="VAS1" variable_2="VAS1"/>
		<map_variables variable_1="VBD" variable_2="VBD"/>
	</connection>
	<connection>
		<map_components component_1="arterial_blood_volume" component_2="circulatory_dynamics"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- ========================================	ARTERIAL PRESSURE AND PRESSURE GRADIENT	============================================= -->
	<component 	name="arterial_pressure_and_pressure_gradient" 
				cmeta:id="arterial_pressure_and_pressure_gradient">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#arterial_pressure_and_pressure_gradient">
				<rdf:value>
				CD5:  
				The excess volume in the arterial tree (VAE) over and above the volume that is 
				required to barely fill the aorta at zero pressure is calculated by subtracting 
				a constant (which is equal to "VO") from the instantaneous volume in the aorta (VAS).

				CD6:  
				Arterial pressure (PA) is equal to the excess volume in the arterial tree (VAE) 
				divided by a constant which is the capacitance of the arterial tree.

				CD78:  
				The output of this block is the total pressure gradient from the arterial pressure (PA) 
				to the right atrial pressure (PRA).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD5">
				<rdf:value>
				CD5:  
				The excess volume in the arterial tree (VAE) over and above the volume that is 
				required to barely fill the aorta at zero pressure is calculated by subtracting 
				a constant (which is equal to "VO") from the instantaneous volume in the aorta (VAS).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD6">
				<rdf:value>
				CD6:  
				Arterial pressure (PA) is equal to the excess volume in the arterial tree (VAE) 
				divided by a constant which is the capacitance of the arterial tree.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD78">
				<rdf:value>
				CD78:  
				The output of this block is the total pressure gradient from the arterial pressure (PA) 
				to the right atrial pressure (PRA).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="VAS"	units="litre" private_interface="none" public_interface="in"/>
		<variable name="PRA"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="arterial_pressure_and_pressure_gradient_PA"
					name="PA" 	units="mmHg" private_interface="none" public_interface="out"/>
		<variable name="PAG" 	units="mmHg" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable 	cmeta:id="arterial_pressure_and_pressure_gradient_VAE"
					name="VAE"	units="litre" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD5">
				<eq/>
				<ci>VAE</ci>
				<apply>
					<minus/>
					<ci>VAS</ci>
					<cn cellml:units="litre">0.495</cn>
				</apply>
			</apply>
			<apply id="CD6">
				<eq/>
				<ci>PA</ci>
				<apply>
					<divide/>
					<ci>VAE</ci>
					<cn cellml:units="L_per_mmHg">0.00355</cn>
				</apply>
			</apply>
			<apply id="CD78">
				<eq/>
				<ci>PAG</ci>
				<apply>
					<minus/>
					<ci>PA</ci>
					<ci>PRA</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="arterial_pressure_and_pressure_gradient" component_2="arterial_blood_volume"/>
		<map_variables variable_1="VAS" variable_2="VAS"/>
	</connection>
	<connection>
		<map_components component_1="arterial_pressure_and_pressure_gradient" component_2="right_atrial_pressure"/>
		<map_variables variable_1="PRA" variable_2="PRA"/>
	</connection>

<!-- ========================================	PRESSURE EFFECT ON ARTERIAL DISTENTION/RESISTANCE	============================================= -->
	<component 	name="pressure_effect_on_arterial_distention" 
				cmeta:id="pressure_effect_on_arterial_distention">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#pressure_effect_on_arterial_distention">
				<rdf:value>
				CD44 and CD45:  
				Calculation of the effect of arterial vascular distension on resistance caused by 
				the arterial pressure itself (PA), giving a multiplier output (PAM) that is then 
				used to calculate the effect of distension on systemic resistance.  The exponential 
				factor (PAEX) modifies the extent to which pressure affects the degree of distension
				on an exponential basis.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD44_and_CD45">
				<rdf:value>
				CD44 and CD45:  
				Calculation of the effect of arterial vascular distension on resistance caused by 
				the arterial pressure itself (PA), giving a multiplier output (PAM) that is then 
				used to calculate the effect of distension on systemic resistance.  The exponential 
				factor (PAEX) modifies the extent to which pressure affects the degree of distension
				on an exponential basis.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PA"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="pressure_effect_on_arterial_distention_PAM"
					name="PAM" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="PAEX"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD44_and_CD45">
				<eq/>
				<ci>PAM</ci>
				<apply>
					<power/>
					<apply>
						<divide/>
						<ci>PA</ci>
						<cn cellml:units="mmHg">100</cn>
					</apply>
					<ci>PAEX</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="pressure_effect_on_arterial_distention" component_2="arterial_pressure_and_pressure_gradient"/>
		<map_variables variable_1="PA" variable_2="PA"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="pressure_effect_on_arterial_distention" component_2="circulatory_dynamics_parameter_values"/>
		<map_variables variable_1="PAEX" variable_2="PAEX"/>
	</connection>

<!-- ======================================		NON-RENAL SYSTEMIC ARTERIAL RESISTANCE MULTIPLIER		======================================= -->
	<component 	name="non_renal_systemic_arterial_resistance_multiplier" 
				cmeta:id="non_renal_systemic_arterial_resistance_multiplier">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#non_renal_systemic_arterial_resistance_multiplier">
				<rdf:value>
				CD46 and CD47:  
				Calculation of the effect of multiple factors on systemic arterial resistance in
				the muscles and in the soft tissues besides the kidneys to give a multiplier 
				factor (R1).  The input factors that contribute to this multiplier factor are:  
				a multiplier factor for the degree of sympathetic stimulation (AUM), a multiplier 
				factor for blood viscosity (VIM), a multiplier factor for the effect of angiotensin
				on vascular resistance (ANU), a multiplier factor for the effect of antidiuretic 
				hormone (ADHMV), a division factor for the effect of feedback from the atrial stretch
				receptors (ATRRFB), a division factor caused by dilation of the arteries in response
				to changes in arterial pressure (PAM), and a multiplier factor (PAMK) for any other
				effect that might constrict the arteries.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD46_and_CD47">
				<rdf:value>
				CD46 and CD47:  
				Calculation of the effect of multiple factors on systemic arterial resistance in
				the muscles and in the soft tissues besides the kidneys to give a multiplier 
				factor (R1).  The input factors that contribute to this multiplier factor are:  
				a multiplier factor for the degree of sympathetic stimulation (AUM), a multiplier 
				factor for blood viscosity (VIM), a multiplier factor for the effect of angiotensin
				on vascular resistance (ANU), a multiplier factor for the effect of antidiuretic 
				hormone (ADHMV), a division factor for the effect of feedback from the atrial stretch
				receptors (ATRRFB), a division factor caused by dilation of the arteries in response
				to changes in arterial pressure (PAM), and a multiplier factor (PAMK) for any other
				effect that might constrict the arteries.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="ANU"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="ADHMV"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="AUM"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="VIM"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="PAMK"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="PAM"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="ATRRFB"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="non_renal_systemic_arterial_resistance_multiplier_R1"
					name="R1" 	units="dimensionless" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD46_and_CD47">
				<eq/>
				<ci>R1</ci>
				<apply>
					<divide/>
					<apply>
						<divide/>
						<apply>
							<times/>
							<ci>ANU</ci>
							<ci>ADHMV</ci>
							<ci>AUM</ci>
							<ci>VIM</ci>
							<ci>PAMK</ci>
						</apply>
						<ci>PAM</ci>
					</apply>
					<ci>ATRRFB</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="non_renal_systemic_arterial_resistance_multiplier" component_2="circulatory_dynamics"/>
		<map_variables variable_1="ANU" variable_2="ANU"/>
		<map_variables variable_1="ADHMV" variable_2="ADHMV"/>
		<map_variables variable_1="AUM" variable_2="AUM"/>
		<map_variables variable_1="VIM" variable_2="VIM"/>
		<map_variables variable_1="PAMK" variable_2="PAMK"/>
		<map_variables variable_1="ATRRFB" variable_2="ATRRFB"/>
	</connection>
	<connection>
		<map_components component_1="non_renal_systemic_arterial_resistance_multiplier" component_2="pressure_effect_on_arterial_distention"/>
		<map_variables variable_1="PAM" variable_2="PAM"/>
	</connection>

<!-- ========================================	NON-MUSCLE, NON-RENAL ARTERIAL RESISTANCE	============================================= -->
	<component 	name="NM_NR_arterial_resistance" 
				cmeta:id="NM_NR_arterial_resistance">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#NM_NR_arterial_resistance">
				<rdf:value>
				CD49:  
				Modification of the resistance multiplier factor (R1) in the tissues of the 
				body besides the muscles and the kidneys caused by the basic resistance 
				through these tissues (RAR), times the degree of effect of an autoregulation 
				multiplier factor (ARM) caused by autoregulation in these tissues, times 
				RMULT1 for experiments on postulations of very rapid autoregulation, and 
				times MYOGRS for resistance changes caused by myogenic autoregulation.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD49">
				<rdf:value>
				CD49:  
				Modification of the resistance multiplier factor (R1) in the tissues of the 
				body besides the muscles and the kidneys caused by the basic resistance 
				through these tissues (RAR), times the degree of effect of an autoregulation 
				multiplier factor (ARM) caused by autoregulation in these tissues, times 
				RMULT1 for experiments on postulations of very rapid autoregulation, and 
				times MYOGRS for resistance changes caused by myogenic autoregulation.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="R1"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="ARM"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="MYOGRS"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="NM_NR_arterial_resistance_NNRAR"
					name="NNRAR" 	units="mmHg_minute_per_L" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="RAR"	units="mmHg_minute_per_L" private_interface="none" public_interface="in"/>
		<variable name="RMULT1"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD49">
				<eq/>
				<ci>NNRAR</ci>
				<apply>
					<times/>
					<ci>RAR</ci>
					<ci>ARM</ci>
					<ci>R1</ci>
					<ci>MYOGRS</ci>
					<ci>RMULT1</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="NM_NR_arterial_resistance" component_2="non_renal_systemic_arterial_resistance_multiplier"/>
		<map_variables variable_1="R1" variable_2="R1"/>
	</connection>
	<connection>
		<map_components component_1="NM_NR_arterial_resistance" component_2="circulatory_dynamics"/>
		<map_variables variable_1="ARM" variable_2="ARM"/>
		<map_variables variable_1="MYOGRS" variable_2="MYOGRS"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="NM_NR_arterial_resistance" component_2="circulatory_dynamics_parameter_values"/>
		<map_variables variable_1="RAR" variable_2="RAR"/>
		<map_variables variable_1="RMULT1" variable_2="RMULT1"/>
	</connection>

<!-- ========================================	PRESSURE GRADIENT FROM ARTERIES TO VEINS	============================================= -->
	<component 	name="pressure_gradient_from_arteries_to_veins" 
				cmeta:id="pressure_gradient_from_arteries_to_veins">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#pressure_gradient_from_arteries_to_veins">
				<rdf:value>
				CD7:  
				The pressure gradient from the aorta to the major veins in the systemic circulation (PGS) 
				is equal to the pressure in the aorta (PA) minus the average pressure in the major veins (PVS).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD7">
				<rdf:value>
				CD7:  
				The pressure gradient from the aorta to the major veins in the systemic circulation (PGS) 
				is equal to the pressure in the aorta (PA) minus the average pressure in the major veins (PVS).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PA"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="PVS"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="pressure_gradient_from_arteries_to_veins_PGS"
					name="PGS" 	units="mmHg" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD7">
				<eq/>
				<ci>PGS</ci>
				<apply>
					<minus/>
					<ci>PA</ci>
					<ci>PVS</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="pressure_gradient_from_arteries_to_veins" component_2="arterial_pressure_and_pressure_gradient"/>
		<map_variables variable_1="PA" variable_2="PA"/>
	</connection>
	<connection>
		<map_components component_1="pressure_gradient_from_arteries_to_veins" component_2="venous_average_pressure"/>
		<map_variables variable_1="PVS" variable_2="PVS"/>
	</connection>

<!-- ========================================	MUSCLE SYSTEMIC RESISTANCE		============================================= -->
	<component 	name="M_systemic_resistance" 
				cmeta:id="M_systemic_resistance">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#M_systemic_resistance">
				<rdf:value>
				CD48:  
				Calculation of the resistance through the systemic muscles (RSM) by multiplying 
				the basic resistance through the muscles (RAM) times the multiplier factor 
				calculated in CD47 (R1), times another multiplier factor resulting from local 
				tissue blood flow autoregulation in the muscles (AMM), times RMULT1 for experiments
				on postulations of very rapid autoregulation, and times MYOGRS for resistance 
				changes caused by possible myogenic autoregulation.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD48">
				<rdf:value>
				CD48:  
				Calculation of the resistance through the systemic muscles (RSM) by multiplying 
				the basic resistance through the muscles (RAM) times the multiplier factor 
				calculated in CD47 (R1), times another multiplier factor resulting from local 
				tissue blood flow autoregulation in the muscles (AMM), times RMULT1 for experiments
				on postulations of very rapid autoregulation, and times MYOGRS for resistance 
				changes caused by possible myogenic autoregulation.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="R1"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="AMM"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="MYOGRS"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="RSM" 	units="mmHg_minute_per_L" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="RAM"	units="mmHg_minute_per_L" private_interface="none" public_interface="in"/>
		<variable name="RMULT1"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD48">
				<eq/>
				<ci>RSM</ci>
				<apply>
					<times/>
					<ci>RAM</ci>
					<ci>AMM</ci>
					<ci>R1</ci>
					<ci>MYOGRS</ci>
					<ci>RMULT1</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="M_systemic_resistance" component_2="non_renal_systemic_arterial_resistance_multiplier"/>
		<map_variables variable_1="R1" variable_2="R1"/>
	</connection>
	<connection>
		<map_components component_1="M_systemic_resistance" component_2="circulatory_dynamics"/>
		<map_variables variable_1="AMM" variable_2="AMM"/>
		<map_variables variable_1="MYOGRS" variable_2="MYOGRS"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="M_systemic_resistance" component_2="circulatory_dynamics_parameter_values"/>
		<map_variables variable_1="RAM" variable_2="RAM"/>
		<map_variables variable_1="RMULT1" variable_2="RMULT1"/>
	</connection>

<!-- ========================================	TOTAL NON-MUSCLE, NON-RENAL SYSTEMIC RESISTANCE	============================================= -->
	<component 	name="total_NM_NR_systemic_resistance" 
				cmeta:id="total_NM_NR_systemic_resistance">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#total_NM_NR_systemic_resistance">
				<rdf:value>
				CD58:  
				Calculation of the resistance to blood flow through the nonmuscular and nonkidney 
				portions of the systemic vasculature (RSN) by adding the arterial portion of the 
				resistance as calculated from CD49 and the venous portion of the resistance 
				calculated from CD57.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD58">
				<rdf:value>
				CD58:  
				Calculation of the resistance to blood flow through the nonmuscular and nonkidney 
				portions of the systemic vasculature (RSN) by adding the arterial portion of the 
				resistance as calculated from CD49 and the venous portion of the resistance 
				calculated from CD57.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="NNRAR"	units="mmHg_minute_per_L" private_interface="none" public_interface="in"/>
		<variable name="NNRVR"	units="mmHg_minute_per_L" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="total_NM_NR_systemic_resistance_RSN"
					name="RSN" 	units="mmHg_minute_per_L" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD58">
				<eq/>
				<ci>RSN</ci>
				<apply>
					<plus/>
					<ci>NNRAR</ci>
					<ci>NNRVR</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="total_NM_NR_systemic_resistance" component_2="NM_NR_arterial_resistance"/>
		<map_variables variable_1="NNRAR" variable_2="NNRAR"/>
	</connection>
	<connection>
		<map_components component_1="total_NM_NR_systemic_resistance" component_2="NM_NR_venous_resistance"/>
		<map_variables variable_1="NNRVR" variable_2="NNRVR"/>
	</connection>

<!-- ========================================	BLOOD FLOW THROUGH MUSCLE TISSUES	============================================= -->
	<component 	name="blood_flow_through_M_tissues" 
				cmeta:id="blood_flow_through_M_tissues">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#blood_flow_through_M_tissues">
				<rdf:value>
				CD9:  
				The blood flow through the muscles (BFM) is equal to the pressure gradient through 
				the systemic circulation to the major veins (PGS) divided by the resistance to the 
				blood flow through the muscles (RSM).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD9">
				<rdf:value>
				CD9:  
				The blood flow through the muscles (BFM) is equal to the pressure gradient through 
				the systemic circulation to the major veins (PGS) divided by the resistance to the 
				blood flow through the muscles (RSM).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PGS"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="RSM"	units="mmHg_minute_per_L" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="blood_flow_through_M_tissues_BFM"
					name="BFM" 	units="L_per_minute" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD9">
				<eq/>
				<ci>BFM</ci>
				<apply>
					<divide/>
					<ci>PGS</ci>
					<ci>RSM</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="blood_flow_through_M_tissues" component_2="pressure_gradient_from_arteries_to_veins"/>
		<map_variables variable_1="PGS" variable_2="PGS"/>
	</connection>
	<connection>
		<map_components component_1="blood_flow_through_M_tissues" component_2="M_systemic_resistance"/>
		<map_variables variable_1="RSM" variable_2="RSM"/>
	</connection>

<!-- ========================================	BLOOD FLOW THROUGH NON-MUSCLE, NON-RENAL TISSUES	============================================= -->
	<component 	name="blood_flow_through_NM_NR_tissues" 
				cmeta:id="blood_flow_through_NM_NR_tissues">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#blood_flow_through_NM_NR_tissues">
				<rdf:value>
				CD8:  
				Blood flow through the nonmuscular portions of the body besides the kidneys (BFN)
				is equal to the pressure gradient through the systemic circulation (PGS) divided by
				the resistance through the nonmuscular portions of the body besides the kidneys (RSN).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD8">
				<rdf:value>
				CD8:  
				Blood flow through the nonmuscular portions of the body besides the kidneys (BFN)
				is equal to the pressure gradient through the systemic circulation (PGS) divided by
				the resistance through the nonmuscular portions of the body besides the kidneys (RSN).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PGS"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="RSN"	units="mmHg_minute_per_L" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="blood_flow_through_NM_NR_tissues_BFN"
					name="BFN" 	units="L_per_minute" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD8">
				<eq/>
				<ci>BFN</ci>
				<apply>
					<divide/>
					<ci>PGS</ci>
					<ci>RSN</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="blood_flow_through_NM_NR_tissues" component_2="pressure_gradient_from_arteries_to_veins"/>
		<map_variables variable_1="PGS" variable_2="PGS"/>
	</connection>
	<connection>
		<map_components component_1="blood_flow_through_NM_NR_tissues" component_2="total_NM_NR_systemic_resistance"/>
		<map_variables variable_1="RSN" variable_2="RSN"/>
	</connection>

<!-- ========================================	BLOOD FLOW THROUGH AV FISTULAS	============================================= -->
	<component 	name="blood_flow_through_AV_fistulas" 
				cmeta:id="blood_flow_through_AV_fistulas">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#blood_flow_through_AV_fistulas">
				<rdf:value>
				CD79:  
				Calculation of the rate of blood flow through a fistula (FISFLO) by multiplying 
				a conductance factor for the fistula (FIS) times the pressure difference from the
				arteries to the right atrium as calculated by Block CD78.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD79">
				<rdf:value>
				CD79:  
				Calculation of the rate of blood flow through a fistula (FISFLO) by multiplying 
				a conductance factor for the fistula (FIS) times the pressure difference from the
				arteries to the right atrium as calculated by Block CD78.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PAG"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="FISFLO" 	units="L_per_minute" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="FIS"	units="L_per_minute_per_mmHg" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD79">
				<eq/>
				<ci>FISFLO</ci>
				<apply>
					<times/>
					<ci>PAG</ci>
					<ci>FIS</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="blood_flow_through_AV_fistulas" component_2="arterial_pressure_and_pressure_gradient"/>
		<map_variables variable_1="PAG" variable_2="PAG"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="blood_flow_through_AV_fistulas" component_2="circulatory_dynamics_parameter_values"/>
		<map_variables variable_1="FIS" variable_2="FIS"/>
	</connection>

<!-- ========================================	SYSTEMIC BLOOD FLOW	============================================= -->
	<component 	name="systemic_blood_flow" 
				cmeta:id="systemic_blood_flow">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#systemic_blood_flow">
				<rdf:value>
				CD10:  
				The rate of blood flow out of the arterial tree (QAO) is equal to the blood flow
				through the muscles (BFM), the blood flow through the nonmuscular portions of 
				the body (BFN), the blood flow through the kidneys (RBF) and the blood flow 
				through any artificial AV fistulas (FISFLO).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD10">
				<rdf:value>
				CD10:  
				The rate of blood flow out of the arterial tree (QAO) is equal to the blood flow
				through the muscles (BFM), the blood flow through the nonmuscular portions of 
				the body (BFN), the blood flow through the kidneys (RBF) and the blood flow 
				through any artificial AV fistulas (FISFLO).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="BFM"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="BFN"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="RBF"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="FISFLO"	units="L_per_minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="SYSFLO" 	units="L_per_minute" private_interface="none" public_interface="out"/>
		<variable 	cmeta:id="systemic_blood_flow_QAO"
					name="QAO" 	units="L_per_minute" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD10">
				<eq/>
				<ci>SYSFLO</ci>
				<apply>
					<plus/>
					<ci>BFM</ci>
					<ci>BFN</ci>
					<ci>RBF</ci>
				</apply>
			</apply>
			<apply id="CD10_cont">
				<eq/>
				<ci>QAO</ci>
				<apply>
					<plus/>
					<ci>SYSFLO</ci>
					<ci>FISFLO</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="systemic_blood_flow" component_2="blood_flow_through_M_tissues"/>
		<map_variables variable_1="BFM" variable_2="BFM"/>
	</connection>
	<connection>
		<map_components component_1="systemic_blood_flow" component_2="blood_flow_through_NM_NR_tissues"/>
		<map_variables variable_1="BFN" variable_2="BFN"/>
	</connection>
	<connection>
		<map_components component_1="systemic_blood_flow" component_2="circulatory_dynamics"/>
		<map_variables variable_1="QAO" variable_2="QAO"/>
		<map_variables variable_1="RBF" variable_2="RBF"/>
	</connection>
	<connection>
		<map_components component_1="systemic_blood_flow" component_2="blood_flow_through_AV_fistulas"/>
		<map_variables variable_1="FISFLO" variable_2="FISFLO"/>
	</connection>

<!-- ========================================	TOTAL PERIPHERAL RESISTANCE		============================================= -->
	<component 	name="total_peripheral_resistance" 
				cmeta:id="total_peripheral_resistance">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#total_peripheral_resistance">
				<rdf:value>
				CD80:  
				The total peripheral resistance (RTP) is equal to the total pressure drop from 
				the arteries to the right atrium (from Block CD78) divided by the total blood 
				flow through the systemic circulation (QAO).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#CD80">
				<rdf:value>
				CD80:  
				The total peripheral resistance (RTP) is equal to the total pressure drop from 
				the arteries to the right atrium (from Block CD78) divided by the total blood 
				flow through the systemic circulation (QAO).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PAG"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="QAO"	units="L_per_minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="RTP" 	units="mmHg_minute_per_L" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="CD80">
				<eq/>
				<ci>RTP</ci>
				<apply>
					<divide/>
					<ci>PAG</ci>
					<ci>QAO</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="total_peripheral_resistance" component_2="arterial_pressure_and_pressure_gradient"/>
		<map_variables variable_1="PAG" variable_2="PAG"/>
	</connection>
	<connection>
		<map_components component_1="total_peripheral_resistance" component_2="systemic_blood_flow"/>
		<map_variables variable_1="QAO" variable_2="QAO"/>
	</connection>

<!-- ==============================================		CIRCULATORY DYNAMICS PARAMETER VALUES		============================================ -->
	<component 	name="circulatory_dynamics_parameter_values"
				cmeta:id="circulatory_dynamics_parameter_values">
		<variable name="HTAUML" 	units="dimensionless" 		initial_value="0.4"		private_interface="none"	public_interface="out"/>	<!-- autonomic sensitivity on PRA [P] -->
		<variable name="QRF" 		units="L_per_minute" 		initial_value="0.15"		private_interface="none"	public_interface="out"/>	<!-- left ventricle funct effect on right ventricle function [P] -->
		<variable name="HSR" 		units="dimensionless" 		initial_value="1"		private_interface="none"	public_interface="out"/>	<!-- basic strength of right ventricle -->
		<variable name="HSL" 		units="dimensionless" 		initial_value="1"		private_interface="none"	public_interface="out"/>	<!-- basic strength of left ventricle -->
		<variable name="ANY" 		units="litre" 			initial_value="-0.2"		private_interface="none"	public_interface="out"/>	<!-- sensitivity controller of ANU for venous volume [P] -->
		<variable name="CV" 		units="L_per_mmHg" 		initial_value="0.1"		private_interface="none"	public_interface="out"/>	<!-- venous compliance [P] -->
		<variable name="PR1LL" 		units="mmHg" 			initial_value="0"		private_interface="none"	public_interface="out"/>	<!-- PR1 lower limit [P] -->
		<variable name="RVSM" 		units="mmHg_minute_per_L" 	initial_value="1"		private_interface="none"	public_interface="out"/>	<!-- basal systemic venous multiplier [P] -->
		<variable name="CN2" 		units="per_mmHg" 		initial_value="0.0212"		private_interface="none"	public_interface="out"/>	<!-- curve fitting coefficient, calculation of CN3 [P] -->
		<variable name="CN7" 		units="dimensionless" 		initial_value="0.2"		private_interface="none"	public_interface="out"/>	<!-- curve fitting coefficient, calculation of CN3 [P] -->
		<variable name="PAEX"	 	units="dimensionless" 		initial_value="2"		private_interface="none"	public_interface="out"/>	<!-- exponential factor affecting PAM [P] -->
		<variable name="RAR" 		units="mmHg_minute_per_L" 	initial_value="30.52"		private_interface="none"	public_interface="out"/>	<!-- basal non-muscle vascular resistance [P] -->
		<variable name="RMULT1" 	units="dimensionless" 		initial_value="1"		private_interface="none"	public_interface="out"/>	<!-- very rapid autoregulation multiplier (if AUTO > 0) -->
		<variable name="RAM" 		units="mmHg_minute_per_L" 	initial_value="96.3"		private_interface="none"	public_interface="out"/>	<!-- basal muscle vascular resistance [P] -->
		<variable name="FIS" 		units="L_per_minute_per_mmHg" 	initial_value="0"		private_interface="none"	public_interface="out"/>	<!-- fistula conductance factor -->
	</component>


<!-- ============================================================================================================================================================ -->

<!-- ========================================================	ELECTROLYTES MODEL	=========================================================== -->
	<component 	name="electrolytes" 
				cmeta:id="electrolytes">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#electrolytes">
				<rdf:value>
				Extracellular and intracellular fluid electrolytes and volumes.

				Encapsulation grouping component containing all the components in the Electrolytes Model. The inputs and 
				outputs of the Electrolytes Model must be passed by this component.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

		<variable name="time"	units="minute"	private_interface="out" public_interface="in"/>

<!-- Inputs from components in other models -->
		<variable name="AMK"	units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="TVD"	units="L_per_minute" private_interface="out" public_interface="in"/>
		<variable name="NOD"	units="monovalent_mEq_per_minute" private_interface="out" public_interface="in"/>
		<variable name="STH"	units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="KOD"	units="monovalent_mEq_per_minute" private_interface="out" public_interface="in"/>
		<variable name="VUD"	units="L_per_minute" private_interface="out" public_interface="in"/>

<!-- Outputs to components in other models -->
		<variable name="CKE" 	units="monovalent_mEq_per_litre" private_interface="in" public_interface="out"/>
		<variable name="VEC" 	units="litre" private_interface="in" public_interface="out"/>
		<variable name="CNA" 	units="monovalent_mEq_per_litre" private_interface="in" public_interface="out"/>
		<variable name="VTW" 	units="litre" private_interface="in" public_interface="out"/>
	</component>

<!-- OUTPUT CONNECTIONS -->
<!--	<connection>
		<map_components component_1="electrolytes" component_2="extracellular_K_concentration"/>
		<map_variables variable_1="CKE" variable_2="CKE"/>
	</connection> -->
	<connection>
		<map_components component_1="electrolytes" component_2="extracellular_fluid_volume"/>
		<map_variables variable_1="VEC" variable_2="VEC"/>
	</connection>
<!--	<connection>
		<map_components component_1="electrolytes" component_2="extracellular_Na_concentration"/>
		<map_variables variable_1="CNA" variable_2="CNA"/>
	</connection> -->
<!--	<connection>
		<map_components component_1="electrolytes" component_2="total_body_water"/>
		<map_variables variable_1="VTW" variable_2="VTW"/>
	</connection> -->

<!-- ========================================	EXTRACELLULAR SODIUM CONCENTRATION		============================================= -->
	<component 	name="extracellular_Na_concentration" 
				cmeta:id="extracellular_Na_concentration">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#extracellular_Na_concentration">
				<rdf:value>
				EL1, EL2, and EL3:  
				The rate of intake of sodium (NAINT) is equal to the normal rate of sodium intake (NID) 
				times a salt appetite multiplier factor (STH).  The rate of change of sodium in the 
				extracellular fluid (NED) is equal to the rate of intake of sodium (NAINT), minus the 
				rate of excretion of sodium in the urine (NOD), plus sodium entering the body in 
				transfused plasma (TRPL).

				EL4:  
				The instantaneous quantity of sodium in the extracellular fluid (NAE) is calculated 
				by integrating with respect to time the rate of change of sodium in the 
				extracellular fluid (NED).

				EL5:  
				The concentration of sodium in the extracellular fluid (CNA) is equal to the quantity 
				of sodium in the extracellular fluid (NAE) divided by the extracellular fluid volume (VEC).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#EL1_to_EL3">
				<rdf:value>
				EL1, EL2, and EL3:  
				The rate of intake of sodium (NAINT) is equal to the normal rate of sodium intake (NID) 
				times a salt appetite multiplier factor (STH).  The rate of change of sodium in the 
				extracellular fluid (NED) is equal to the rate of intake of sodium (NAINT), minus the 
				rate of excretion of sodium in the urine (NOD), plus sodium entering the body in 
				transfused plasma (TRPL).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#EL4">
				<rdf:value>
				EL4:  
				The instantaneous quantity of sodium in the extracellular fluid (NAE) is calculated 
				by integrating with respect to time the rate of change of sodium in the 
				extracellular fluid (NED).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#EL5">
				<rdf:value>
				EL5:  
				The concentration of sodium in the extracellular fluid (CNA) is equal to the quantity 
				of sodium in the extracellular fluid (NAE) divided by the extracellular fluid volume (VEC).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="STH"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="NOD"	units="monovalent_mEq_per_minute" private_interface="none" public_interface="in"/>
		<variable name="VEC"	units="litre" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="CNA" 	units="monovalent_mEq_per_litre" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="NID"	units="monovalent_mEq_per_minute" private_interface="none" public_interface="in"/>
		<variable name="TRPL"	units="L_per_minute" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="NED"	units="monovalent_mEq_per_minute" private_interface="none" public_interface="none"/>
		<variable name="NAE"	initial_value="2109.91"	units="monovalent_mEq" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="EL1_to_EL3">
				<eq/>
				<ci>NED</ci>
				<apply>
					<plus/>
					<apply>
						<minus/>
						<apply>
							<times/>
							<ci>NID</ci>
							<ci>STH</ci>
						</apply>
						<ci>NOD</ci>
					</apply>
					<apply>
						<times/>
						<ci>TRPL</ci>
						<cn cellml:units="monovalent_mEq_per_litre">142</cn>
					</apply>
				</apply>
			</apply>
			<apply id="EL4">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>NAE</ci>
				</apply>
				<ci>NED</ci>
			</apply>
			<apply id="EL5">
				<eq/>
				<ci>CNA</ci>
				<apply>
					<divide/>
					<ci>NAE</ci>
					<ci>VEC</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="extracellular_Na_concentration" component_2="electrolytes"/>
		<map_variables variable_1="CNA" variable_2="CNA"/>
		<map_variables variable_1="STH" variable_2="STH"/>
		<map_variables variable_1="NOD" variable_2="NOD"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>
	<connection>
		<map_components component_1="extracellular_Na_concentration" component_2="extracellular_fluid_volume"/>
		<map_variables variable_1="VEC" variable_2="VEC"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="extracellular_Na_concentration" component_2="electrolytes_parameter_values"/>
		<map_variables variable_1="TRPL" variable_2="TRPL"/>
		<map_variables variable_1="NID" variable_2="NID"/>
	</connection>

<!-- ==================================	ALDOSTERONE EFFECT ON CELLULAR POTASSIUM DISTRIBUTION	===================================== -->
	<component 	name="aldosterone_effect_on_cellular_K_distribution" 
				cmeta:id="aldosterone_effect_on_cellular_K_distribution">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#aldosterone_effect_on_cellular_K_distribution">
				<rdf:value>
				EL9, EL10, and EL11:  
				Calculation of an aldosterone multiplier factor for the effect of aldosterone (AMK) 
				on the distribution of potassium across the cell membranes.  The variable (ALCLK) is 
				a sensitivity control for adjusting the effect of the aldosterone on the cellular 
				membrane distribution relationship of potassium on the two sides of the cell membranes.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#EL9_to_EL11">
				<rdf:value>
				EL9, EL10, and EL11:  
				Calculation of an aldosterone multiplier factor for the effect of aldosterone (AMK) 
				on the distribution of potassium across the cell membranes.  The variable (ALCLK) is 
				a sensitivity control for adjusting the effect of the aldosterone on the cellular 
				membrane distribution relationship of potassium on the two sides of the cell membranes.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="AMK"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="AMK1" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="ALCLK"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="EL9_to_EL11">
				<eq/>
				<ci>AMK1</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<apply>
							<minus/>
							<ci>AMK</ci>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
						<ci>ALCLK</ci>
					</apply>
					<cn cellml:units="dimensionless">1</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="aldosterone_effect_on_cellular_K_distribution" component_2="electrolytes"/>
		<map_variables variable_1="AMK" variable_2="AMK"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="aldosterone_effect_on_cellular_K_distribution" component_2="electrolytes_parameter_values"/>
		<map_variables variable_1="ALCLK" variable_2="ALCLK"/>
	</connection>

<!-- ========================================	EXTRACELLULAR POTASSIUM CONCENTRATION	============================================= -->
	<component 	name="extracellular_K_concentration" 
				cmeta:id="extracellular_K_concentration">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#extracellular_K_concentration">
				<rdf:value>
				EL6:  
				The rate of change of the total quantity of potassium in all of the body fluids (KTOTD) 
				is equal to the rate of intake of potassium (KID) minus the rate of excretion of
				potassium in the urine (KOD).

				EL7:  
				The total quantity of potassium in all the body fluids at any given time (KTOT) 
				is calculated by integrating with respect to time the rate of change of the potassium 
				in all of the body fluids (KTOTD).

				EL7A:  
				Calculation of the freely mobile potassium in the body (approximately 616) by 
				subtracting the relatively fixed potassium in all the cells of the body 
				(approximately 3000) from the total potassium of the body (KTOT).

				EL7B:  
				Calculation of the total potassium in the extracellular fluid of the body (KE) by 
				dividing the total freely mobile calcium from Block EL7A by a constant factor of 
				9.3333 (which is a distribution relationship of the freely mobile potassium between 
				the intracellular and extracellular fluid), and divided by a factor from Block EL11 
				that determines the activity of aldosterone on the distribution relationship of 
				potassium across the cell membranes.

				EL8:  
				The concentration of potassium in the extracellular fluid (CKE) is equal to the 
				quantity of potassium in the extracellular fluid (KE) divided by the volume of 
				extracellular fluid (VEC).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#EL6">
				<rdf:value>
				EL6:  
				The rate of change of the total quantity of potassium in all of the body fluids (KTOTD) 
				is equal to the rate of intake of potassium (KID) minus the rate of excretion of
				potassium in the urine (KOD).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#EL7">
				<rdf:value>
				EL7:  
				The total quantity of potassium in all the body fluids at any given time (KTOT) 
				is calculated by integrating with respect to time the rate of change of the potassium 
				in all of the body fluids (KTOTD).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#EL7A_and_EL7B">
				<rdf:value>
				EL7A:  
				Calculation of the freely mobile potassium in the body (approximately 616) by 
				subtracting the relatively fixed potassium in all the cells of the body 
				(approximately 3000) from the total potassium of the body (KTOT).

				EL7B:  
				Calculation of the total potassium in the extracellular fluid of the body (KE) by 
				dividing the total freely mobile calcium from Block EL7A by a constant factor of 
				9.3333 (which is a distribution relationship of the freely mobile potassium between 
				the intracellular and extracellular fluid), and divided by a factor from Block EL11 
				that determines the activity of aldosterone on the distribution relationship of 
				potassium across the cell membranes.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#EL8">
				<rdf:value>
				EL8:  
				The concentration of potassium in the extracellular fluid (CKE) is equal to the 
				quantity of potassium in the extracellular fluid (KE) divided by the volume of 
				extracellular fluid (VEC).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="KOD"	units="monovalent_mEq_per_minute" private_interface="none" public_interface="in"/>
		<variable name="AMK1"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="VEC"	units="litre" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="extracellular_K_concentration_CKE"
					name="CKE" 	units="monovalent_mEq_per_litre" private_interface="none" public_interface="out"/>
		<variable name="KE" 	units="monovalent_mEq" private_interface="none" public_interface="out"/>
		<variable name="KTOT" 	initial_value="3622.54"	units="monovalent_mEq" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="KID"	units="monovalent_mEq_per_minute" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="KTOTD"	units="monovalent_mEq_per_minute" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="EL6">
				<eq/>
				<ci>KTOTD</ci>
				<apply>
					<minus/>
					<ci>KID</ci>
					<ci>KOD</ci>
				</apply>
			</apply>
			<apply id="EL7">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>KTOT</ci>
				</apply>
				<ci>KTOTD</ci>
			</apply>
			<apply id="EL7A_and_EL7B">
				<eq/>
				<ci>KE</ci>
				<apply>
					<divide/>
					<apply>
						<minus/>
						<ci>KTOT</ci>
						<cn cellml:units="monovalent_mEq">3000</cn>
					</apply>
					<apply>
						<times/>
						<ci>AMK1</ci>
						<cn cellml:units="dimensionless">9.3333</cn>
					</apply>
				</apply>
			</apply>
			<apply id="EL8">
				<eq/>
				<ci>CKE</ci>
				<apply>
					<divide/>
					<ci>KE</ci>
					<ci>VEC</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="extracellular_K_concentration" component_2="electrolytes"/>
		<map_variables variable_1="CKE" variable_2="CKE"/>
		<map_variables variable_1="KOD" variable_2="KOD"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>
	<connection>
		<map_components component_1="extracellular_K_concentration" component_2="aldosterone_effect_on_cellular_K_distribution"/>
		<map_variables variable_1="AMK1" variable_2="AMK1"/>
	</connection>
	<connection>
		<map_components component_1="extracellular_K_concentration" component_2="extracellular_fluid_volume"/>
		<map_variables variable_1="VEC" variable_2="VEC"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="extracellular_K_concentration" component_2="electrolytes_parameter_values"/>
		<map_variables variable_1="KID" variable_2="KID"/>
	</connection>

<!-- ========================================	INTRACELLULAR POTASSIUM CONCENTRATION	============================================= -->
	<component 	name="intracellular_K_concentration" 
				cmeta:id="intracellular_K_concentration">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#intracellular_K_concentration">
				<rdf:value>
				EL12:  
				Calculation of the total potassium inside all the cells of the body (KI) by 
				subtracting the potassium in the extracellular fluids (KE) from the total potassium 
				in the body (KTOT).

				EL13:  
				Calculation of the concentration of potassium inside the cells of the body (CKI) 
				by dividing the total potassium inside all the cells (KI) by the volume of fluid 
				inside all the cells (VIC).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#EL12">
				<rdf:value>
				EL12:  
				Calculation of the total potassium inside all the cells of the body (KI) by 
				subtracting the potassium in the extracellular fluids (KE) from the total potassium 
				in the body (KTOT).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#EL13">
				<rdf:value>
				EL13:  
				Calculation of the concentration of potassium inside the cells of the body (CKI) 
				by dividing the total potassium inside all the cells (KI) by the volume of fluid 
				inside all the cells (VIC).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="KTOT"	units="monovalent_mEq" private_interface="none" public_interface="in"/>
		<variable name="KE"	units="monovalent_mEq" private_interface="none" public_interface="in"/>
		<variable name="VIC"	units="litre" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="CKI" 	units="monovalent_mEq_per_litre" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable name="KI"	units="monovalent_mEq" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="EL12">
				<eq/>
				<ci>KI</ci>
				<apply>
					<minus/>
					<ci>KTOT</ci>
					<ci>KE</ci>
				</apply>
			</apply>
			<apply id="EL13">
				<eq/>
				<ci>CKI</ci>
				<apply>
					<divide/>
					<ci>KI</ci>
					<ci>VIC</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="intracellular_K_concentration" component_2="extracellular_K_concentration"/>
		<map_variables variable_1="KTOT" variable_2="KTOT"/>
		<map_variables variable_1="KE" variable_2="KE"/>
	</connection>
	<connection>
		<map_components component_1="intracellular_K_concentration" component_2="intracellular_fluid_volume"/>
		<map_variables variable_1="VIC" variable_2="VIC"/>
		<map_variables variable_1="CKI" variable_2="CKI"/>
	</connection>

<!-- ========================================	INTRACELLULAR FLUID VOLUME	============================================= -->
	<component 	name="intracellular_fluid_volume" 
				cmeta:id="intracellular_fluid_volume">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#intracellular_fluid_volume">
				<rdf:value>
				EL14 and EL15:  
				Calculation of the rate of change of volume inside all the cells of the body (VID) 
				caused in Block EL14 by differences in osmotic effect of sodium concentration (CNA) 
				outside the cells and potassium concentration (CKI) inside the cells.  The rate of 
				transfer of this fluid (VID) is determined by a proportionality factor (VIDML).

				EL16:  
				Calculation of the changing level of intracellular fluid volume in the entire body (VIC) 
				by integrating the rate of change of this fluid volume (VID).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#EL14">
				<rdf:value>
				EL14 and EL15:  
				Calculation of the rate of change of volume inside all the cells of the body (VID) 
				caused in Block EL14 by differences in osmotic effect of sodium concentration (CNA) 
				outside the cells and potassium concentration (CKI) inside the cells.  The rate of 
				transfer of this fluid (VID) is determined by a proportionality factor (VIDML).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#EL15">
				<rdf:value>
				EL14 and EL15:  
				Calculation of the rate of change of volume inside all the cells of the body (VID) 
				caused in Block EL14 by differences in osmotic effect of sodium concentration (CNA) 
				outside the cells and potassium concentration (CKI) inside the cells.  The rate of 
				transfer of this fluid (VID) is determined by a proportionality factor (VIDML).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#EL16">
				<rdf:value>
				EL16:  
				Calculation of the changing level of intracellular fluid volume in the entire body (VIC) 
				by integrating the rate of change of this fluid volume (VID).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="CNA"	units="monovalent_mEq_per_litre" private_interface="none" public_interface="in"/>
		<variable name="CKI"	units="monovalent_mEq_per_litre" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="VIC" 	initial_value="25.0404"	units="litre" private_interface="none" public_interface="out"/>
		<variable	cmeta:id="intracellular_fluid_volume_VID"
					name="VID" 	units="L_per_minute" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="VIDML"	units="litre2_per_monovalent_mEq_per_minute" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="CCD"	units="monovalent_mEq_per_litre" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="EL14">
				<eq/>
				<ci>CCD</ci>
				<apply>
					<minus/>
					<ci>CKI</ci>
					<ci>CNA</ci>
				</apply>
			</apply>
			<apply id="EL15">
				<eq/>
				<ci>VID</ci>
				<apply>
					<times/>
					<ci>CCD</ci>
					<ci>VIDML</ci>
				</apply>
			</apply>
			<apply id="EL16">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>VIC</ci>
				</apply>
				<ci>VID</ci>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="intracellular_fluid_volume" component_2="extracellular_Na_concentration"/>
		<map_variables variable_1="CNA" variable_2="CNA"/>
	</connection>
	<connection>
		<map_components component_1="intracellular_fluid_volume" component_2="electrolytes"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="intracellular_fluid_volume" component_2="electrolytes_parameter_values"/>
		<map_variables variable_1="VIDML" variable_2="VIDML"/>
	</connection>

<!-- ========================================	TOTAL BODY WATER	============================================= -->
	<component 	name="total_body_water" 
				cmeta:id="total_body_water">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#total_body_water">
				<rdf:value>
				EL17:  
				The rate of change of total volume of water in the body (DVTW) is equal to the 
				rate of intake of water (TVD) minus the rate of output of water in the urine (VUD).

				EL18:  
				The total volume of water in the body at any given instant (VTW) is determined 
				by integrating with respect times the rate of change of total water volume (DVTW).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#EL17_and_EL18">
				<rdf:value>
				EL17:  
				The rate of change of total volume of water in the body (DVTW) is equal to the 
				rate of intake of water (TVD) minus the rate of output of water in the urine (VUD).

				EL18:  
				The total volume of water in the body at any given instant (VTW) is determined 
				by integrating with respect times the rate of change of total water volume (DVTW).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="TVD"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="VUD"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="VTW" 	initial_value="39.8952"	units="litre" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="EL17_and_EL18">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>VTW</ci>
				</apply>
				<apply>
					<minus/>
					<ci>TVD</ci>
					<ci>VUD</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="total_body_water" component_2="electrolytes"/>
		<map_variables variable_1="VTW" variable_2="VTW"/>
		<map_variables variable_1="TVD" variable_2="TVD"/>
		<map_variables variable_1="VUD" variable_2="VUD"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- ========================================	EXTRACELLULAR FLUID VOLUME	============================================= -->
	<component 	name="extracellular_fluid_volume" 
				cmeta:id="extracellular_fluid_volume">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#extracellular_fluid_volume">
				<rdf:value>
				EL19:  
				The extracellular fluid volume (VEC) is equal to the total volume of water in the 
				body (VTW) minus the total volume of water inside all of the cells of the body (VIC).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#EL19">
				<rdf:value>
				EL19:  
				The extracellular fluid volume (VEC) is equal to the total volume of water in the 
				body (VTW) minus the total volume of water inside all of the cells of the body (VIC).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="VIC"	units="litre" private_interface="none" public_interface="in"/>
		<variable name="VTW"	units="litre" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="extracellular_fluid_volume_VEC"
					name="VEC" 	units="litre" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="EL19">
				<eq/>
				<ci>VEC</ci>
				<apply>
					<minus/>
					<ci>VTW</ci>
					<ci>VIC</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="extracellular_fluid_volume" component_2="intracellular_fluid_volume"/>
		<map_variables variable_1="VIC" variable_2="VIC"/>
	</connection>
	<connection>
		<map_components component_1="extracellular_fluid_volume" component_2="total_body_water"/>
		<map_variables variable_1="VTW" variable_2="VTW"/>
	</connection>

<!-- ============================================================		ELECTROLYTES PARAMETER VALUES		=============================================================== -->
	<component	name="electrolytes_parameter_values"
				cmeta:id="electrolytes_parameter_values">
		<variable name="TRPL"	 	units="L_per_minute" 			initial_value="0"			private_interface="none"	public_interface="out"/>	<!-- transfusion coefficient [P] -->
		<variable name="NID" 		units="monovalent_mEq_per_minute" 	initial_value="0.1"		private_interface="none"	public_interface="out"/>	<!-- rate of sodium intake -->
		<variable name="ALCLK" 		units="dimensionless" 			initial_value="0.3"			private_interface="none"	public_interface="out"/>	<!-- sensitivity controller of AMK1 [P] -->
		<variable name="KID" 		units="monovalent_mEq_per_minute" 	initial_value="0.08"	private_interface="none"	public_interface="out"/>	<!-- rate of potassium intake -->
		<variable name="VIDML" 		units="litre2_per_monovalent_mEq_per_minute" 	initial_value="0.01"		private_interface="none"	public_interface="out"/>	<!-- proportionality constant, CCD to VID [P] -->
	</component>

<!-- ============================================================================================================================================================ -->

<!-- ========================================================	HEART HYPERTROPHY OR DETERIORATION MODEL	=========================================================== -->
	<component 	name="heart_hypertrophy_or_deterioration" 
				cmeta:id="heart_hypertrophy_or_deterioration">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#heart_hypertrophy_or_deterioration">
			<rdf:value>
				Effect of heart hypertrophy or heart deterioration on heart pumping capability.

				Encapsulation grouping component containing all the components in the Heart Hypertrophy or Deterioration Model. 
				The inputs and outputs of the  Model must be passed by this component.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

		<variable name="time"	units="minute"	private_interface="out" public_interface="in"/>

<!-- Inputs from components in other models -->
		<variable name="QAO"	units="L_per_minute" private_interface="out" public_interface="in"/>
		<variable name="PA"	units="mmHg" private_interface="out" public_interface="in"/>
		<variable name="POT"	units="mmHg" private_interface="out" public_interface="in"/>
		<variable name="PPA"	units="mmHg" private_interface="out" public_interface="in"/>

<!-- Outputs to components in other models -->
		<variable name="HPL" 	units="dimensionless" private_interface="in" public_interface="out"/>
		<variable name="HPR" 	units="dimensionless" private_interface="in" public_interface="out"/>
		<variable name="HMD" 	units="dimensionless" private_interface="in" public_interface="out"/>
	</component>

<!-- OUTPUT CONNECTIONS -->
<!--	<connection>
		<map_components component_1="heart_hypertrophy_or_deterioration" component_2="left_ventricular_hypertrophy"/>
		<map_variables variable_1="HPL" variable_2="HPL"/>
	</connection> -->
<!--	<connection>
		<map_components component_1="heart_hypertrophy_or_deterioration" component_2="right_ventricular_hypertrophy"/>
		<map_variables variable_1="HPR" variable_2="HPR"/>
	</connection> -->
<!--	<connection>
		<map_components component_1="heart_hypertrophy_or_deterioration" component_2="heart_deterioration"/>
		<map_variables variable_1="HMD" variable_2="HMD"/>
	</connection> -->

<!-- ========================================	DEGREE OF LEFT VENTRICULAR HYPERTROPHY	============================================= -->
	<component 	name="left_ventricular_hypertrophy" 
				cmeta:id="left_ventricular_hypertrophy">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#left_ventricular_hypertrophy">
				<rdf:value>
				HH1A, HH1, and HH2:  
				Calculation of a quantitative value (output of Block HH2) which is a multiplier 
				that is approached asymptotically in response to three factors that cause left 
				ventricular hypertrophy, (1) the arterial pressure (PA), (2) the cardiac output (QAO), 
				and (3) the basic strength of the heart (HSL).  The degree of hypertrophy in response 
				to the input factors is controlled by the exponent (Z13) in Block HH2.

				HH3, HH4, and HH5:  
				Calculation of the actual degree of hypertrophy of the left ventricle (HPL) that 
				results over a period of time in response to arterial pressure (PA), cardiac output (QAO), 
				and basic left ventricular strength (HSL).  The value HPL approaches the output value 
				from Block HH2 asymptotically with a time constant equal to the input variable at the 
				side of Block HH4.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#HH1_to_HH5">
				<rdf:value>
				HH1A, HH1, and HH2:  
				Calculation of a quantitative value (output of Block HH2) which is a multiplier 
				that is approached asymptotically in response to three factors that cause left 
				ventricular hypertrophy, (1) the arterial pressure (PA), (2) the cardiac output (QAO), 
				and (3) the basic strength of the heart (HSL).  The degree of hypertrophy in response 
				to the input factors is controlled by the exponent (Z13) in Block HH2.

				HH3, HH4, and HH5:  
				Calculation of the actual degree of hypertrophy of the left ventricle (HPL) that 
				results over a period of time in response to arterial pressure (PA), cardiac output (QAO), 
				and basic left ventricular strength (HSL).  The value HPL approaches the output value 
				from Block HH2 asymptotically with a time constant equal to the input variable at the 
				side of Block HH4.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="QAO"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="PA"		units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="left_ventricular_hypertrophy_HPL"
					name="HPL" 	initial_value="1.00163"	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="HSL"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="Z13"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="HH1_to_HH5">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>HPL</ci>
				</apply>
				<apply>
					<divide/>
					<apply>
						<minus/>
						<apply>
							<power/>
							<apply>
								<divide/>
								<apply>
									<times/>
									<ci>PA</ci>
									<ci>QAO</ci>
								</apply>
								<apply>
									<times/>
									<cn cellml:units="mmHg_L_per_minute">500</cn>
									<ci>HSL</ci>
								</apply>
							</apply>
							<ci>Z13</ci>
						</apply>
						<ci>HPL</ci>
					</apply>
					<cn cellml:units="minute">57600</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="left_ventricular_hypertrophy" component_2="heart_hypertrophy_or_deterioration"/>
		<map_variables variable_1="HPL" variable_2="HPL"/>
		<map_variables variable_1="QAO" variable_2="QAO"/>
		<map_variables variable_1="PA" variable_2="PA"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="left_ventricular_hypertrophy" component_2="heart_hypertrophy_or_deterioration_parameter_values"/>
		<map_variables variable_1="HSL" variable_2="HSL"/>
		<map_variables variable_1="Z13" variable_2="Z13"/>
	</connection>

<!-- ========================================	DEGREE OF RIGHT VENTRICULAR HYPERTROPHY	============================================= -->
	<component 	name="right_ventricular_hypertrophy" 
				cmeta:id="right_ventricular_hypertrophy">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#right_ventricular_hypertrophy">
				<rdf:value>
				HH6A, HH6, HH7, HH8, HH9, and HH10:  
				Calculation of the degree of hypertrophy of the right ventricle (HPR) according 
				to the same scheme as noted above for left ventricular hypertrophy, but with different 
				inputs:  pulmonary arterial pressure (PPA), cardiac output (QAO), and basic normal 
				strength of the right heart (HSR).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#HH6_to_HH10">
				<rdf:value>
				HH6A, HH6, HH7, HH8, HH9, and HH10:  
				Calculation of the degree of hypertrophy of the right ventricle (HPR) according 
				to the same scheme as noted above for left ventricular hypertrophy, but with different 
				inputs:  pulmonary arterial pressure (PPA), cardiac output (QAO), and basic normal 
				strength of the right heart (HSR).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="QAO"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="PPA"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="right_ventricular_hypertrophy_HPR"
					name="HPR" 	initial_value="1.00237"	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="HSR"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="Z13"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="HH6_to_HH10">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>HPR</ci>
				</apply>
				<apply>
					<divide/>
					<apply>
						<minus/>
						<apply>
							<power/>
							<apply>
								<divide/>
								<apply>
									<times/>
									<ci>PPA</ci>
									<ci>QAO</ci>
								</apply>
								<apply>
									<times/>
									<cn cellml:units="mmHg_L_per_minute">75</cn>
									<ci>HSR</ci>
								</apply>
							</apply>
							<ci>Z13</ci>
						</apply>
						<ci>HPR</ci>
					</apply>
					<cn cellml:units="minute">57600</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="right_ventricular_hypertrophy" component_2="heart_hypertrophy_or_deterioration"/>
		<map_variables variable_1="HPR" variable_2="HPR"/>
		<map_variables variable_1="QAO" variable_2="QAO"/>
		<map_variables variable_1="PPA" variable_2="PPA"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="right_ventricular_hypertrophy" component_2="heart_hypertrophy_or_deterioration_parameter_values"/>
		<map_variables variable_1="HSR" variable_2="HSR"/>
		<map_variables variable_1="Z13" variable_2="Z13"/>
	</connection>

<!-- ========================================	HEART DETERIORATION	============================================= -->
	<component 	name="heart_deterioration" 
				cmeta:id="heart_deterioration">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#heart_deterioration">
				<rdf:value>
				HH11, HH12, HH13, and HH14:  
				Calculation of a multiplier factor that decreases cardiac pumping effectiveness (HMD) 
				when the cellular P02 of the heart muscle cells (POT) falls too low.  The sensitivity 
				control is DHDTR, and the effect is limited by Block HH14 so that no change in HMD 
				occurs until the cell PO2 falls below the input value to the side of Block HH11.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#HH11_and_HH12">
				<rdf:value>
				HH11, HH12, HH13, and HH14:  
				Calculation of a multiplier factor that decreases cardiac pumping effectiveness (HMD) 
				when the cellular P02 of the heart muscle cells (POT) falls too low.  The sensitivity 
				control is DHDTR, and the effect is limited by Block HH14 so that no change in HMD 
				occurs until the cell PO2 falls below the input value to the side of Block HH11.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#HH13">
				<rdf:value>
				HH11, HH12, HH13, and HH14:  
				Calculation of a multiplier factor that decreases cardiac pumping effectiveness (HMD) 
				when the cellular P02 of the heart muscle cells (POT) falls too low.  The sensitivity 
				control is DHDTR, and the effect is limited by Block HH14 so that no change in HMD 
				occurs until the cell PO2 falls below the input value to the side of Block HH11.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#HH14">
				<rdf:value>
				HH11, HH12, HH13, and HH14:  
				Calculation of a multiplier factor that decreases cardiac pumping effectiveness (HMD) 
				when the cellular P02 of the heart muscle cells (POT) falls too low.  The sensitivity 
				control is DHDTR, and the effect is limited by Block HH14 so that no change in HMD 
				occurs until the cell PO2 falls below the input value to the side of Block HH11.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="POT"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="heart_deterioration_HMD"
					name="HMD" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="DHDTR"	units="per_mmHg_per_minute" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="HMD1"	initial_value="1.0"	units="dimensionless" private_interface="none" public_interface="none"/>
		<variable name="DHM"	units="per_minute" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="HH11_and_HH12">
				<eq/>
				<ci>DHM</ci>
				<apply>
					<times/>
					<apply>
						<minus/>
						<ci>POT</ci>
						<cn cellml:units="mmHg">10</cn>
					</apply>
					<ci>DHDTR</ci>
				</apply>
			</apply>
			<apply id="HH13">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>HMD1</ci>
				</apply>
				<ci>DHM</ci>
			</apply>
			<apply id="HH14">
				<eq/>
				<ci>HMD</ci>
				<piecewise>
					<piece>
						<cn cellml:units="dimensionless">1</cn>
						<apply>
							<gt/>
							<ci>HMD1</ci>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>HMD1</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="heart_deterioration" component_2="heart_hypertrophy_or_deterioration"/>
		<map_variables variable_1="HMD" variable_2="HMD"/>
		<map_variables variable_1="POT" variable_2="POT"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="heart_deterioration" component_2="heart_hypertrophy_or_deterioration_parameter_values"/>
		<map_variables variable_1="DHDTR" variable_2="DHDTR"/>
	</connection>

<!-- ==================================	HEART HYPERTROPHY OR DETERIORATION PARAMETER VALUES	======================================= -->
	<component 	name="heart_hypertrophy_or_deterioration_parameter_values"
				cmeta:id="heart_hypertrophy_or_deterioration_parameter_values">
		<variable name="HSL" 		units="dimensionless" 	initial_value="1"			private_interface="none"	public_interface="out"/>	<!-- basic strength of left ventricle -->
		<variable name="Z13" 		units="dimensionless" 	initial_value="0.625"		private_interface="none"	public_interface="out"/>	<!-- exponent controlling degree of heart hypertrophy [P] -->
		<variable name="HSR" 		units="dimensionless" 	initial_value="1"			private_interface="none"	public_interface="out"/>	<!-- basic strength of right ventricle -->
		<variable name="DHDTR" 		units="per_mmHg_per_minute" 	initial_value="0.05"		private_interface="none"	public_interface="out"/>	<!-- proportionality constant, cardiac deterioration [P] -->
	</component>

<!-- ============================================================================================================================================================ -->

<!-- ========================================	HEART RATE AND STROKE VOLUME MODEL	================================================ -->
	<component 	name="heart_rate_and_stroke_volume" 
				cmeta:id="heart_rate_and_stroke_volume">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#heart_rate_and_stroke_volume">
				<rdf:value>
				The heart rate (HR) and stroke volume output (SVO) are controlled by 
				autonomic stimulation (AUR), by a direct effect of right atrial pressure (PRA) 
				on the sinus rhythm of the heart, and by an effect of any degree of deterioration 
				of the heart (HMD) on heart rate control.

				Encapsulation grouping component containing all the components in the Heart Rate and Stroke Volume Model. 
				The inputs and outputs of the Heart Rate and Stroke Volume Model must be passed by this component.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

<!-- Inputs from components in other models -->
		<variable name="QLO"	units="L_per_minute" private_interface="out" public_interface="in"/>
		<variable name="AUR"	units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="PRA"	units="mmHg" private_interface="out" public_interface="in"/>
		<variable name="HMD"	units="dimensionless" private_interface="out" public_interface="in"/>
	</component>

<!--HEART RATE AND STROKE VOLUME INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="heart_rate_and_stroke_volume" component_2="circulatory_dynamics"/>
		<map_variables variable_1="QLO" variable_2="QLO"/>
		<map_variables variable_1="PRA" variable_2="PRA"/>
	</connection>
	<connection>
		<map_components component_1="heart_rate_and_stroke_volume" component_2="autonomics"/>
		<map_variables variable_1="AUR" variable_2="AUR"/>
	</connection>
	<connection>
		<map_components component_1="heart_rate_and_stroke_volume" component_2="heart_hypertrophy_or_deterioration"/>
		<map_variables variable_1="HMD" variable_2="HMD"/>
	</connection>

<!-- ========================================	EFFECT OF AUTONOMIC STIMULATION ON HEART RATE	============================================= -->
	<component 	name="effect_of_autonomic_stimulation_on_HR" 
				cmeta:id="effect_of_autonomic_stimulation_on_HR">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#effect_of_autonomic_stimulation_on_HR">
				<rdf:value>
				HR1:  
				Calculation of the portion of the heart rate that is controlled by 
				autonomic stimulation.  Autonomic input is the variable (AUR).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#HR1">
				<rdf:value>
				HR1:  
				Calculation of the portion of the heart rate that is controlled by 
				autonomic stimulation.  Autonomic input is the variable (AUR).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="AUR"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="AUHR" 	units="beats_per_minute" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="HR1">
				<eq/>
				<ci>AUHR</ci>
				<apply>
					<times/>
					<cn cellml:units="beats_per_minute">72</cn>
					<ci>AUR</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="effect_of_autonomic_stimulation_on_HR" component_2="heart_rate_and_stroke_volume"/>
		<map_variables variable_1="AUR" variable_2="AUR"/>
	</connection>

<!-- ========================================	EFFECT OF PRESSURE (PRA) ON HEART RATE	============================================= -->
<!-- ========================================	CHECK THIS! - NO EQUATION HR1B!!! INPUT PR1LL NOT PRA or PR1!!!	============================================= -->
	<component 	name="effect_of_PRA_on_HR" 
				cmeta:id="effect_of_PRA_on_HR">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#effect_of_PRA_on_HR">
				<rdf:value>
				HR1A, HR1B, and HR2:  
				Calculation of the portion of the heart rate that is controlled by direct 
				effect of changes in right atrial pressure (PRA) on the sinus nodal rhythm.  
				Block HR1B limits the effect to positive atrial pressure (PRA) values.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#HR1A_and_HR2">
				<rdf:value>
				HR1A, HR1B, and HR2:  
				Calculation of the portion of the heart rate that is controlled by direct 
				effect of changes in right atrial pressure (PRA) on the sinus nodal rhythm.  
				Block HR1B limits the effect to positive atrial pressure (PRA) values.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
<!--		<variable name=""	units="dimensionless" private_interface="none" public_interface="in"/> -->

<!-- Outputs to other components -->
		<variable name="PRHR" 	units="beats_per_minute" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="PR1LL"	units="mmHg" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="HR1A_and_HR2">
				<eq/>
				<ci>PRHR</ci>
				<apply>
					<times/>
					<apply>
						<power/>
						<ci>PR1LL</ci>
						<cn cellml:units="dimensionless">0.5</cn>
					</apply>
					<cn cellml:units="beats_per_minute_per_mmHg">5</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
<!--	<connection>
		<map_components component_1="effect_of_PRA_on_HR" component_2=""/>
		<map_variables variable_1="" variable_2=""/>
	</connection> -->

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="effect_of_PRA_on_HR" component_2="HR_and_SV_parameter_values"/>
		<map_variables variable_1="PR1LL" variable_2="PR1LL"/>
	</connection>

<!-- ========================================	EFFECT OF HEART DETERIORATION ON HEART RATE	============================================= -->
	<component 	name="effect_of_heart_deterioration_on_HR"
				cmeta:id="effect_of_heart_deterioration_on_HR">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#effect_of_heart_deterioration_on_HR">
				<rdf:value>
				HR4, HR5, and HR6:  
				Sensitivity control for the effect of any deterioration of heart function (HMD) 
				on heart rate.  The sensitivity factor is the side input to Block HR5.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#HR4_to_HR6">
				<rdf:value>
				HR4, HR5, and HR6:  
				Sensitivity control for the effect of any deterioration of heart function (HMD) 
				on heart rate.  The sensitivity factor is the side input to Block HR5.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="HMD"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="HDHR" 	units="dimensionless" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="HR4_to_HR6">
				<eq/>
				<ci>HDHR</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<apply>
							<minus/>
							<ci>HMD</ci>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
						<cn cellml:units="dimensionless">0.5</cn>
					</apply>
					<cn cellml:units="dimensionless">1</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="effect_of_heart_deterioration_on_HR" component_2="heart_rate_and_stroke_volume"/>
		<map_variables variable_1="HMD" variable_2="HMD"/>
	</connection>

<!-- ========================================	HEART RATE	============================================= -->
	<component 	name="heart_rate" 
				cmeta:id="heart_rate">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#heart_rate">
				<rdf:value>
				HR3:  
				Calculation of a temporary value for heart rate based on the control effects 
				of autonomic stimulation and right atrial pressure.

				HR7:  Calculation of heart rate (HR) by multiplying the heart deterioration 
				multiplier effect (output from Block HR6) times the temporary basic heart rate 
				calculated from Block HR3.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#HR3_and_HR7">
				<rdf:value>
				HR3:  
				Calculation of a temporary value for heart rate based on the control effects 
				of autonomic stimulation and right atrial pressure.

				HR7:  Calculation of heart rate (HR) by multiplying the heart deterioration 
				multiplier effect (output from Block HR6) times the temporary basic heart rate 
				calculated from Block HR3.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="AUHR"	units="beats_per_minute" private_interface="none" public_interface="in"/>
		<variable name="PRHR"	units="beats_per_minute" private_interface="none" public_interface="in"/>
		<variable name="HDHR"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="HR" 	units="beats_per_minute" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="HR3_and_HR7">
				<eq/>
				<ci>HR</ci>
				<apply>
					<times/>
					<apply>
						<plus/>
						<ci>AUHR</ci>
						<ci>PRHR</ci>
					</apply>
					<ci>HDHR</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="heart_rate" component_2="effect_of_autonomic_stimulation_on_HR"/>
		<map_variables variable_1="AUHR" variable_2="AUHR"/>
	</connection>
	<connection>
		<map_components component_1="heart_rate" component_2="effect_of_PRA_on_HR"/>
		<map_variables variable_1="PRHR" variable_2="PRHR"/>
	</connection>
	<connection>
		<map_components component_1="heart_rate" component_2="effect_of_heart_deterioration_on_HR"/>
		<map_variables variable_1="HDHR" variable_2="HDHR"/>
	</connection>

<!-- ========================================	STROKE VOLUME OUTPUT	============================================= -->
	<component 	name="stroke_volume_output" 
				cmeta:id="stroke_volume_output">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#stroke_volume_output">
				<rdf:value>
				HR8:  
				Calculation of stroke volume output (SVO) by dividing minute left ventricular output (QLO) 
				by heart rate (HR).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#HR8">
				<rdf:value>
				HR8:  
				Calculation of stroke volume output (SVO) by dividing minute left ventricular output (QLO) 
				by heart rate (HR).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="QLO"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="HR"	units="beats_per_minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="SVO" 	units="litre" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="HR8">
				<eq/>
				<ci>SVO</ci>
				<apply>
					<divide/>
					<ci>QLO</ci>
					<ci>HR</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="stroke_volume_output" component_2="heart_rate_and_stroke_volume"/>
		<map_variables variable_1="QLO" variable_2="QLO"/>
	</connection>
	<connection>
		<map_components component_1="stroke_volume_output" component_2="heart_rate"/>
		<map_variables variable_1="HR" variable_2="HR"/>
	</connection>

<!-- ==========================================================	HR AND SV PARAMETER VALUES	================================================================ -->
	<component 	name="HR_and_SV_parameter_values"
				cmeta:id="HR_and_SV_parameter_values">
		<variable name="PR1LL" 	units="mmHg" 	initial_value="0"	private_interface="none"	public_interface="out"/>	<!-- PR1 lower limit [P] -->
	</component>

<!-- ============================================================================================================================================================ -->
<!-- =============================================	MUSCLE AUTOREGULATORY LOCAL BLOOD FLOW CONTROL MODEL		============================ -->
	<component 	name="muscle_autoregulatory_local_blood_flow_control" 
				cmeta:id="muscle_autoregulatory_local_blood_flow_control">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#muscle_autoregulatory_local_blood_flow_control">
			<rdf:value>
				The circulatory system is divided into three separate parts for blood flow control:  
				(1) the kidneys which are presented in an entirely separate section of this model; 
				(2) non-muscle local blood flow control; and (3) muscle local blood flow control.

				Muscle Autoregulatory Local Blood Flow Control
				Autoregulation in the muscles is similar to that in the non-muscle tissues except 
				that only two parallel autoregulatory circuits are given.  One of these is an 
				extremely short-term autoregulatory circuit that allows rapid adjustment of muscle 
				blood flow to muscle metabolism during muscle activity, and the other is a very 
				long-term autoregulatory circuit.

				Encapsulation grouping component containing all the components in the Muscle Autoregulatory Local Blood 
				Flow Control Model. The inputs and outputs of the Muscle Autoregulatory Local Blood Flow Control Model 
				must be passed by this component.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

		<variable name="time"	units="minute"	private_interface="out" public_interface="in"/>

<!-- Inputs from components in other models -->
		<variable name="PMO"	units="mmHg" private_interface="out" public_interface="in"/>

<!-- Outputs to components in other models -->
		<variable name="AMM" 	units="dimensionless" private_interface="in" public_interface="out"/>
	</component>

<!-- OUTPUT CONNECTIONS -->
	<connection>
		<map_components component_1="muscle_autoregulatory_local_blood_flow_control" component_2="global_M_blood_flow_autoregulation_output"/>
		<map_variables variable_1="AMM" variable_2="AMM"/>
	</connection>

<!-- ========================================	MUSCLE AUTOREGULATORY DRIVING FORCE	============================================= -->
	<component 	name="M_autoregulatory_driving_force" 
				cmeta:id="M_autoregulatory_driving_force">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#M_autoregulatory_driving_force">
				<rdf:value>
				ARM1:  
				Calculation of the driving force for autoregulation in the muscles (PDO) by subtracting 
				a set-point value from the pressure of oxygen in the muscle tissues (PMO).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ARM1">
				<rdf:value>
				ARM1:  
				Calculation of the driving force for autoregulation in the muscles (PDO) by subtracting 
				a set-point value from the pressure of oxygen in the muscle tissues (PMO).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PMO"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="PDO" 	units="mmHg" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="ARM1">
				<eq/>
				<ci>PDO</ci>
				<apply>
					<minus/>
					<ci>PMO</ci>
					<cn cellml:units="mmHg">38</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="M_autoregulatory_driving_force" component_2="muscle_autoregulatory_local_blood_flow_control"/>
		<map_variables variable_1="PMO" variable_2="PMO"/>
	</connection>

<!-- ========================================	MUSCLE SHORT-TERM AUTOREGULATION		============================================= -->
	<component 	name="M_short_term_autoregulation" 
				cmeta:id="M_short_term_autoregulation">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#M_short_term_autoregulation">
				<rdf:value>
				Containment grouping component for "M_ST_sensitivity_control" and "M_ST_time_delay_and_damping".
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
	</component>
	
<!-- ========================================	MUSCLE SHORT_TERM SENSITIVITY CONTROL	============================================= -->
	<component 	name="M_ST_sensitivity_control" 
				cmeta:id="M_ST_sensitivity_control">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#M_ST_sensitivity_control">
				<rdf:value>
				ARM2 and ARM3:  
				Sensitivity control for the short-term muscle autoregulation, controlled by the 
				variable (POM), and the driving output oxygen pressure is the variable POE.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ARM2_and_ARM3">
				<rdf:value>
				ARM2 and ARM3:  
				Sensitivity control for the short-term muscle autoregulation, controlled by the 
				variable (POM), and the driving output oxygen pressure is the variable POE.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PDO"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="POE" 	units="mmHg" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="POM"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="ARM2_and_ARM3">
				<eq/>
				<ci>POE</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<ci>PDO</ci>
						<ci>POM</ci>
					</apply>
					<cn cellml:units="mmHg">1</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="M_ST_sensitivity_control" component_2="M_autoregulatory_driving_force"/>
		<map_variables variable_1="PDO" variable_2="PDO"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="M_ST_sensitivity_control" component_2="M_autoregulatory_local_blood_flow_parameter_values"/>
		<map_variables variable_1="POM" variable_2="POM"/>
	</connection>

<!-- ========================================	MUSCLE SHORT-TERM TIME-DELAY AND LOWER LIMIT	============================================= -->
	<component 	name="M_ST_time_delay_and_limit" 
				cmeta:id="M_ST_time_delay_and_limit">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#M_ST_time_delay_and_limit">
				<rdf:value>
				ARM5, ARM6, and ARM7:  
				Time delay mechanism for the rapid autoregulation, allowing the output of 
				Block ARM7 (AMM1) to approach POE with a time constant of A4K.

				ARM7A:  
				This sets a lower limit (AMM4) for the variable AMM1.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ARM5_to_ARM7">
				<rdf:value>
				ARM5, ARM6, and ARM7:  
				Time delay mechanism for the rapid autoregulation, allowing the output of 
				Block ARM7 (AMM1) to approach POE with a time constant of A4K.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ARM7A">
				<rdf:value>
				ARM7A:  
				This sets a lower limit (AMM4) for the variable AMM1.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="POE"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable  	cmeta:id="M_ST_time_delay_and_limit_AMM1"
					name="AMM1" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="A4K"	units="minute" private_interface="none" public_interface="in"/>
		<variable name="AMM4"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="AMM1T" 	initial_value="1.00269"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="ARM5_to_ARM7">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>AMM1T</ci>
				</apply>
				<apply>
					<divide/>
					<apply>
						<minus/>
						<apply>
							<times/>
							<ci>POE</ci>
							<cn cellml:units="per_mmHg">1</cn>
						</apply>	
						<ci>AMM1T</ci>
					</apply>
					<ci>A4K</ci>
				</apply>
			</apply>
			<apply id="ARM7A">
				<eq/>
				<ci>AMM1</ci>
				<piecewise>
					<piece>
						<ci>AMM4</ci>
						<apply>
							<lt/>
							<ci>AMM1T</ci>
							<ci>AMM4</ci>
						</apply>
					</piece>
					<otherwise>
						<ci>AMM1T</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="M_ST_time_delay_and_limit" component_2="M_ST_sensitivity_control"/>
		<map_variables variable_1="POE" variable_2="POE"/>
	</connection>
	<connection>
		<map_components component_1="M_ST_time_delay_and_limit" component_2="muscle_autoregulatory_local_blood_flow_control"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="M_ST_time_delay_and_limit" component_2="M_autoregulatory_local_blood_flow_parameter_values"/>
		<map_variables variable_1="A4K" variable_2="A4K"/>
		<map_variables variable_1="AMM4" variable_2="AMM4"/>
	</connection>

<!-- ========================================	MUSCLE LONG-TERM AUTOREGULATION	============================================= -->
	<component 	name="M_long_term_autoregulation" 
				cmeta:id="M_long_term_autoregulation">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#M_long_term_autoregulation">
				<rdf:value>
				Containment grouping component for "M_LT_sensitivity_control" and 
				"M_LT_time_delay".	
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
	</component>

<!-- ========================================	MUSCLE LONG-TERM SENSITIVITY CONTROL	============================================= -->
	<component 	name="M_LT_sensitivity_control" 
				cmeta:id="M_LT_sensitivity_control">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#M_LT_sensitivity_control">
				<rdf:value>
				ARM8:  
				Sensitivity control for controlling the long-term autoregulation in the muscles.  
				The variable that controls the sensitivity is POM2.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ARM8_and_part_ARM9">
				<rdf:value>
				ARM8:  
				Sensitivity control for controlling the long-term autoregulation in the muscles.  
				The variable that controls the sensitivity is POM2.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PDO"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="POF" 	units="mmHg" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="POM2"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="ARM8_and_part_ARM9">
				<eq/>
				<ci>POF</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<ci>POM2</ci>
						<ci>PDO</ci>
					</apply>
					<cn cellml:units="mmHg">1</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="M_LT_sensitivity_control" component_2="M_autoregulatory_driving_force"/>
		<map_variables variable_1="PDO" variable_2="PDO"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="M_LT_sensitivity_control" component_2="M_autoregulatory_local_blood_flow_parameter_values"/>
		<map_variables variable_1="POM2" variable_2="POM2"/>
	</connection>

<!-- ========================================	MUSCLE LONG-TERM TIME DELAY	============================================= -->
	<component 	name="M_LT_time_delay" 
				cmeta:id="M_LT_time_delay">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#M_LT_time_delay">
				<rdf:value>
				ARM9, ARM10, and ARM11:  
				Time delay system for long-term autoregulation in muscle with a time constant 
				equal to A4K2 and an output of AMM2.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ARM9_cont_to_ARM11">
				<rdf:value>
				ARM9, ARM10, and ARM11:  
				Time delay system for long-term autoregulation in muscle with a time constant 
				equal to A4K2 and an output of AMM2.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="POF"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable  	cmeta:id="M_LT_time_delay_AMM2"
					name="AMM2" 	initial_value="1.09071"	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="A4K2"	units="minute" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="ARM9_cont_to_ARM11">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>AMM2</ci>
				</apply>
				<apply>
					<divide/>
					<apply>
						<minus/>
						<apply>
							<times/>
							<ci>POF</ci>
							<cn cellml:units="per_mmHg">1</cn>
						</apply>	
						<ci>AMM2</ci>
					</apply>
					<ci>A4K2</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="M_LT_time_delay" component_2="M_LT_sensitivity_control"/>
		<map_variables variable_1="POF" variable_2="POF"/>
	</connection>
	<connection>
		<map_components component_1="M_LT_time_delay" component_2="muscle_autoregulatory_local_blood_flow_control"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="M_LT_time_delay" component_2="M_autoregulatory_local_blood_flow_parameter_values"/>
		<map_variables variable_1="A4K2" variable_2="A4K2"/>
	</connection>

<!-- ========================================	GLOBAL MUSCLE BLOOD FLOW AUTOREGULATION OUTPUT	============================================= -->
	<component 	name="global_M_blood_flow_autoregulation_output" 
				cmeta:id="global_M_blood_flow_autoregulation_output">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#global_M_blood_flow_autoregulation_output">
				<rdf:value>
				ARM12:  
				Multiplication of the outputs of the two parallel muscle autoregulatory 
				systems (AMM1 and AMM2) to given an overall multiplier factor for muscle 
				autoregulation (AMM) that in turn controls vascular resistance in the muscles.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ARM12">
				<rdf:value>
				ARM12:  
				Multiplication of the outputs of the two parallel muscle autoregulatory 
				systems (AMM1 and AMM2) to given an overall multiplier factor for muscle 
				autoregulation (AMM) that in turn controls vascular resistance in the muscles.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="AMM1"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="AMM2"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="global_M_blood_flow_autoregulation_output_AMM"
					name="AMM" 	units="dimensionless" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="ARM12">
				<eq/>
				<ci>AMM</ci>
				<apply>
					<times/>
					<ci>AMM1</ci>
					<ci>AMM2</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="global_M_blood_flow_autoregulation_output" component_2="M_ST_time_delay_and_limit"/>
		<map_variables variable_1="AMM1" variable_2="AMM1"/>
	</connection>
	<connection>
		<map_components component_1="global_M_blood_flow_autoregulation_output" component_2="M_LT_time_delay"/>
		<map_variables variable_1="AMM2" variable_2="AMM2"/>
	</connection>

<!-- ==========================	MUSCLE AUTOREGULATORY LOCAL BLOOD FLOW CONTROL PARAMETER VALUES	===================================== -->
	<component 	name="M_autoregulatory_local_blood_flow_parameter_values"
				cmeta:id="M_autoregulatory_local_blood_flow_parameter_values">
		<variable name="POM" 		units="dimensionless" 	initial_value="0.04"		private_interface="none"	public_interface="out"/>	<!-- sensitivity control, rapid muscle autoregulation [P] -->
		<variable name="A4K" 		units="minute" 	initial_value="0.1"			private_interface="none"	public_interface="out"/>	<!-- time constant, rapid muscle autoregulation [P] -->
		<variable name="AMM4" 		units="dimensionless" 	initial_value="0.005"		private_interface="none"	public_interface="out"/>	<!-- AMM1 lower limit [P] -->
		<variable name="POM2" 		units="dimensionless" 	initial_value="2"			private_interface="none"	public_interface="out"/>	<!-- sensitivity control, long-term muscle autoregulation [P] -->
		<variable name="A4K2" 		units="minute" 	initial_value="40000"		private_interface="none"	public_interface="out"/>	<!-- time constant, long-term muscle autoregulation [P] -->
	</component>

<!-- ============================================================================================================================================================ -->
	
<!-- ========================================================	MUSCLE O2 DELIVERY MODEL	=========================================================== -->
	<component 	name="muscle_O2_delivery" 
				cmeta:id="muscle_O2_delivery">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#muscle_O2_delivery">
				<rdf:value>
				The tissues of the body are divided into non-muscle tissues and muscle tissues, 
				and the delivery of oxygen to each one of these is calculated separately.  The 
				principal reason for this separation is that during muscle activity, the delivery 
				of oxygen to the muscles increases tremendously and correspondingly affects the 
				blood flow through the muscles.  Several aspects of local cellular usage of oxygen 
				are also calculated.

				Encapsulation grouping component containing all the components in the Muscle Oxygen Delivery Model. 
				The inputs and outputs of the Muscle Oxygen Delivery Model must be passed by this component.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

      <variable	name="time"	units="minute"	private_interface="out" public_interface="in"/>

<!-- Inputs from components in other models -->
		<variable name="BFM"	units="L_per_minute" private_interface="out" public_interface="in"/>
		<variable name="OVA"	units="mL_per_L" private_interface="out" public_interface="in"/>
		<variable name="HM"		units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="AOM"	units="dimensionless" private_interface="out" public_interface="in"/>

<!-- Outputs to components in other models -->
		<variable name="PMO" 	units="mmHg" private_interface="in" public_interface="out"/>
		<variable name="RMO" 	units="mL_per_minute" private_interface="in" public_interface="out"/>
	</component>

<!-- OUTPUT CONNECTIONS -->
	<connection>
		<map_components component_1="muscle_O2_delivery" component_2="pressure_of_O2_in_M_tissue_cells"/>
		<map_variables variable_1="PMO" variable_2="PMO"/>
	</connection>
<!--	<connection>
		<map_components component_1="muscle_O2_delivery" component_2="delivery_of_O2_to_M_tissues"/>
		<map_variables variable_1="RMO" variable_2="RMO"/>
	</connection> -->

<!-- ====================================================	MUSCLE O2 BLOOD SUPPLY	========================================================= -->
	<component 	name="M_O2_blood_supply" 
				cmeta:id="M_O2_blood_supply">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#M_O2_blood_supply">
				<rdf:value>
				OM1:  
				The volume of oxygen in the arterial blood flowing to the muscles each minute (02ARTM) 
				is equal to the volume of oxygen in each liter of arterial blood (OVA) times the muscle 
				blood flow (BFM).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#OM1">
				<rdf:value>
				OM1:  
				The volume of oxygen in the arterial blood flowing to the muscles each minute (02ARTM) 
				is equal to the volume of oxygen in each liter of arterial blood (OVA) times the muscle 
				blood flow (BFM).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="OVA"	units="mL_per_L" private_interface="none" public_interface="in"/>
		<variable name="BFM"	units="L_per_minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="O2ARTM" 	units="mL_per_minute" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="OM1">
				<eq/>
				<ci>O2ARTM</ci>
				<apply>
					<times/>
					<ci>OVA</ci>
					<ci>BFM</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="M_O2_blood_supply" component_2="muscle_O2_delivery"/>
		<map_variables variable_1="OVA" variable_2="OVA"/>
		<map_variables variable_1="BFM" variable_2="BFM"/>
	</connection>

<!-- ========================================	MUSCLE VENOUS O2 CONTENT	============================================= -->
	<component 	name="M_venous_O2_content" 
				cmeta:id="M_venous_O2_content">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#M_venous_O2_content">
				<rdf:value>
				OM2:  
				The volume of oxygen in the venous blood flowing away from the muscles 
				each minute (O2VENM) is equal to the volume of blood flowing into the muscles 
				from the arteries (O2ARTM) minus the rate of uptake of oxygen by the muscles 
				per minute (RMO).

				OM3 and OM4:  
				The venous oxygen saturation in the muscles (OVS) is equal to the volume of oxygen 
				transported to the muscle veins each minute (O2VENM) divided by the blood flow 
				through the muscles per minute (BFM), divided by the hematocrit of the blood (HM), 
				and divided by a constant that relates volume of oxygen in the blood to hematocrit.  
				Damping of the oxygen venous saturation (OVS) is provided by Block OM4 and is controlled 
				by the damping constant (Z6).

				OM5 and OM5A:  
				The pressure of the oxygen in the venous blood of the muscles (PVO) is equal to the 
				saturation of the oxygen in the venous blood of the muscles (OVS) times a constant 
				and times a factor related exponentially (EXCXP2) to the level of exercise (EXC) 
				caused by changes in tissue fluid products that affect oxygen combination with 
				hemoglobin.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#OM2_to_OM4">
				<rdf:value>
				OM2:  
				The volume of oxygen in the venous blood flowing away from the muscles 
				each minute (O2VENM) is equal to the volume of blood flowing into the muscles 
				from the arteries (O2ARTM) minus the rate of uptake of oxygen by the muscles 
				per minute (RMO).

				OM3 and OM4:  
				The venous oxygen saturation in the muscles (OVS) is equal to the volume of oxygen 
				transported to the muscle veins each minute (O2VENM) divided by the blood flow 
				through the muscles per minute (BFM), divided by the hematocrit of the blood (HM), 
				and divided by a constant that relates volume of oxygen in the blood to hematocrit.  
				Damping of the oxygen venous saturation (OVS) is provided by Block OM4 and is controlled 
				by the damping constant (Z6).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#OM5_and_OM5A">
				<rdf:value>
				OM5 and OM5A:  
				The pressure of the oxygen in the venous blood of the muscles (PVO) is equal to the 
				saturation of the oxygen in the venous blood of the muscles (OVS) times a constant 
				and times a factor related exponentially (EXCXP2) to the level of exercise (EXC) 
				caused by changes in tissue fluid products that affect oxygen combination with 
				hemoglobin.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="O2ARTM"	units="mL_per_minute" private_interface="none" public_interface="in"/>
		<variable name="RMO"	units="mL_per_minute" private_interface="none" public_interface="in"/>
		<variable name="BFM"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="HM"		units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="M_venous_O2_content_PVO"
					name="PVO" 	units="mmHg" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="EXC"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="EXCXP2"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable	cmeta:id="M_venous_O2_content_OVS"
					name="OVS"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="OM2_to_OM4">
                <eq/>
                <ci>OVS</ci>
                <apply>
                    <divide/>
                    <apply>
                        <minus/>
                        <ci>O2ARTM</ci>
                        <ci>RMO</ci>
                    </apply>
                    <apply>
                        <times/>
                        <ci>HM</ci>
                        <cn cellml:units="dimensionless">5.25</cn>
                        <ci>BFM</ci>
                    </apply>
				</apply>
			</apply>
			<apply id="OM5_and_OM5A">
				<eq/>
				<ci>PVO</ci>
				<apply>
					<times/>
					<cn cellml:units="mmHg">57.14</cn>
					<ci>OVS</ci>
					<apply>
						<power/>
						<ci>EXC</ci>
						<ci>EXCXP2</ci>
					</apply>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="M_venous_O2_content" component_2="M_O2_blood_supply"/>
		<map_variables variable_1="O2ARTM" variable_2="O2ARTM"/>
	</connection>
	<connection>
		<map_components component_1="M_venous_O2_content" component_2="delivery_of_O2_to_M_tissues"/>
		<map_variables variable_1="RMO" variable_2="RMO"/>
		<map_variables variable_1="PVO" variable_2="PVO"/>
	</connection>
	<connection>
		<map_components component_1="M_venous_O2_content" component_2="muscle_O2_delivery"/>
		<map_variables variable_1="BFM" variable_2="BFM"/>
		<map_variables variable_1="HM" variable_2="HM"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="M_venous_O2_content" component_2="M_O2_delivery_parameter_values"/>
		<map_variables variable_1="EXC" variable_2="EXC"/>
		<map_variables variable_1="EXCXP2" variable_2="EXCXP2"/>
	</connection>

<!-- ========================================	AUTONOMIC EFFECT ON MUSCLE O2 CONSUMPTION	============================================= -->
<!-- THIS COMPONENT IS THE SAME AS THE AUTONOMICS EQUATIONS NUMBERS 47 AND 48!!! 
	<component 	name="autonomic_effect_on_M_O2_consumption" 
				cmeta:id="autonomic_effect_on_M_O2_consumption">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#autonomic_effect_on_M_O2_consumption">
				<rdf:value>
				OM24 and OM25:  
				Calculation of autonomic stimulation of muscle usage of oxygen (AOM) based 
				on the current level of whole-body autonomic stimulation (AUO) times a 
				proportionality factor (O2A).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
	</component>
-->
	
<!-- ========================================	METABOLIC O2 CONSUMPTION BY MUSCLE TISSUE CELLS	============================================= -->
	<component 	name="metabolic_O2_consumption_by_M_tissue" 
				cmeta:id="metabolic_O2_consumption_by_M_tissue">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#metabolic_O2_consumption_by_M_tissue">
				<rdf:value>
				OM17, OM18, OM19, OM20, OM21, OM22, and OM23:  
				Calculation of the rate of metabolic usage of oxygen by the muscle cells (MMO) 
				from several factors:  the oxygen pressure in the muscle cells (PMO), the basal 
				level of oxygen utilization by the muscle cells (OMM), the effect of autonomic 
				stimulation on muscle usage of oxygen (AOM), and the effect of exercise on the 
				metabolic usage of oxygen by the muscles (EXC).  Blocks OM17 and OM18 cause the 
				metabolic usage of oxygen to reach a maximum at any time that the average muscle 
				cellular oxygen level is above the value of 38 mmHg pressure.  The constants in 
				the various blocks are curve-shaping constants to relate cellular oxygen 
				pressure (PMO) to the metabolic usage of oxygen.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#OM17_and_OM18">
				<rdf:value>
				OM17, OM18, OM19, OM20, OM21, OM22, and OM23:  
				Calculation of the rate of metabolic usage of oxygen by the muscle cells (MMO) 
				from several factors:  the oxygen pressure in the muscle cells (PMO), the basal 
				level of oxygen utilization by the muscle cells (OMM), the effect of autonomic 
				stimulation on muscle usage of oxygen (AOM), and the effect of exercise on the 
				metabolic usage of oxygen by the muscles (EXC).  Blocks OM17 and OM18 cause the 
				metabolic usage of oxygen to reach a maximum at any time that the average muscle 
				cellular oxygen level is above the value of 38 mmHg pressure.  The constants in 
				the various blocks are curve-shaping constants to relate cellular oxygen 
				pressure (PMO) to the metabolic usage of oxygen.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#OM19_to_OM23">
				<rdf:value>
				OM17, OM18, OM19, OM20, OM21, OM22, and OM23:  
				Calculation of the rate of metabolic usage of oxygen by the muscle cells (MMO) 
				from several factors:  the oxygen pressure in the muscle cells (PMO), the basal 
				level of oxygen utilization by the muscle cells (OMM), the effect of autonomic 
				stimulation on muscle usage of oxygen (AOM), and the effect of exercise on the 
				metabolic usage of oxygen by the muscles (EXC).  Blocks OM17 and OM18 cause the 
				metabolic usage of oxygen to reach a maximum at any time that the average muscle 
				cellular oxygen level is above the value of 38 mmHg pressure.  The constants in 
				the various blocks are curve-shaping constants to relate cellular oxygen 
				pressure (PMO) to the metabolic usage of oxygen.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

<!-- Inputs from other components -->
		<variable name="PMO"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="AOM"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="MMO" 	units="mL_per_minute" private_interface="none" public_interface="out"/>
		<variable 	cmeta:id="metabolic_O2_consumption_by_M_tissue_P2O"
					name="P2O" 	units="mmHg" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="OMM"	units="mL_per_minute" private_interface="none" public_interface="in"/>
		<variable name="EXC"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="OM17_and_OM18">
				<eq/>
				<ci>P2O</ci>
				<piecewise>
					<piece>
						<cn cellml:units="mmHg">38</cn>
						<apply>
							<gt/>
							<ci>PMO</ci>
							<cn cellml:units="mmHg">38</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>PMO</ci>
					</otherwise>
				</piecewise>
			</apply>
			<apply id="OM19_to_OM23">
				<eq/>
				<ci>MMO</ci>
				<apply>
					<times/>
					<ci>AOM</ci>
					<ci>OMM</ci>
					<ci>EXC</ci>
					<apply>
						<minus/>
						<cn cellml:units="dimensionless">1</cn>
						<apply>
							<divide/>
							<apply>
								<power/>
								<apply>
									<minus/>
									<cn cellml:units="mmHg">38.0001</cn>
									<ci>P2O</ci>
								</apply>
								<cn cellml:units="dimensionless">3</cn>
							</apply>
							<cn cellml:units="mmHg3">54872</cn>
						</apply>
					</apply>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="metabolic_O2_consumption_by_M_tissue" component_2="pressure_of_O2_in_M_tissue_cells"/>
		<map_variables variable_1="PMO" variable_2="PMO"/>
	</connection>
	<connection>
		<map_components component_1="metabolic_O2_consumption_by_M_tissue" component_2="muscle_O2_delivery"/>
		<map_variables variable_1="AOM" variable_2="AOM"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="metabolic_O2_consumption_by_M_tissue" component_2="M_O2_delivery_parameter_values"/>
		<map_variables variable_1="OMM" variable_2="OMM"/>
		<map_variables variable_1="EXC" variable_2="EXC"/>
	</connection>

<!-- ========================================	DELIVERY OF O2 TO MUSCLE TISSUES	============================================= -->
	<component 	name="delivery_of_O2_to_M_tissues" 
				cmeta:id="delivery_of_O2_to_M_tissues">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#delivery_of_O2_to_M_tissues">
				<rdf:value>
				OM6:  
				The pressure gradient for delivery of oxygen from the muscle capillaries to the 
				muscle cells (PGRM) is equal to the pressure of the oxygen remaining in the 
				muscle venous blood (PVO) minus the pressure of the oxygen in the muscle cells (PMO).

				OM8:  
				Rate of delivery of oxygen to the muscles (RMO) is equal to the blood flow to 
				the muscles (BFM) times the pressure gradient between the muscle capillary blood 
				and the muscle cells (PGRM) times a constant (PM5) that can be varied to represent 
				such factors as changes in muscle capillarity or so forth.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#OM6_and_OM8">
				<rdf:value>
				OM6:  
				The pressure gradient for delivery of oxygen from the muscle capillaries to the 
				muscle cells (PGRM) is equal to the pressure of the oxygen remaining in the 
				muscle venous blood (PVO) minus the pressure of the oxygen in the muscle cells (PMO).

				OM8:  
				Rate of delivery of oxygen to the muscles (RMO) is equal to the blood flow to 
				the muscles (BFM) times the pressure gradient between the muscle capillary blood 
				and the muscle cells (PGRM) times a constant (PM5) that can be varied to represent 
				such factors as changes in muscle capillarity or so forth.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PMO"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="PVO"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="BFM"	units="L_per_minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="delivery_of_O2_to_M_tissues_RMO"
					name="RMO" 	units="mL_per_minute" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="PM5"	units="per_mmHg" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="OM6_and_OM8">
				<eq/>
				<ci>RMO</ci>
				<apply>
					<times/>
					<apply>
						<minus/>
						<ci>PVO</ci>
						<ci>PMO</ci>
					</apply>
					<ci>PM5</ci>
					<ci>BFM</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="delivery_of_O2_to_M_tissues" component_2="pressure_of_O2_in_M_tissue_cells"/>
		<map_variables variable_1="PMO" variable_2="PMO"/>
	</connection>
	<connection>
		<map_components component_1="delivery_of_O2_to_M_tissues" component_2="muscle_O2_delivery"/>
		<map_variables variable_1="BFM" variable_2="BFM"/>
		<map_variables variable_1="RMO" variable_2="RMO"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="delivery_of_O2_to_M_tissues" component_2="M_O2_delivery_parameter_values"/>
		<map_variables variable_1="PM5" variable_2="PM5"/>
	</connection>
	
<!-- ========================================	VOLUME OF O2 IN MUSCLE TISSUE	============================================= -->
	<component 	name="volume_of_O2_in_M_tissue" 
				cmeta:id="volume_of_O2_in_M_tissue">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#volume_of_O2_in_M_tissue">
				<rdf:value>
				OM9:  
				The rate of change of stored oxygen in the muscle (DO2M) is equal to the 
				rate of delivery of oxygen to the muscles by the blood (RMO) minus the rate 
				of metabolic usage of oxygen by the muscle cells (MMO).

				OM10:  
				The instantaneous volume of oxygen dissolved in all of the muscles (QOM) is 
				calculated by integrating with respect to time the rate of change of oxygen 
				in the muscles (DO2M).

				OM11:  
				This sets a lower limit for QOM in the muscle tissue.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#OM9">
				<rdf:value>
				OM9:  
				The rate of change of stored oxygen in the muscle (DO2M) is equal to the 
				rate of delivery of oxygen to the muscles by the blood (RMO) minus the rate 
				of metabolic usage of oxygen by the muscle cells (MMO).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#OM10">
				<rdf:value>
				OM10:  
				The instantaneous volume of oxygen dissolved in all of the muscles (QOM) is 
				calculated by integrating with respect to time the rate of change of oxygen 
				in the muscles (DO2M).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#OM11">
				<rdf:value>
				OM11:  
				This sets a lower limit for QOM in the muscle tissue.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="RMO"	units="mL_per_minute" private_interface="none" public_interface="in"/>
		<variable name="MMO"	units="mL_per_minute" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="QOM" 	units="mL" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable name="DO2M"	units="mL_per_minute" private_interface="none" public_interface="none"/>
		<variable name="QOM1" 	initial_value="48.0839"	units="mL" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="OM9">
				<eq/>
				<ci>DO2M</ci>
				<apply>
					<minus/>
					<ci>RMO</ci>
					<ci>MMO</ci>
				</apply>
			</apply>
			<apply id="OM10">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>QOM1</ci>
				</apply>
				<ci>DO2M</ci>
			</apply>
			<apply id="OM11">
				<eq/>
				<ci>QOM</ci>
				<piecewise>
					<piece>
						<cn cellml:units="mL">0.0001</cn>
						<apply>
							<lt/>
							<ci>QOM1</ci>
							<cn cellml:units="mL">0.0001</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>QOM1</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="volume_of_O2_in_M_tissue" component_2="delivery_of_O2_to_M_tissues"/>
		<map_variables variable_1="RMO" variable_2="RMO"/>
	</connection>
	<connection>
		<map_components component_1="volume_of_O2_in_M_tissue" component_2="metabolic_O2_consumption_by_M_tissue"/>
		<map_variables variable_1="MMO" variable_2="MMO"/>
	</connection>
	<connection>
		<map_components component_1="volume_of_O2_in_M_tissue" component_2="muscle_O2_delivery"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- ========================================	PRESSURE OF O2 IN MUSCLE TISSUE CELLS	============================================= -->
	<component 	name="pressure_of_O2_in_M_tissue_cells" 
				cmeta:id="pressure_of_O2_in_M_tissue_cells">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#pressure_of_O2_in_M_tissue_cells">
				<rdf:value>
				OM12:  
				Calculation of the pressure of oxygen in the muscle cells (PMO) from the 
				volume of oxygen in the muscles (QOM).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#OM12">
				<rdf:value>
				OM12:  
				Calculation of the pressure of oxygen in the muscle cells (PMO) from the 
				volume of oxygen in the muscles (QOM).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="QOM"	units="mL" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="pressure_of_O2_in_M_tissue_cells_PMO"
					name="PMO" 	units="mmHg" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="PK2"	units="mmHg_per_mL" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="OM12">
				<eq/>
				<ci>PMO</ci>
				<apply>
					<times/>
					<ci>PK2</ci>
					<ci>QOM</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="pressure_of_O2_in_M_tissue_cells" component_2="volume_of_O2_in_M_tissue"/>
		<map_variables variable_1="QOM" variable_2="QOM"/>
	</connection>
	
<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="pressure_of_O2_in_M_tissue_cells" component_2="M_O2_delivery_parameter_values"/>
		<map_variables variable_1="PK2" variable_2="PK2"/>
	</connection>

<!-- ==========================================================	MUSCLE O2 DELIVERY PARAMETER VALUES	================================================================ -->
	<component 	name="M_O2_delivery_parameter_values"
				cmeta:id="M_O2_delivery_parameter_values">
		<variable name="EXC" 		units="dimensionless" 	initial_value="1"			private_interface="none"	public_interface="out"/>	<!-- level of exercise activity [P] -->
		<variable name="EXCXP2" 	units="dimensionless" 	initial_value="0.17"		private_interface="none"	public_interface="out"/>	<!-- exponent factor of exercise on muscle metabolism [P] -->
		<variable name="OMM" 		units="mL_per_minute" 	initial_value="57.1"		private_interface="none"	public_interface="out"/>	<!-- basic O2 utilization in muscle tissues (at rest) [P] -->
		<variable name="PM5" 		units="per_mmHg" 	initial_value="30"			private_interface="none"	public_interface="out"/>	<!-- constant, to change muscle capillarity [P] -->
		<variable name="PK2" 		units="mmHg_per_mL" 	initial_value="0.79167"		private_interface="none"	public_interface="out"/>	<!-- proportionality constant, muscle tissue PO2 [P] -->
	</component>

<!-- ============================================================================================================================================================ -->

<!-- ====================================	NON-MUSCLE AUTOREGULATORY LOCAL BLOOD FLOW CONTROL MODEL	================================== -->
	<component 	name="non_muscle_autoregulatory_local_blood_flow_control" 
				cmeta:id="non_muscle_autoregulatory_local_blood_flow_control">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#non_muscle_autoregulatory_local_blood_flow_control">
				<rdf:value>
				The circulatory system is divided into three separate parts for blood flow control:  
				(1) the kidneys which are presented in an entirely separate section of this model; 
				(2) non-muscle local blood flow control; and (3) muscle local blood flow control.

				Non-muscle Autoregulatory Local Blood Flow Control
				This portion of the circulation has three separate parallel autoregulatory processes, 
				one of which occurs in a matter of minutes, another over a period of tens of minutes, 
				and a third over a period of weeks.  All of these are considered to respond to changes 
				in tissue oxygen level.  The first two are rapid metabolic feedback effects, one almost 
				instantaneous and the other occurring over a period of tens of minutes to an hour or so.  
				The third is considered to be structural changes that result over a period of weeks and 
				may be a consequence of the vasodilation or vasoconstriction that occurs during the two 
				short-term metabolic stages.

				Encapsulation grouping component containing all the components in the Non-Muscle Autoregulatory Local Blood 
				Flow Control Model. The inputs and outputs of the Non-Muscle Autoregulatory Local Blood Flow Control Model 
				must be passed by this component.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

		<variable name="time"	units="minute"	private_interface="out" public_interface="in"/>

<!-- Inputs from components in other models -->
		<variable name="POT"	units="mmHg" private_interface="out" public_interface="in"/>

<!-- Outputs to components in other models -->
		<variable name="ARM" 	units="dimensionless" private_interface="in" public_interface="out"/>

	</component>

<!-- OUTPUT CONNECTIONS -->
	<connection>
		<map_components component_1="non_muscle_autoregulatory_local_blood_flow_control" component_2="global_NM_blood_flow_autoregulation_output"/>
		<map_variables variable_1="ARM" variable_2="ARM"/>
	</connection>

<!-- ========================================	AUTOREGULATORY DRIVING FORCE	============================================= -->
	<component 	name="NM_autoregulatory_driving_force" 
				cmeta:id="NM_autoregulatory_driving_force">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#NM_autoregulatory_driving_force">
				<rdf:value>
				ARN1:  
				The driving force that causes an autoregulatory response in non-muscle 
				tissues (POD) is equal to the pressure of the oxygen in tissues (POT) minus 
				the set-point for the autoregulatory response (POR).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ARN1">
				<rdf:value>
				ARN1:  
				The driving force that causes an autoregulatory response in non-muscle 
				tissues (POD) is equal to the pressure of the oxygen in tissues (POT) minus 
				the set-point for the autoregulatory response (POR).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="POT"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="POD" 	units="mmHg" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="POR"	units="mmHg" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="ARN1">
				<eq/>
				<ci>POD</ci>
				<apply>
					<minus/>
					<ci>POT</ci>
					<ci>POR</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="NM_autoregulatory_driving_force" component_2="non_muscle_autoregulatory_local_blood_flow_control"/>
		<map_variables variable_1="POT" variable_2="POT"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="NM_autoregulatory_driving_force" component_2="NM_autoregulatory_local_blood_flow_parameter_values"/>
		<map_variables variable_1="POR" variable_2="POR"/>
	</connection>

<!-- ========================================	NON-MUSCLE SHORT-TERM AUTOREGULATION		============================================= -->
	<component 	name="NM_short_term_autoregulation" 
				cmeta:id="NM_short_term_autoregulation">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#NM_short_term_autoregulation">
				<rdf:value>
				Containment grouping component for "ST_sensitivity_control" and 
				"ST_time_delay_and_damping".
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
	</component>
	
<!-- ========================================	NON-MUSCLE SHORT_TERM SENSITIVITY CONTROL	============================================= -->
	<component 	name="NM_ST_sensitivity_control" 
				cmeta:id="NM_ST_sensitivity_control">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#NM_ST_sensitivity_control">
				<rdf:value>
				ARN2 and ARN3:  
				Sensitivity control for short-term autoregulation, with the sensitivity 
				controlled by the variable POK and the output of these two blocks equal 
				to the variable POB.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ARN2_and_ARN3">
				<rdf:value>
				ARN2 and ARN3:  
				Sensitivity control for short-term autoregulation, with the sensitivity 
				controlled by the variable POK and the output of these two blocks equal 
				to the variable POB.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="POD"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="POB" 	units="mmHg" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="POK"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="ARN2_and_ARN3">
				<eq/>
				<ci>POB</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<ci>POD</ci>
						<ci>POK</ci>
					</apply>
					<cn cellml:units="mmHg">1</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="NM_ST_sensitivity_control" component_2="NM_autoregulatory_driving_force"/>
		<map_variables variable_1="POD" variable_2="POD"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="NM_ST_sensitivity_control" component_2="NM_autoregulatory_local_blood_flow_parameter_values"/>
		<map_variables variable_1="POK" variable_2="POK"/>
	</connection>

<!-- ========================================	NON-MUSCLE SHORT-TERM TIME-DELAY AND DAMPING	============================================= -->
	<component 	name="NM_ST_time_delay_and_damping" 
				cmeta:id="NM_ST_time_delay_and_damping">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#NM_ST_time_delay_and_damping">
				<rdf:value>
				ARN5, ARN6, and ARN7:  
				An integrative time delay system which allows the output from Block ARN7 (AR1) 
				to approach the value POB with a time constant of (A1K).

				ARN7A:  
				Damping of output from Block ARN7 to prevent oscillation when the iteration 
				interval for computer solution of the model is long.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ARN5_to_ARN7">
				<rdf:value>
				ARN5, ARN6, and ARN7:  
				An integrative time delay system which allows the output from Block ARN7 (AR1) 
				to approach the value POB with a time constant of (A1K).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ARN7A">
				<rdf:value>
				ARN7A:  
				Damping of output from Block ARN7 to prevent oscillation when the iteration 
				interval for computer solution of the model is long.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="POB"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="NM_ST_time_delay_and_damping_AR1"
					name="AR1" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="A1K"	units="minute" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="AR1T"	initial_value="1.02127"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="ARN5_to_ARN7">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>AR1T</ci>
				</apply>
				<apply>
					<divide/>
					<apply>
						<minus/>
						<apply>
							<times/>
							<ci>POB</ci>
							<cn cellml:units="per_mmHg">1</cn>
						</apply>	
						<ci>AR1T</ci>
					</apply>
					<ci>A1K</ci>
				</apply>
			</apply>
			<apply id="ARN7A">
				<eq/>
				<ci>AR1</ci>
				<piecewise>
					<piece>
						<cn cellml:units="dimensionless">0.5</cn>
						<apply>
							<lt/>
							<ci>AR1T</ci>
							<cn cellml:units="dimensionless">0.5</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>AR1T</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="NM_ST_time_delay_and_damping" component_2="NM_ST_sensitivity_control"/>
		<map_variables variable_1="POB" variable_2="POB"/>
	</connection>
	<connection>
		<map_components component_1="NM_ST_time_delay_and_damping" component_2="non_muscle_autoregulatory_local_blood_flow_control"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="NM_ST_time_delay_and_damping" component_2="NM_autoregulatory_local_blood_flow_parameter_values"/>
		<map_variables variable_1="A1K" variable_2="A1K"/>
	</connection>

<!-- ========================================	NON-MUSCLE INTERMEDIATE AUTOREGULATION		============================================= -->
	<component 	name="NM_intermediate_autoregulation" 
				cmeta:id="NM_intermediate_autoregulation">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#NM_intermediate_autoregulation">
				<rdf:value>
				Containment grouping component for "NM_I_sensitivity_control" and 
				"NM_I_time_delay_and_limit".
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
	</component>
	
<!-- ========================================	NON-MUSCLE INTERMEDIATE SENSITIVITY CONTROL	============================================= -->
	<component 	name="NM_I_sensitivity_control" 
				cmeta:id="NM_I_sensitivity_control">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#NM_I_sensitivity_control">
				<rdf:value>
				ARN8 and ARN9:  
				Sensitivity control for the intermediate time autoregulation controlled by 
				variable (PON).  The input is POD, and the output is POA.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ARN8_and_ARN9">
				<rdf:value>
				ARN8 and ARN9:  
				Sensitivity control for the intermediate time autoregulation controlled by 
				variable (PON).  The input is POD, and the output is POA.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="POD"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="POA" 	units="mmHg" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="PON"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="ARN8_and_ARN9">
				<eq/>
				<ci>POA</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<ci>PON</ci>
						<ci>POD</ci>
					</apply>
					<cn cellml:units="mmHg">1</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="NM_I_sensitivity_control" component_2="NM_autoregulatory_driving_force"/>
		<map_variables variable_1="POD" variable_2="POD"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="NM_I_sensitivity_control" component_2="NM_autoregulatory_local_blood_flow_parameter_values"/>
		<map_variables variable_1="PON" variable_2="PON"/>
	</connection>

<!-- ========================================	NON-MUSCLE INTERMEDIATE TIME-DELAY AND LIMIT	============================================= -->
	<component 	name="NM_I_time_delay_and_limit" 
				cmeta:id="NM_I_time_delay_and_limit">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#NM_I_time_delay_and_limit">
				<rdf:value>
				ARN11, ARN12, and ARN13:  
				A time delay mechanism for the intermediate autoregulation which allows the 
				output of Block ARN13 (AR2) to approach (POA) with a time constant of A2K.

				ARN13A:  
				This sets a lower limit for AR2.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ARN11_to_ARN13">
				<rdf:value>
				ARN11, ARN12, and ARN13:  
				A time delay mechanism for the intermediate autoregulation which allows the 
				output of Block ARN13 (AR2) to approach (POA) with a time constant of A2K.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ARN13A">
				<rdf:value>
				ARN13A:  
				This sets a lower limit for AR2.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="POA"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="NM_I_time_delay_and_limit_AR2"
					name="AR2" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="A2K"	units="minute" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="AR2T"	initial_value="1.01179"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="ARN11_to_ARN13">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>AR2T</ci>
				</apply>
				<apply>
					<divide/>
					<apply>
						<minus/>
						<apply>
							<times/>
							<ci>POA</ci>
							<cn cellml:units="per_mmHg">1</cn>
						</apply>	
						<ci>AR2T</ci>
					</apply>
					<ci>A2K</ci>
				</apply>
			</apply>
			<apply id="ARN13A">
				<eq/>
				<ci>AR2</ci>
				<piecewise>
					<piece>
						<cn cellml:units="dimensionless">0.5</cn>
						<apply>
							<lt/>
							<ci>AR2T</ci>
							<cn cellml:units="dimensionless">0.5</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>AR2T</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="NM_I_time_delay_and_limit" component_2="NM_I_sensitivity_control"/>
		<map_variables variable_1="POA" variable_2="POA"/>
	</connection>
	<connection>
		<map_components component_1="NM_I_time_delay_and_limit" component_2="non_muscle_autoregulatory_local_blood_flow_control"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="NM_I_time_delay_and_limit" component_2="NM_autoregulatory_local_blood_flow_parameter_values"/>
		<map_variables variable_1="A2K" variable_2="A2K"/>
	</connection>

<!-- ========================================	NON-MUSCLE LONG-TERM AUTOREGULATION	============================================= -->
	<component 	name="NM_long_term_autoregulation" 
				cmeta:id="NM_long_term_autoregulation">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#NM_long_term_autoregulation">
				<rdf:value>
				Containment grouping component for "NM_LT_sensitivity_control" and 
				"NM_LT_time_delay_and_limit".`	
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
	</component>

<!-- ========================================	NON-MUSCLE LONG-TERM SENSITIVITY CONTROL	============================================= -->
	<component 	name="NM_LT_sensitivity_control" 
				cmeta:id="NM_LT_sensitivity_control">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#NM_LT_sensitivity_control">
				<rdf:value>
				ARN14:  
				Calculation of the relationship between the driving force for overall 
				autoregulatory control (POD) and that for long-term autoregulatory control (POC).  
				The sensitivity control is variable (POZ).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ARN14">
				<rdf:value>
				ARN14:  
				Calculation of the relationship between the driving force for overall 
				autoregulatory control (POD) and that for long-term autoregulatory control (POC).  
				The sensitivity control is variable (POZ).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="POD"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="POC" 	units="mmHg" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="POZ"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="ARN14">
				<eq/>
				<ci>POC</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<ci>POZ</ci>
						<ci>POD</ci>
					</apply>
					<cn cellml:units="mmHg">1</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="NM_LT_sensitivity_control" component_2="NM_autoregulatory_driving_force"/>
		<map_variables variable_1="POD" variable_2="POD"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="NM_LT_sensitivity_control" component_2="NM_autoregulatory_local_blood_flow_parameter_values"/>
		<map_variables variable_1="POZ" variable_2="POZ"/>
	</connection>

<!-- ========================================	NON-MUSCLE LONG-TERM TIME DELAY AND LOWER LIMIT	============================================= -->
	<component 	name="NM_LT_time_delay_and_limit" 
				cmeta:id="NM_LT_time_delay_and_limit">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#NM_LT_time_delay_and_limit">
				<rdf:value>
				ARN15, ARN16, and ARN17:  
				Time delay system that allows the output of Block ARN17 (AR3) to approach POC 
				with a time constant equal to the variable (A3K).

				ARN17A:  
				This sets the lower limit for AR3.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ARN15_to_ARN17">
				<rdf:value>
				ARN15, ARN16, and ARN17:  
				Time delay system that allows the output of Block ARN17 (AR3) to approach POC 
				with a time constant equal to the variable (A3K).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ARN17A">
				<rdf:value>
				ARN17A:  
				This sets the lower limit for AR3.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="POC"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="NM_LT_time_delay_and_limit_AR3"
					name="AR3" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="A3K"	units="minute" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="AR3T"	initial_value="1.1448"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="ARN15_to_ARN17">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>AR3T</ci>
				</apply>
				<apply>
					<divide/>
					<apply>
						<minus/>
						<apply>
							<times/>
							<ci>POC</ci>
							<cn cellml:units="per_mmHg">1</cn>
						</apply>	
						<ci>AR3T</ci>
					</apply>
					<ci>A3K</ci>
				</apply>
			</apply>
			<apply id="ARN17A">
				<eq/>
				<ci>AR3</ci>
				<piecewise>
					<piece>
						<cn cellml:units="dimensionless">0.3</cn>
						<apply>
							<lt/>
							<ci>AR3T</ci>
							<cn cellml:units="dimensionless">0.3</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>AR3T</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="NM_LT_time_delay_and_limit" component_2="NM_LT_sensitivity_control"/>
		<map_variables variable_1="POC" variable_2="POC"/>
	</connection>
	<connection>
		<map_components component_1="NM_LT_time_delay_and_limit" component_2="non_muscle_autoregulatory_local_blood_flow_control"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="NM_LT_time_delay_and_limit" component_2="NM_autoregulatory_local_blood_flow_parameter_values"/>
		<map_variables variable_1="A3K" variable_2="A3K"/>
	</connection>

<!-- ========================================	TOTAL NON-MUSCLE AUTOREGULATION	============================================= -->
	<component 	name="total_NM_autoregulation" 
				cmeta:id="total_NM_autoregulation">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#total_NM_autoregulation">
				<rdf:value>
				ARN18:  
				Multiplication of the outputs of the three different autoregulation mechanisms 
				by multiplying AR3, AR2, and AR1 times each other, giving a total output of the 
				non-muscle autoregulatory system equal to the variable (ARM1).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ARN18">
				<rdf:value>
				ARN18:  
				Multiplication of the outputs of the three different autoregulation mechanisms 
				by multiplying AR3, AR2, and AR1 times each other, giving a total output of the 
				non-muscle autoregulatory system equal to the variable (ARM1).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="AR1"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="AR2"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="AR3"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="ARM1" 	units="dimensionless" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="ARN18">
				<eq/>
				<ci>ARM1</ci>
				<apply>
					<times/>
					<ci>AR1</ci>
					<ci>AR2</ci>
					<ci>AR3</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="total_NM_autoregulation" component_2="NM_ST_time_delay_and_damping"/>
		<map_variables variable_1="AR1" variable_2="AR1"/>
	</connection>
	<connection>
		<map_components component_1="total_NM_autoregulation" component_2="NM_I_time_delay_and_limit"/>
		<map_variables variable_1="AR2" variable_2="AR2"/>
	</connection>
	<connection>
		<map_components component_1="total_NM_autoregulation" component_2="NM_LT_time_delay_and_limit"/>
		<map_variables variable_1="AR3" variable_2="AR3"/>
	</connection>

<!-- ========================================	GLOBAL NON-MUSCLE BLOOD FLOW AUTOREGULATION OUTPUT	============================================= -->
	<component 	name="global_NM_blood_flow_autoregulation_output" 
				cmeta:id="global_NM_blood_flow_autoregulation_output">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#global_NM_blood_flow_autoregulation_output">
				<rdf:value>
				ARN19, ARN20, and ARN21:  
				Sensitivity control for the total autoregulatory output for non-muscle, non-renal 
				tissues.  The input is ARM1, the sensitivity control is AUTOSN, and the final output 
				is a non-muscle autoregulatory multiplier factor (ARM) that controls non-muscle vascular 
				resistance.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ARN19_to_ARN21">
				<rdf:value>
				ARN19, ARN20, and ARN21:  
				Sensitivity control for the total autoregulatory output for non-muscle, non-renal 
				tissues.  The input is ARM1, the sensitivity control is AUTOSN, and the final output 
				is a non-muscle autoregulatory multiplier factor (ARM) that controls non-muscle vascular 
				resistance.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="ARM1"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="global_NM_blood_flow_autoregulation_output_ARM"
					name="ARM" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="AUTOSN"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="ARN19_to_ARN21">
         		<eq/>
				<ci>ARM</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<apply>
							<minus/>
							<ci>ARM1</ci>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
						<ci>AUTOSN</ci>
					</apply>
					<cn cellml:units="dimensionless">1</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="global_NM_blood_flow_autoregulation_output" component_2="total_NM_autoregulation"/>
		<map_variables variable_1="ARM1" variable_2="ARM1"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="global_NM_blood_flow_autoregulation_output" component_2="NM_autoregulatory_local_blood_flow_parameter_values"/>
		<map_variables variable_1="AUTOSN" variable_2="AUTOSN"/>
	</connection>

<!-- =====================		NON-MUSCLE AUTOREGULATORY LOCAL BLOOD FLOW CONTROL PARAMETER VALUES		================================ -->
	<component 	name="NM_autoregulatory_local_blood_flow_parameter_values"
				cmeta:id="NM_autoregulatory_local_blood_flow_parameter_values">
		<variable name="POR" 		units="mmHg" 	initial_value="35"			private_interface="none"	public_interface="out"/>	<!-- reference value of capillary PO2 in non-muscle tissue [P] -->
		<variable name="POK" 		units="dimensionless" 	initial_value="0.1"			private_interface="none"	public_interface="out"/>	<!-- sensitivity control, rapid nonmuscle autoregulation [P] -->
		<variable name="A1K" 		units="minute" 	initial_value="0.5"			private_interface="none"	public_interface="out"/>	<!-- time constant, rapid nonmuscle autoregulation [P] -->
		<variable name="PON" 		units="dimensionless" 	initial_value="0.1"			private_interface="none"	public_interface="out"/>	<!-- sensitivity control, intermediate nonmuscle autoregulation [P] -->
		<variable name="A2K" 		units="minute" 	initial_value="60"			private_interface="none"	public_interface="out"/>	<!-- time constant, intermediate nonmuscle autoregulation [P] -->
		<variable name="A3K" 		units="minute" 	initial_value="40000"		private_interface="none"	public_interface="out"/>	<!-- time constant, long-term nonmuscle autoregulation [P] -->
		<variable name="POZ" 		units="dimensionless" 	initial_value="2"			private_interface="none"	public_interface="out"/>	<!-- sensitivity control, long-term nonmuscle autoregulation [P] -->
		<variable name="AUTOSN" 	units="dimensionless" 	initial_value="0.9"			private_interface="none"	public_interface="out"/>	<!-- overall sensitivity controller, nonmuscle autoreg. [P] -->
	</component>


<!-- ============================================================================================================================================================ -->

<!-- ========================================================	NON-MUSCLE O2 DELIVERY MODEL	=========================================================== -->
	<component 	name="non_muscle_O2_delivery" 
				cmeta:id="non_muscle_O2_delivery">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#non_muscle_O2_delivery">
				<rdf:value>
				The tissues of the body are divided into non-muscle tissues and muscle tissues, 
				and the delivery of oxygen to each one of these is calculated separately.  The 
				principal reason for this separation is that during muscle activity, the delivery 
				of oxygen to the muscles increases tremendously and correspondingly affects the 
				blood flow through the muscles.  Several aspects of local cellular usage of oxygen 
				are also calculated.

				Encapsulation grouping component containing all the components in the Non-Muscle Oxygen Delivery Model. 
				The inputs and outputs of the Non-Muscle Oxygen Delivery Model must be passed by this component.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

		<variable name="time"	units="minute"	private_interface="out" public_interface="in"/>

<!-- Inputs from components in other models -->
		<variable name="BFN"	units="L_per_minute" private_interface="out" public_interface="in"/>
		<variable name="OVA"	units="mL_per_L" private_interface="out" public_interface="in"/>
		<variable name="HM"		units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="AOM"	units="dimensionless" private_interface="out" public_interface="in"/>

<!-- Outputs to components in other models -->
		<variable name="POT" 	units="mmHg" private_interface="in" public_interface="out"/>
		<variable name="DOB" 	units="mL_per_minute" private_interface="in" public_interface="out"/>
	</component>

<!-- OUTPUT CONNECTIONS -->
	<connection>
		<map_components component_1="non_muscle_O2_delivery" component_2="pressure_of_O2_in_NM_tissue_cells"/>
		<map_variables variable_1="POT" variable_2="POT"/>
	</connection>
<!--	<connection>
		<map_components component_1="non_muscle_O2_delivery" component_2="delivery_of_O2_to_NM_tissues"/>
		<map_variables variable_1="DOB" variable_2="DOB"/>
	</connection> -->

<!-- ====================================================	NON-MUSCLE O2 BLOOD SUPPLY	========================================================= -->
	<component 	name="NM_O2_blood_supply" 
				cmeta:id="NM_O2_blood_supply">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#NM_O2_blood_supply">
				<rdf:value>
				ONM1:  
				The quantity of oxygen in the arterial blood entering the non-muscle 
				tissues per minute (O2ARTN) is equal to the oxygen volume in each liter of 
				arterial blood (OVA) times the blood flow to the non-muscle tissues (BFN).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ONM1">
				<rdf:value>
				ONM1:  
				The quantity of oxygen in the arterial blood entering the non-muscle 
				tissues per minute (O2ARTN) is equal to the oxygen volume in each liter of 
				arterial blood (OVA) times the blood flow to the non-muscle tissues (BFN).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="OVA"	units="mL_per_L" private_interface="none" public_interface="in"/>
		<variable name="BFN"	units="L_per_minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="O2ARTN" 	units="mL_per_minute" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="ONM1">
				<eq/>
				<ci>O2ARTN</ci>
				<apply>
					<times/>
					<ci>OVA</ci>
					<ci>BFN</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="NM_O2_blood_supply" component_2="non_muscle_O2_delivery"/>
		<map_variables variable_1="OVA" variable_2="OVA"/>
		<map_variables variable_1="BFN" variable_2="BFN"/>
	</connection>

<!-- ========================================	NON-MUSCLE VENOUS O2 CONTENT	============================================= -->
	<component 	name="NM_venous_O2_content" 
				cmeta:id="NM_venous_O2_content">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#NM_venous_O2_content">
				<rdf:value>
				ONM2:  
				The volume of oxygen remaining in the effluent venous blood from the non-muscle 
				tissues per minute (O2VENN) is equal to the volume of oxygen in the entering 
				arterial blood (O2ARTN) minus the rate of delivery of oxygen to the non-muscle 
				tissues per minute (DOB).

				ONM3 and ONM4:  
				The oxygen saturation of the venous blood leaving the non-muscle tissues (OSV) 
				is calculated from the volume of oxygen in this venous blood (O2VENN) divided by 
				three different factors:  the rate of blood flow through the non-muscle tissues (BFN), 
				the hematocrit (HM), and a constant factor for converting volume of oxygen to saturation.  
				Block ONM4 provides damping to prevent too rapid changes which could cause computational 
				oscillation; the degree of damping can be altered by altering the damping factor (Z7).

				ONM5:  
				The pressure of oxygen in the venous blood (POV) is calculated by multiplying the venous 
				blood saturation (OSV) times a constant.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ONM2_to_ONM4">
				<rdf:value>
				ONM2:  
				The volume of oxygen remaining in the effluent venous blood from the non-muscle 
				tissues per minute (O2VENN) is equal to the volume of oxygen in the entering 
				arterial blood (O2ARTN) minus the rate of delivery of oxygen to the non-muscle 
				tissues per minute (DOB).

				ONM3 and ONM4:  
				The oxygen saturation of the venous blood leaving the non-muscle tissues (OSV) 
				is calculated from the volume of oxygen in this venous blood (O2VENN) divided by 
				three different factors:  the rate of blood flow through the non-muscle tissues (BFN), 
				the hematocrit (HM), and a constant factor for converting volume of oxygen to saturation.  
				Block ONM4 provides damping to prevent too rapid changes which could cause computational 
				oscillation; the degree of damping can be altered by altering the damping factor (Z7).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ONM5">
				<rdf:value>
				ONM5:  
				The pressure of oxygen in the venous blood (POV) is calculated by multiplying the venous 
				blood saturation (OSV) times a constant.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="O2ARTN"	units="mL_per_minute" private_interface="none" public_interface="in"/>
		<variable name="DOB"	units="mL_per_minute" private_interface="none" public_interface="in"/>
		<variable name="BFN"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="HM"		units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="NM_venous_O2_content_POV"
					name="POV" 	units="mmHg" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable	cmeta:id="NM_venous_O2_content_OSV"
					name="OSV"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="ONM2_to_ONM4">
				<eq/>
				<ci>OSV</ci>
				<apply>
					<divide/>
					<apply>
						<minus/>
						<ci>O2ARTN</ci>
						<ci>DOB</ci>
					</apply>
					<apply>
						<times/>
						<ci>HM</ci>
						<cn cellml:units="dimensionless">5.25</cn>
						<ci>BFN</ci>
					</apply>
				</apply>
			</apply>
			<apply id="ONM5">
				<eq/>
				<ci>POV</ci>
				<apply>
					<times/>
					<ci>OSV</ci>
					<cn cellml:units="mmHg">57.14</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="NM_venous_O2_content" component_2="NM_O2_blood_supply"/>
		<map_variables variable_1="O2ARTN" variable_2="O2ARTN"/>
	</connection>
	<connection>
		<map_components component_1="NM_venous_O2_content" component_2="delivery_of_O2_to_NM_tissues"/>
		<map_variables variable_1="DOB" variable_2="DOB"/>
		<map_variables variable_1="POV" variable_2="POV"/>
	</connection>
	<connection>
		<map_components component_1="NM_venous_O2_content" component_2="non_muscle_O2_delivery"/>
		<map_variables variable_1="BFN" variable_2="BFN"/>
		<map_variables variable_1="HM" variable_2="HM"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- ========================================	O2 CONSUMPTION BY NON-MUSCLE TISSUE CELLS	============================================= -->
	<component 	name="O2_consumption_by_NM_tissue" 
				cmeta:id="O2_consumption_by_NM_tissue">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#O2_consumption_by_NM_tissue">
				<rdf:value>
				ONM14, ONM15, ONM16, ONM17, ONM18, ONM19, and ONM20:  
				Calculation of the rate of oxygen usage by the non-muscle tissues (M02) based on 
				three input factors:  the normal rate of oxygen usage by these tissues when all 
				other factors are normal (02M), a decreasing effect on tissue utilization of oxygen 
				caused by very low tissue PO2's (POT) resulting mainly from failure of flow of the 
				oxygen to the places where it is needed within the tissue (Blocks 14, 15, 16, 17, 18, 
				and 19), and a multiplying effect on oxygen usage caused by autonomic stimulation (AOM).  
				In addition, there is a limit set by Block ONM15 which causes the tissue oxygen level not 
				to affect metabolism once its level is above a set value.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ONM14_and_ONM15">
				<rdf:value>
				ONM14, ONM15, ONM16, ONM17, ONM18, ONM19, and ONM20:  
				Calculation of the rate of oxygen usage by the non-muscle tissues (M02) based on 
				three input factors:  the normal rate of oxygen usage by these tissues when all 
				other factors are normal (02M), a decreasing effect on tissue utilization of oxygen 
				caused by very low tissue PO2's (POT) resulting mainly from failure of flow of the 
				oxygen to the places where it is needed within the tissue (Blocks 14, 15, 16, 17, 18, 
				and 19), and a multiplying effect on oxygen usage caused by autonomic stimulation (AOM).  
				In addition, there is a limit set by Block ONM15 which causes the tissue oxygen level not 
				to affect metabolism once its level is above a set value.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ONM16_to_ONM20">
				<rdf:value>
				ONM14, ONM15, ONM16, ONM17, ONM18, ONM19, and ONM20:  
				Calculation of the rate of oxygen usage by the non-muscle tissues (M02) based on 
				three input factors:  the normal rate of oxygen usage by these tissues when all 
				other factors are normal (02M), a decreasing effect on tissue utilization of oxygen 
				caused by very low tissue PO2's (POT) resulting mainly from failure of flow of the 
				oxygen to the places where it is needed within the tissue (Blocks 14, 15, 16, 17, 18, 
				and 19), and a multiplying effect on oxygen usage caused by autonomic stimulation (AOM).  
				In addition, there is a limit set by Block ONM15 which causes the tissue oxygen level not 
				to affect metabolism once its level is above a set value.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="POT"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="AOM"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="MO2" 	units="mL_per_minute" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="O2M"	units="mL_per_minute" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="P1O"	units="mmHg" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="ONM14_and_ONM15">
				<eq/>
				<ci>P1O</ci>
				<piecewise>
					<piece>
						<cn cellml:units="mmHg">35</cn>
						<apply>
							<gt/>
							<ci>POT</ci>
							<cn cellml:units="mmHg">35</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>POT</ci>
					</otherwise>
				</piecewise>
			</apply>
			<apply id="ONM16_to_ONM20">
				<eq/>
				<ci>MO2</ci>
				<apply>
					<times/>
					<ci>AOM</ci>
					<ci>O2M</ci>
					<apply>
						<minus/>
						<cn cellml:units="dimensionless">1</cn>
						<apply>
							<divide/>
							<apply>
								<power/>
								<apply>
									<minus/>
									<cn cellml:units="mmHg">35.0001</cn>
									<ci>P1O</ci>
								</apply>
								<cn cellml:units="dimensionless">3</cn>
							</apply>
							<cn cellml:units="mmHg3">42875</cn>
						</apply>
					</apply>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="O2_consumption_by_NM_tissue" component_2="pressure_of_O2_in_NM_tissue_cells"/>
		<map_variables variable_1="POT" variable_2="POT"/>
	</connection>
	<connection>
		<map_components component_1="O2_consumption_by_NM_tissue" component_2="non_muscle_O2_delivery"/>
		<map_variables variable_1="AOM" variable_2="AOM"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="O2_consumption_by_NM_tissue" component_2="NM_O2_delivery_parameter_values"/>
		<map_variables variable_1="O2M" variable_2="O2M"/>
	</connection>

<!-- ========================================	DELIVERY OF O2 TO NON-MUSCLE TISSUES	============================================= -->
	<component 	name="delivery_of_O2_to_NM_tissues" 
				cmeta:id="delivery_of_O2_to_NM_tissues">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#delivery_of_O2_to_NM_tissues">
				<rdf:value>
				ONM6:  
				The pressure gradient of the oxygen between the venous or capillary blood of the 
				non-muscle tissues and the tissue cells themselves (PGRN) is equal to the pressure 
				of the oxygen in the venous blood (POV) minus the pressure in the non-muscle 
				tissue cells (POT).

				ONM7:  
				The delivery of oxygen to the non-muscle tissues (DOB) is equal to blood flow to 
				the tissues (BFN) times the oxygen pressure gradient between the venous or capillary 
				blood and the tissues (PGRN) times a numerical factor for conductance of oxygen from 
				the capillaries to the tissue cells.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ONM6_and_ONM7">
				<rdf:value>
				ONM6:  
				The pressure gradient of the oxygen between the venous or capillary blood of the 
				non-muscle tissues and the tissue cells themselves (PGRN) is equal to the pressure 
				of the oxygen in the venous blood (POV) minus the pressure in the non-muscle 
				tissue cells (POT).

				ONM7:  
				The delivery of oxygen to the non-muscle tissues (DOB) is equal to blood flow to 
				the tissues (BFN) times the oxygen pressure gradient between the venous or capillary 
				blood and the tissues (PGRN) times a numerical factor for conductance of oxygen from 
				the capillaries to the tissue cells.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="POT"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="POV"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="BFN"	units="L_per_minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="delivery_of_O2_to_NM_tissues_DOB"
					name="DOB" 	units="mL_per_minute" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="ONM6_and_ONM7">
				<eq/>
				<ci>DOB</ci>
				<apply>
					<times/>
					<apply>
						<minus/>
						<ci>POV</ci>
						<ci>POT</ci>
					</apply>
					<cn cellml:units="per_mmHg">12.857</cn>
					<ci>BFN</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="delivery_of_O2_to_NM_tissues" component_2="pressure_of_O2_in_NM_tissue_cells"/>
		<map_variables variable_1="POT" variable_2="POT"/>
	</connection>
	<connection>
		<map_components component_1="delivery_of_O2_to_NM_tissues" component_2="non_muscle_O2_delivery"/>
		<map_variables variable_1="DOB" variable_2="DOB"/>
		<map_variables variable_1="BFN" variable_2="BFN"/>
	</connection>

<!-- ========================================	VOLUME OF O2 IN NON-MUSCLE TISSUE	============================================= -->
	<component 	name="volume_of_O2_in_NM_tissue" 
				cmeta:id="volume_of_O2_in_NM_tissue">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#volume_of_O2_in_NM_tissue">
				<rdf:value>
				ONM8:  
				The rate of change of oxygen in the non-muscle tissues (DO2N) is equal to the rate
				of delivery of oxygen to the non-muscle tissues (DOB) minus the rate of metabolism 
				of oxygen in the tissues (MO2).

				ONM9:  
				Limitation in the use of oxygen by the tissues (MO2) when tissue oxygenation (Q02) 
				falls very low.

				ONM10:  
				The instantaneous quantity of oxygen in the tissues (Q02) is calculated by integrating 
				the rate of change of the oxygen in these tissues (D02N).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ONM8">
				<rdf:value>
				ONM8:  
				The rate of change of oxygen in the non-muscle tissues (DO2N) is equal to the rate
				of delivery of oxygen to the non-muscle tissues (DOB) minus the rate of metabolism 
				of oxygen in the tissues (MO2).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ONM9">
				<rdf:value>
				ONM9:  
				Limitation in the use of oxygen by the tissues (MO2) when tissue oxygenation (Q02) 
				falls very low.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ONM10">
				<rdf:value>
				ONM10:  
				The instantaneous quantity of oxygen in the tissues (Q02) is calculated by integrating 
				the rate of change of the oxygen in these tissues (D02N).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ONM10_cont">
				<rdf:value>
				ONM10:  
				The instantaneous quantity of oxygen in the tissues (Q02) is calculated by integrating 
				the rate of change of the oxygen in these tissues (D02N).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="DOB"	units="mL_per_minute" private_interface="none" public_interface="in"/>
		<variable name="MO2"	units="mL_per_minute" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="QO2" 	units="mL" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable name="DO2N"	units="mL_per_minute" private_interface="none" public_interface="none"/>
		<variable name="DO2N1"	units="mL_per_minute" private_interface="none" public_interface="none"/>
		<variable name="QO2T"	initial_value="72.2362"	units="mL" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="ONM8">
				<eq/>
				<ci>DO2N1</ci>
				<apply>
					<minus/>
					<ci>DOB</ci>
					<ci>MO2</ci>
				</apply>
			</apply>
			<apply id="ONM9">
				<eq/>
				<ci>DO2N</ci>
				<piecewise>
					<piece>
						<apply>
							<times/>
							<ci>DO2N1</ci>
							<cn cellml:units="dimensionless">0.1</cn>
						</apply>
						<apply>
							<and/>
							<apply>
								<lt/>
								<ci>QO2</ci>
								<cn cellml:units="mL">6</cn>
							</apply>
							<apply>
								<lt/>
								<ci>DO2N1</ci>
								<cn cellml:units="mL_per_minute">0</cn>
							</apply>
						</apply>
					</piece>
					<otherwise>
						<ci>DO2N1</ci>
					</otherwise>
				</piecewise>
			</apply>
			<apply id="ONM10">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>QO2T</ci>
				</apply>
				<ci>DO2N</ci>
			</apply>
			<apply id="ONM10_cont">
				<eq/>
				<ci>QO2</ci>
				<piecewise>
					<piece>
						<cn cellml:units="mL">0</cn>
						<apply>
							<lt/>
							<ci>QO2T</ci>
							<cn cellml:units="mL">0</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>QO2T</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="volume_of_O2_in_NM_tissue" component_2="delivery_of_O2_to_NM_tissues"/>
		<map_variables variable_1="DOB" variable_2="DOB"/>
	</connection>
	<connection>
		<map_components component_1="volume_of_O2_in_NM_tissue" component_2="O2_consumption_by_NM_tissue"/>
		<map_variables variable_1="MO2" variable_2="MO2"/>
	</connection>
	<connection>
		<map_components component_1="volume_of_O2_in_NM_tissue" component_2="non_muscle_O2_delivery"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- ========================================	PRESSURE OF O2 IN NON-MUSCLE TISSUE CELLS	============================================= -->
	<component 	name="pressure_of_O2_in_NM_tissue_cells" 
				cmeta:id="pressure_of_O2_in_NM_tissue_cells">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#pressure_of_O2_in_NM_tissue_cells">
				<rdf:value>
				ONM11:  
				The pressure of the oxygen in the tissue cells of the non-muscle tissues (POT) 
				is equal to the quantity of oxygen in the tissues (Q02) times a constant.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#ONM11">
				<rdf:value>
				ONM11:  
				The pressure of the oxygen in the tissue cells of the non-muscle tissues (POT) 
				is equal to the quantity of oxygen in the tissues (Q02) times a constant.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="QO2"	units="mL" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="POT" 	units="mmHg" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="ONM11">
				<eq/>
				<ci>POT</ci>
				<apply>
					<times/>
					<ci>QO2</ci>
					<cn cellml:units="mmHg_per_mL">0.48611</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="pressure_of_O2_in_NM_tissue_cells" component_2="volume_of_O2_in_NM_tissue"/>
		<map_variables variable_1="QO2" variable_2="QO2"/>
	</connection>

<!-- ===========================================	NON-MUSCLE O2 DELIVERY PARAMETER VALUES	================================================= -->
	<component 	name="NM_O2_delivery_parameter_values"
				cmeta:id="NM_O2_delivery_parameter_values">
		<variable name="O2M" 		units="mL_per_minute" 	initial_value="164"			private_interface="none"	public_interface="out"/>	<!-- basic O2 utilization in nonmuscle tissues -->
	</component>


<!-- ============================================================================================================================================================ -->
<!-- ========================================================	PULMONARY FLUID DYNAMICS MODEL	=========================================================== -->
	<component 	name="pulmonary_fluid_dynamics" 
				cmeta:id="pulmonary_fluid_dynamics">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#pulmonary_fluid_dynamics">
				<rdf:value>
				This is a highly simplified analysis of pulmonary fluid dynamics.  In general, the gel 
				portion of the pulmonary fluid is ignored, so that the pulmonary fluid volume (VPF) is 
				in reality an approximation of the amount of fluid that is relatively freely mobile.  
				Though this fluid is called "interstitial fluid," it includes fluid in the respiratory 
				passages.  Likewise, the pressure-volume curve of the pulmonary interstitium is highly 
				simplified, as well as the control of lymph flow.  Nevertheless, for many purposes, this
				simplified analysis serves quite well.

				Encapsulation grouping component containing all the components in the Pulmonary Fluid Dynamics Model. 
				The inputs and outputs of the Pulmonary Fluid Dynamics Model must be passed by this component.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

		<variable name="time"	units="minute"	private_interface="out" public_interface="in"/>

<!-- Inputs from components in other models -->
		<variable name="PPC"	units="mmHg" private_interface="out" public_interface="in"/>
		<variable name="PPA"	units="mmHg" private_interface="out" public_interface="in"/>
		<variable name="PLA"	units="mmHg" private_interface="out" public_interface="in"/>
		<variable name="CPP"	units="gram_per_L" private_interface="out" public_interface="in"/>
		<variable name="RPV"	units="mmHg_minute_per_L" private_interface="out" public_interface="in"/>
		<variable name="RPA"	units="mmHg_minute_per_L" private_interface="out" public_interface="in"/>

<!-- Outputs to components in other models -->
		<variable name="DFP" 	units="L_per_minute" private_interface="in" public_interface="out"/>
		<variable name="VPF" 	units="litre" private_interface="in" public_interface="out"/>
		<variable name="PPD" 	units="gram_per_minute" private_interface="in" public_interface="out"/>
	</component>

<!-- OUTPUT CONNECTIONS -->
<!--	<connection>
		<map_components component_1="pulmonary_fluid_dynamics" component_2="pulmonary_interstitial_free_fluid_volume"/>
		<map_variables variable_1="DFP" variable_2="DFP"/>
		<map_variables variable_1="VPF" variable_2="VPF"/>
	</connection> -->
<!--	<connection>
		<map_components component_1="pulmonary_fluid_dynamics" component_2="concentration_of_protein_in_pulmonary_interstitium"/>
		<map_variables variable_1="PPD" variable_2="PPD"/>
	</connection> -->

<!-- ========================================	PULMONARY CAPILLARY PRESSURE	============================================= -->
	<component 	name="pulmonary_capillary_pressure" 
				cmeta:id="pulmonary_capillary_pressure">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#pulmonary_capillary_pressure">
				<rdf:value>
				PD1, PD2, PD2A, and PD3:  
				Calculation of pulmonary capillary pressure (PCP) from the pulmonary arterial 
				pressure (PPA) and left atrial pressure (PLA), and also from the vascular 
				resistances in the arterial (RPA) and venous (RPV) sides of the pulmonary 
				capillaries.  The arterial resistance is set to be 1.6 times the venous 
				resistance.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#PD1_to_PD3">
				<rdf:value>
				PD1, PD2, PD2A, and PD3:  
				Calculation of pulmonary capillary pressure (PCP) from the pulmonary arterial 
				pressure (PPA) and left atrial pressure (PLA), and also from the vascular 
				resistances in the arterial (RPA) and venous (RPV) sides of the pulmonary 
				capillaries.  The arterial resistance is set to be 1.6 times the venous 
				resistance.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PPA"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="PLA"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="RPV"	units="mmHg_minute_per_L" private_interface="none" public_interface="in"/>
		<variable name="RPA"	units="mmHg_minute_per_L" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="PCP" 	units="mmHg" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="PD1_to_PD3">
				<eq/>
				<ci>PCP</ci>
				<apply>
					<plus/>
					<apply>
						<divide/>
						<apply>
							<times/>
							<apply>
								<minus/>
								<ci>PPA</ci>
								<ci>PLA</ci>
							</apply>
							<ci>RPV</ci>
						</apply>
						<apply>
							<plus/>
							<ci>RPV</ci>
							<ci>RPA</ci>
						</apply>
					</apply>
					<ci>PLA</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="pulmonary_capillary_pressure" component_2="pulmonary_fluid_dynamics"/>
		<map_variables variable_1="PPA" variable_2="PPA"/>
		<map_variables variable_1="PLA" variable_2="PLA"/>
		<map_variables variable_1="RPV" variable_2="RPV"/>
		<map_variables variable_1="RPA" variable_2="RPA"/>
	</connection>

<!-- ========================================	FLUID FILTRATION INTO PULMONARY INTERSTITIUM	============================================= -->
	<component 	name="fluid_filtration_into_pulmonary_interstitium" 
				cmeta:id="fluid_filtration_into_pulmonary_interstitium">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#fluid_filtration_into_pulmonary_interstitium">
				<rdf:value>
				PD4:  
				The pressure gradient across the pulmonary capillary membrane (PGRPCM) is equal
				to the pulmonary capillary pressure (PCP), plus the colloid osmotic pressure of
				the pulmonary interstitial fluid (POS), minus the pulmonary interstitial fluid 
				pressure (PPI), minus the plasma colloid osmotic pressure (PPC).

				PD5:  
				Rate of filtration of fluid outward through the pulmonary capillary membranes 
				into the interstitium (PFI) is equal to the pressure gradient across the 
				pulmonary capillary membrane (PGRPCM) times the pulmonary capillary filtration 
				coefficient (CPF).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#PD4_and_PD5">
				<rdf:value>
				PD4:  
				The pressure gradient across the pulmonary capillary membrane (PGRPCM) is equal
				to the pulmonary capillary pressure (PCP), plus the colloid osmotic pressure of
				the pulmonary interstitial fluid (POS), minus the pulmonary interstitial fluid 
				pressure (PPI), minus the plasma colloid osmotic pressure (PPC).

				PD5:  
				Rate of filtration of fluid outward through the pulmonary capillary membranes 
				into the interstitium (PFI) is equal to the pressure gradient across the 
				pulmonary capillary membrane (PGRPCM) times the pulmonary capillary filtration 
				coefficient (CPF).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PCP"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="PPC"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="POS"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="PPI"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="PFI" 	units="L_per_minute" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="CPF"	units="L_per_minute_per_mmHg" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="PD4_and_PD5">
				<eq/>
				<ci>PFI</ci>
				<apply>
					<times/>
					<apply>
						<minus/>
						<apply>
							<plus/>
							<apply>
								<minus/>
								<ci>PCP</ci>
								<ci>PPI</ci>
							</apply>
							<ci>POS</ci>
						</apply>
						<ci>PPC</ci>
					</apply>
					<ci>CPF</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="fluid_filtration_into_pulmonary_interstitium" component_2="pulmonary_capillary_pressure"/>
		<map_variables variable_1="PCP" variable_2="PCP"/>
	</connection>
	<connection>
		<map_components component_1="fluid_filtration_into_pulmonary_interstitium" component_2="pulmonary_fluid_dynamics"/>
		<map_variables variable_1="PPC" variable_2="PPC"/>
	</connection>
	<connection>
		<map_components component_1="fluid_filtration_into_pulmonary_interstitium" component_2="colloid_osmotic_pressure_of_pulmonary_interstitium"/>
		<map_variables variable_1="POS" variable_2="POS"/>
	</connection>
	<connection>
		<map_components component_1="fluid_filtration_into_pulmonary_interstitium" component_2="pulmonary_interstitial_fluid_pressure"/>
		<map_variables variable_1="PPI" variable_2="PPI"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="fluid_filtration_into_pulmonary_interstitium" component_2="pulmonary_fluid_dynamics_parameter_values"/>
		<map_variables variable_1="CPF" variable_2="CPF"/>
	</connection>

<!-- ========================================	PULMONARY INTERSTITIAL FREE FLUID VOLUME	============================================= -->
	<component 	name="pulmonary_interstitial_free_fluid_volume" 
				cmeta:id="pulmonary_interstitial_free_fluid_volume">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#pulmonary_interstitial_free_fluid_volume">
				<rdf:value>
				PD5A, PD5B, and PD5C:  
				The rate of change of the fluid volume in the lungs (DFP) is equal to the rate 
				of filtration of fluid out of the pulmonary capillary membranes (PFI), minus the 
				rate of return of fluid to the circulation from the pulmonary interstitium by way 
				of the pulmonary lymphatics (PLF).  Blocks 5B and 5C are computational blocks for 
				preventing oscillation and for preventing overshoot of the iteration.  The damping
				factor (Z) is used at multiple points in the model.

				PD6:  
				Calculation of the volume of free fluid in the pulmonary interstitium (and 
				respiratory passageways) (VPF) by integrating the rate of change of the free fluid
				in the lungs (DFP).

				NB:	- Damping in PD5B has been removed so that DFP = DFZ.
					- PD5C has been rearranged so that "if" statement is dependent on VPF which may alter
					the DFP output. (DFP IMPORTED INTO CP10 - Capillary Dynamics! CHECK THIS!!!).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#PD5A">
				<rdf:value>
				PD5A, PD5B, and PD5C:  
				The rate of change of the fluid volume in the lungs (DFP) is equal to the rate 
				of filtration of fluid out of the pulmonary capillary membranes (PFI), minus the 
				rate of return of fluid to the circulation from the pulmonary interstitium by way 
				of the pulmonary lymphatics (PLF).  Blocks 5B and 5C are computational blocks for 
				preventing oscillation and for preventing overshoot of the iteration.  The damping
				factor (Z) is used at multiple points in the model.

				NB:	- Damping in PD5B has been removed so that DFP = DFZ.
					- PD5C has been rearranged so that "if" statement is dependent on VPF which may alter
					the DFP output. (DFP IMPORTED INTO CP10 - Capillary Dynamics! CHECK THIS!!!).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#PD5B">
				<rdf:value>
				PD5A, PD5B, and PD5C:  
				The rate of change of the fluid volume in the lungs (DFP) is equal to the rate 
				of filtration of fluid out of the pulmonary capillary membranes (PFI), minus the 
				rate of return of fluid to the circulation from the pulmonary interstitium by way 
				of the pulmonary lymphatics (PLF).  Blocks 5B and 5C are computational blocks for 
				preventing oscillation and for preventing overshoot of the iteration.  The damping
				factor (Z) is used at multiple points in the model.

				NB:	- Damping in PD5B has been removed so that DFP = DFZ.
					- PD5C has been rearranged so that "if" statement is dependent on VPF which may alter
					the DFP output. (DFP IMPORTED INTO CP10 - Capillary Dynamics! CHECK THIS!!!).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#PD5C">
				<rdf:value>
				PD5A, PD5B, and PD5C:  
				The rate of change of the fluid volume in the lungs (DFP) is equal to the rate 
				of filtration of fluid out of the pulmonary capillary membranes (PFI), minus the 
				rate of return of fluid to the circulation from the pulmonary interstitium by way 
				of the pulmonary lymphatics (PLF).  Blocks 5B and 5C are computational blocks for 
				preventing oscillation and for preventing overshoot of the iteration.  The damping
				factor (Z) is used at multiple points in the model.

				NB:	- Damping in PD5B has been removed so that DFP = DFZ.
					- PD5C has been rearranged so that "if" statement is dependent on VPF which may alter
					the DFP output. (DFP IMPORTED INTO CP10 - Capillary Dynamics! CHECK THIS!!!).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#PD6">
				<rdf:value>
				PD6:  
				Calculation of the volume of free fluid in the pulmonary interstitium (and 
				respiratory passageways) (VPF) by integrating the rate of change of the free fluid
				in the lungs (DFP).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

<!-- Inputs from other components -->
		<variable name="PFI"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="PLF"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="pulmonary_interstitial_free_fluid_volume_DFP"
					name="DFP" 	units="L_per_minute" private_interface="none" public_interface="out"/>
		<variable	cmeta:id="pulmonary_interstitial_free_fluid_volume_VPF"
					name="VPF" 	units="litre" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable name="DFZ"	units="L_per_minute" private_interface="none" public_interface="none"/>
		<variable name="VPF1"	initial_value="0.0123238"	units="litre" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="PD5A">
                <eq/>
                <ci>DFZ</ci>
                <apply>
                    <minus/>
                    <ci>PFI</ci>
                    <ci>PLF</ci>
                </apply>
            </apply>
			<apply id="PD5B">
				<eq/>
				<ci>DFP</ci>
				<ci>DFZ</ci>
			</apply>
			<apply id="PD6">
                <eq/>
                <apply>
                    <diff/>
                    <bvar>
                        <ci>time</ci>
                    </bvar>
                    <ci>VPF1</ci>
                </apply>
                <ci>DFP</ci>
            </apply>
			<apply id="PD5C">
                <eq/>
                <ci>VPF</ci>
                <piecewise>
                    <piece>
                        <cn cellml:units="litre">0.001</cn>
                        <apply>
                            <lt/>
                            <ci>VPF1</ci>
                            <cn cellml:units="litre">0.001</cn>
                        </apply>
                    </piece>
                    <otherwise>
                        <ci>VPF1</ci>
                    </otherwise>
                </piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="pulmonary_interstitial_free_fluid_volume" component_2="fluid_filtration_into_pulmonary_interstitium"/>
		<map_variables variable_1="PFI" variable_2="PFI"/>
	</connection>
	<connection>
		<map_components component_1="pulmonary_interstitial_free_fluid_volume" component_2="lung_lymphatic_protein_flow"/>
		<map_variables variable_1="PLF" variable_2="PLF"/>
	</connection>
	<connection>
		<map_components component_1="pulmonary_interstitial_free_fluid_volume" component_2="pulmonary_fluid_dynamics"/>
		<map_variables variable_1="DFP" variable_2="DFP"/>
		<map_variables variable_1="VPF" variable_2="VPF"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- ========================================	PULMONARY INTERSTITIAL FLUID PRESSURE	============================================= -->
	<component 	name="pulmonary_interstitial_fluid_pressure" 
				cmeta:id="pulmonary_interstitial_fluid_pressure">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#pulmonary_interstitial_fluid_pressure">
				<rdf:value>
				PD10 and PD11:  
				Curve-fitting blocks to calculate the pulmonary interstitial fluid pressure (PPI) 
				from the pulmonary interstitial fluid volume (VPF).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#PD10_and_PD11">
				<rdf:value>
				PD10 and PD11:  
				Curve-fitting blocks to calculate the pulmonary interstitial fluid pressure (PPI) 
				from the pulmonary interstitial fluid volume (VPF).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="VPF"	units="litre" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="PPI" 	units="mmHg" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="PD10_and_PD11">
				<eq/>
				<ci>PPI</ci>
				<apply>
					<minus/>
					<cn cellml:units="mmHg">2</cn>
					<apply>
						<divide/>
						<cn cellml:units="mmHg_L">0.15</cn>
						<ci>VPF</ci>
					</apply>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="pulmonary_interstitial_fluid_pressure" component_2="pulmonary_interstitial_free_fluid_volume"/>
		<map_variables variable_1="VPF" variable_2="VPF"/>
	</connection>

<!-- ========================================	CONCENTRATION OF PROTEIN IN PULMONARY INTERSTITIUM	============================================= -->
	<component 	name="concentration_of_protein_in_pulmonary_interstitium" 
				cmeta:id="concentration_of_protein_in_pulmonary_interstitium">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#concentration_of_protein_in_pulmonary_interstitium">
				<rdf:value>
				PD15, PD15A, and PD15B:  
				The rate of change of the total quantity of protein in the pulmonary interstitium (PPD)
				is equal to the rate of influx of protein into the interstitium as a result of protein 
				leakage through the pulmonary capillary membrane (PPN) minus the rate of return of protein 
				to the circulation from the interstitium by way of the lymphatics (PPO).  Blocks 15A and 
				15B are computational blocks for the purpose of preventing overshoot of an iteration and 
				for preventing oscillation.  The factor (Z) is a damping factor that is used widely 
				throughout the model.
				NB:	- Damping in PF15A has been removed so that PPD = PPZ.
					- PD15B has been rearranged so that "if" statement is dependent on PPR which may alter
					the PPD output. (PPD IMPORTED INTO CP33 - Capillary Dynamics! CHECK THIS!!!).

				PD16:  
				The total quantity of protein in the pulmonary interstital free fluid (PPR) is calculated 
				by integrating with respect to time the rate of change of protein in the pulmonary 
				interstitium (PPD).

				PD17:  
				The concentration of protein in the pulmonary interstitium (CPN) is equal to the total 
				quantity of protein in the interstitium (PPR) divided by the volume of interstitial 
				fluid (VPF).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#PD15">
				<rdf:value>
				PD15, PD15A, and PD15B:  
				The rate of change of the total quantity of protein in the pulmonary interstitium (PPD)
				is equal to the rate of influx of protein into the interstitium as a result of protein 
				leakage through the pulmonary capillary membrane (PPN) minus the rate of return of protein 
				to the circulation from the interstitium by way of the lymphatics (PPO).  Blocks 15A and 
				15B are computational blocks for the purpose of preventing overshoot of an iteration and 
				for preventing oscillation.  The factor (Z) is a damping factor that is used widely 
				throughout the model.

				NB:	- Damping in PF15A has been removed so that PPD = PPZ.
					- PD15B has been rearranged so that "if" statement is dependent on PPR which may alter
					the PPD output. (PPD IMPORTED INTO CP33 - Capillary Dynamics! CHECK THIS!!!).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#PD15A">
				<rdf:value>
				PD15, PD15A, and PD15B:  
				The rate of change of the total quantity of protein in the pulmonary interstitium (PPD)
				is equal to the rate of influx of protein into the interstitium as a result of protein 
				leakage through the pulmonary capillary membrane (PPN) minus the rate of return of protein 
				to the circulation from the interstitium by way of the lymphatics (PPO).  Blocks 15A and 
				15B are computational blocks for the purpose of preventing overshoot of an iteration and 
				for preventing oscillation.  The factor (Z) is a damping factor that is used widely 
				throughout the model.

				NB:	- Damping in PF15A has been removed so that PPD = PPZ.
					- PD15B has been rearranged so that "if" statement is dependent on PPR which may alter
					the PPD output. (PPD IMPORTED INTO CP33 - Capillary Dynamics! CHECK THIS!!!).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#PD15B">
				<rdf:value>
				PD15, PD15A, and PD15B:  
				The rate of change of the total quantity of protein in the pulmonary interstitium (PPD)
				is equal to the rate of influx of protein into the interstitium as a result of protein 
				leakage through the pulmonary capillary membrane (PPN) minus the rate of return of protein 
				to the circulation from the interstitium by way of the lymphatics (PPO).  Blocks 15A and 
				15B are computational blocks for the purpose of preventing overshoot of an iteration and 
				for preventing oscillation.  The factor (Z) is a damping factor that is used widely 
				throughout the model.

				NB:	- Damping in PF15A has been removed so that PPD = PPZ.
					- PD15B has been rearranged so that "if" statement is dependent on PPR which may alter
					the PPD output. (PPD IMPORTED INTO CP33 - Capillary Dynamics! CHECK THIS!!!).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#PD16">
				<rdf:value>
				PD16:  
				The total quantity of protein in the pulmonary interstital free fluid (PPR) is calculated 
				by integrating with respect to time the rate of change of protein in the pulmonary 
				interstitium (PPD).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#PD17">
				<rdf:value>
				PD17:  
				The concentration of protein in the pulmonary interstitium (CPN) is equal to the total 
				quantity of protein in the interstitium (PPR) divided by the volume of interstitial 
				fluid (VPF).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PPO"	units="gram_per_minute" private_interface="none" public_interface="in"/>
		<variable name="PPN"	units="gram_per_minute" private_interface="none" public_interface="in"/>
		<variable name="VPF"	units="litre" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="concentration_of_protein_in_pulmonary_interstitium_PPD" 
					name="PPD" 	units="gram_per_minute" private_interface="none" public_interface="out"/>
		<variable name="CPN" 	units="gram_per_L" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable name="PPZ"	units="gram_per_minute" private_interface="none" public_interface="none"/>
		<variable name="PPR1"	initial_value="0.419998"	units="gram" private_interface="none" public_interface="none"/>
		<variable name="PPR"	units="gram" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="PD15">
				<eq/>
				<ci>PPZ</ci>
				<apply>
					<minus/>
					<ci>PPN</ci>
					<ci>PPO</ci>
				</apply>
			</apply>
			<apply id="PD15A">
				<eq/>
				<ci>PPD</ci>
				<ci>PPZ</ci>
			</apply>
			<apply id="PD16">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>PPR1</ci>
				</apply>
				<ci>PPD</ci>
			</apply>
			<apply id="PD15B">
                <eq/>
                <ci>PPR</ci>
                <piecewise>
                    <piece>
                        <cn cellml:units="gram">0.025</cn>
                        <apply>
                            <lt/>
                            <ci>PPR1</ci>
                            <cn cellml:units="gram">0.025</cn>
                        </apply>
                    </piece>
                    <otherwise>
                        <ci>PPR1</ci>
                    </otherwise>
                </piecewise>
			</apply>
			<apply id="PD17">
				<eq/>
				<ci>CPN</ci>
				<apply>
					<divide/>
					<ci>PPR</ci>
					<ci>VPF</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="concentration_of_protein_in_pulmonary_interstitium" component_2="pulmonary_interstitial_free_fluid_volume"/>
		<map_variables variable_1="VPF" variable_2="VPF"/>
	</connection>
	<connection>
		<map_components component_1="concentration_of_protein_in_pulmonary_interstitium" component_2="pulmonary_fluid_dynamics"/>
		<map_variables variable_1="PPD" variable_2="PPD"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- ========================================	COLLOID OSMOTIC PRESSURE OF PULMONARY INTERSTITIUM	============================================= -->
	<component 	name="colloid_osmotic_pressure_of_pulmonary_interstitium" 
				cmeta:id="colloid_osmotic_pressure_of_pulmonary_interstitium">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#colloid_osmotic_pressure_of_pulmonary_interstitium">
				<rdf:value>
				PD18:  
				The colloid osmotic pressure of the pulmonary interstitial fluid (POS) is equal to 
				the concentration of protein in the pulmonary interstitium (CPN) times a constant.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#PD18">
				<rdf:value>
				PD18:  
				The colloid osmotic pressure of the pulmonary interstitial fluid (POS) is equal to 
				the concentration of protein in the pulmonary interstitium (CPN) times a constant.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="CPN"	units="gram_per_L" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="POS" 	units="mmHg" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="PD18">
				<eq/>
				<ci>POS</ci>
				<apply>
					<times/>
					<ci>CPN</ci>
					<cn cellml:units="L_mmHg_per_gram">0.4</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="colloid_osmotic_pressure_of_pulmonary_interstitium" component_2="concentration_of_protein_in_pulmonary_interstitium"/>
		<map_variables variable_1="CPN" variable_2="CPN"/>
	</connection>

<!-- ========================================	PROTEIN LEAKAGE INTO PULMONARY INTERSTITIUM		============================================= -->
	<component 	name="protein_leakage_into_pulmonary_interstitium" 
				cmeta:id="protein_leakage_into_pulmonary_interstitium">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#protein_leakage_into_pulmonary_interstitium">
				<rdf:value>
				PD19 and PD20:  
				The rate of leakage of protein through the pulmonary capillary membrane into the pulmonary 
				interstitium (PPN) is equal to the concentration of protein in the plasma (CPP), minus the
				concentration of protein in the pulmonary interstitium (CPN) times a constant.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#PD19_and_PD20">
				<rdf:value>
				PD19 and PD20:  
				The rate of leakage of protein through the pulmonary capillary membrane into the pulmonary 
				interstitium (PPN) is equal to the concentration of protein in the plasma (CPP), minus the
				concentration of protein in the pulmonary interstitium (CPN) times a constant.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="CPP"	units="gram_per_L" private_interface="none" public_interface="in"/>
		<variable name="CPN"	units="gram_per_L" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="PPN" 	units="gram_per_minute" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="PD19_and_PD20">
				<eq/>
				<ci>PPN</ci>
				<apply>
					<times/>
					<apply>
						<minus/>
						<ci>CPP</ci>
						<ci>CPN</ci>
					</apply>
					<cn cellml:units="L_per_minute">0.000225</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="protein_leakage_into_pulmonary_interstitium" component_2="pulmonary_fluid_dynamics"/>
		<map_variables variable_1="CPP" variable_2="CPP"/>
	</connection>
	<connection>
		<map_components component_1="protein_leakage_into_pulmonary_interstitium" component_2="concentration_of_protein_in_pulmonary_interstitium"/>
		<map_variables variable_1="CPN" variable_2="CPN"/>
		<map_variables variable_1="PPN" variable_2="PPN"/>
	</connection>

<!-- ========================================	LUNG LYMPHATIC PROTEIN FLOW		============================================= -->
	<component 	name="lung_lymphatic_protein_flow" 
				cmeta:id="lung_lymphatic_protein_flow">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#lung_lymphatic_protein_flow">
				<rdf:value>
				PD12 and PD13:  
				Curve-fitting blocks to calculate the rate of pulmonary lymph flow (PLF) from the 
				pulmonary interstitial fluid pressure (PPI).

				PD14:  
				Rate of return of protein from the pulmonary interstitium to the circulation in 
				the pulmonary lymph (PPO) is equal to the concentration of protein in the 
				pulmonary interstitial fluid (CPN) times the rate of pulmonary lymph flow (PLF).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#PD12_and_PD13">
				<rdf:value>
				PD12 and PD13:  
				Curve-fitting blocks to calculate the rate of pulmonary lymph flow (PLF) from the 
				pulmonary interstitial fluid pressure (PPI).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#PD14">
				<rdf:value>
				PD14:  
				Rate of return of protein from the pulmonary interstitium to the circulation in 
				the pulmonary lymph (PPO) is equal to the concentration of protein in the 
				pulmonary interstitial fluid (CPN) times the rate of pulmonary lymph flow (PLF).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PPI"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="CPN"	units="gram_per_L" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="PLF" 	units="L_per_minute" private_interface="none" public_interface="out"/>
		<variable name="PPO" 	units="gram_per_minute" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="PD12_and_PD13">
				<eq/>
				<ci>PLF</ci>
				<apply>
					<times/>
					<apply>
						<plus/>
						<ci>PPI</ci>
						<cn cellml:units="mmHg">11</cn>
					</apply>
					<cn cellml:units="L_per_minute_per_mmHg">0.0003</cn>
				</apply>
			</apply>
			<apply id="PD14">
				<eq/>
				<ci>PPO</ci>
				<apply>
					<times/>
					<ci>PLF</ci>
					<ci>CPN</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="lung_lymphatic_protein_flow" component_2="pulmonary_interstitial_fluid_pressure"/>
		<map_variables variable_1="PPI" variable_2="PPI"/>
	</connection>
	<connection>
		<map_components component_1="lung_lymphatic_protein_flow" component_2="concentration_of_protein_in_pulmonary_interstitium"/>
		<map_variables variable_1="CPN" variable_2="CPN"/>
		<map_variables variable_1="PPO" variable_2="PPO"/>
	</connection>

<!-- =======================================	PULMONARY FLUID DYNAMICS PARAMETER VALUES	=============================================== -->
	<component 	name="pulmonary_fluid_dynamics_parameter_values"
				cmeta:id="pulmonary_fluid_dynamics_parameter_values">
		<variable name="CPF" 		units="L_per_minute_per_mmHg" 	initial_value="0.0003"		private_interface="none"	public_interface="out"/>	<!-- pulmonary capillary filtration coefficient [P] -->
	</component>

<!-- ============================================================================================================================================================ -->

<!-- ========================================================	PULMONARY OXYGEN UPTAKE MODEL	=========================================================== -->
	<component 	name="pulmonary_O2_uptake" 
				cmeta:id="pulmonary_O2_uptake">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#pulmonary_O2_uptake">
				<rdf:value>
				This section calculates the dynamics of oxygen uptake by the lungs, and calculates 
				also the combination of the oxygen with the hemoglobin of the blood.  

				Encapsulation grouping component containing all the components in the Pulmonary Oxygen Uptake Model. 
				The inputs and outputs of the Pulmonary Oxygen Uptake Model must be passed by this component.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

		<variable name="time"	units="minute"	private_interface="out" public_interface="in"/>

<!-- Inputs from components in other models -->
		<variable name="VPF"	units="litre" private_interface="out" public_interface="in"/>
		<variable name="DOB"	units="mL_per_minute" private_interface="out" public_interface="in"/>
		<variable name="QRO"	units="L_per_minute"  private_interface="out" public_interface="in"/>
		<variable name="RMO"	units="mL_per_minute" private_interface="out" public_interface="in"/>
		<variable name="HM"		units="dimensionless" private_interface="out" public_interface="in"/>

<!-- Outputs to components in other models -->
		<variable name="OVA" 	units="mL_per_L" private_interface="in" public_interface="out"/>
		<variable name="PO2ART" 	units="mmHg" private_interface="in" public_interface="out"/>
		<variable name="OSA" 	units="dimensionless" private_interface="in" public_interface="out"/>
	</component>

<!-- OUTPUT CONNECTIONS -->
<!--	<connection>
		<map_components component_1="pulmonary_O2_uptake" component_2="O2_volume_of_arterial_blood"/>
		<map_variables variable_1="OVA" variable_2="OVA"/>
	</connection> -->
<!--	<connection>
		<map_components component_1="pulmonary_O2_uptake" component_2="arterial_PO2"/>
		<map_variables variable_1="PO2ART" variable_2="PO2ART"/>
		<map_variables variable_1="OSA" variable_2="OSA"/>
	</connection> -->

<!-- ========================================	TOTAL O2 UTILIZATION	============================================= -->
	<component 	name="total_O2_utilization" 
				cmeta:id="total_O2_utilization">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#total_O2_utilization">
				<rdf:value>
				PO1:  
				Calculation of total oxygen utilization by the body (O2UTIL) by adding the oxygen
				usage by the muscles (RMO) plus oxygen usage by non-muscle parts of the body (DOB).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#PO1">
				<rdf:value>
				PO1:  
				Calculation of total oxygen utilization by the body (O2UTIL) by adding the oxygen
				usage by the muscles (RMO) plus oxygen usage by non-muscle parts of the body (DOB).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="DOB"	units="mL_per_minute" private_interface="none" public_interface="in"/>
		<variable name="RMO"	units="mL_per_minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="O2UTIL" 	units="mL_per_minute" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="PO1">
				<eq/>
				<ci>O2UTIL</ci>
				<apply>
					<plus/>
					<ci>DOB</ci>
					<ci>RMO</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="total_O2_utilization" component_2="pulmonary_O2_uptake"/>
		<map_variables variable_1="DOB" variable_2="DOB"/>
		<map_variables variable_1="RMO" variable_2="RMO"/>
	</connection>

<!-- ========================================	ALVEOLAR VENTILATION	============================================= -->
	<component 	name="alveolar_ventilation" 
				cmeta:id="alveolar_ventilation">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#alveolar_ventilation">
				<rdf:value>
				PO2:  
				Calculation of alveolar ventilation (ALVENT).  The details of this block will 
				be discussed in relation to blocks 14 through 24.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#PO2">
				<rdf:value>
				PO2:  
				Calculation of alveolar ventilation (ALVENT).  The details of this block will 
				be discussed in relation to blocks 14 through 24.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="O2UTIL"	units="mL_per_minute" private_interface="none" public_interface="in"/>
		<variable name="O2VAD2"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="O2VTS2"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="ALVENT" 	units="L_per_minute" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="VNTSTM"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="PO2">
				<eq/>
				<ci>ALVENT</ci>
				<apply>
					<times/>
					<ci>O2UTIL</ci>
					<ci>VNTSTM</ci>
					<cn cellml:units="L_per_mL">0.026667</cn>
					<ci>O2VTS2</ci>
					<ci>O2VAD2</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="alveolar_ventilation" component_2="total_O2_utilization"/>
		<map_variables variable_1="O2UTIL" variable_2="O2UTIL"/>
	</connection>
	<connection>
		<map_components component_1="alveolar_ventilation" component_2="progressive_chemoreceptor_adaptation_of_alveolar_ventilation"/>
		<map_variables variable_1="O2VAD2" variable_2="O2VAD2"/>
	</connection>
	<connection>
		<map_components component_1="alveolar_ventilation" component_2="acute_chemoreceptor_adaptation_of_alveolar_ventilation"/>
		<map_variables variable_1="O2VTS2" variable_2="O2VTS2"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="alveolar_ventilation" component_2="pulmonary_O2_uptake_parameter_values"/>
		<map_variables variable_1="VNTSTM" variable_2="VNTSTM"/>
	</connection>

<!-- ========================================	ALVEOLAR OXYGEN PRESSURE	============================================= -->
	<component 	name="alveolar_PO2" 
				cmeta:id="alveolar_PO2">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#alveolar_PO2">
				<rdf:value>
				PO3 and PO4:  
				The output of block 3 is the decrease in oxygen pressure between the humidified
				air breathed into the trachea and the PO2 in the alveoli.  It is calculated by 
				dividing the rate of oxygen utilization (O2UTIL) by the rate of alveolar 
				ventilation (ALVENT) and by a constant.  Block PO4 calculates the alveolar PO2 (PO2ALV) 
				by subtracting the PO2 decrease (output of block 3) from the PO2 of ambient 
				humidified air (PO2AMB) entering the trachea.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#PO3_and_PO4">
				<rdf:value>
				PO3 and PO4:  
				The output of block 3 is the decrease in oxygen pressure between the humidified
				air breathed into the trachea and the PO2 in the alveoli.  It is calculated by 
				dividing the rate of oxygen utilization (O2UTIL) by the rate of alveolar 
				ventilation (ALVENT) and by a constant.  Block PO4 calculates the alveolar PO2 (PO2ALV) 
				by subtracting the PO2 decrease (output of block 3) from the PO2 of ambient 
				humidified air (PO2AMB) entering the trachea.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="O2UTIL"	units="mL_per_minute" private_interface="none" public_interface="in"/>
		<variable name="ALVENT"	units="L_per_minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="PO2ALV" 	units="mmHg" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="PO2AMB"	units="mmHg" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="PO3_and_PO4">
				<eq/>
				<ci>PO2ALV</ci>
				<apply>
					<minus/>
					<ci>PO2AMB</ci>
					<apply>
						<divide/>
						<apply>
							<divide/>
							<ci>O2UTIL</ci>
							<ci>ALVENT</ci>
						</apply>
						<cn cellml:units="mL_per_L_per_mmHg">0.761</cn>
					</apply>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="alveolar_PO2" component_2="total_O2_utilization"/>
		<map_variables variable_1="O2UTIL" variable_2="O2UTIL"/>
	</connection>
	<connection>
		<map_components component_1="alveolar_PO2" component_2="alveolar_ventilation"/>
		<map_variables variable_1="ALVENT" variable_2="ALVENT"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="alveolar_PO2" component_2="pulmonary_O2_uptake_parameter_values"/>
		<map_variables variable_1="PO2AMB" variable_2="PO2AMB"/>
	</connection>

<!-- ========================================	RESPIRATORY OXYGEN DIFFUSION INTO CAPILLARIES	============================================= -->
	<component 	name="respiratory_O2_diffusion_into_capillaries" 
				cmeta:id="respiratory_O2_diffusion_into_capillaries">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#respiratory_O2_diffusion_into_capillaries">
				<rdf:value>
				PO5:  Calculation of the pressure difference between alveolar PO2 (PO2ALV) and 
				arterialized blood PO2 (PO2ART) leaving the lungs.

				PO6 and PO7:  
				Calculation of the respiratory diffusion coefficient (RSPDFC) for diffusion of 
				oxygen between the alveoli and the blood leaving the pulmonary capillaries.  
				Block PO6 calculates a resistance to oxygen diffusion that varies in proportion
				to the amount of free fluid in the alveoli (VPF) and the amount of pulmonary tissue 
				through which the oxygen must diffuse (VPTISS).  Block 7 calculates the respiratory 
				diffusion coefficient (RSPDFC) by dividing a constant (PL2) by the resistance to 
				diffusion as calculated from block 6.

				PO8:  
				Calculation of the rate of oxygen diffusion through the pulmonary membrane into 
				the capillaries (O2DFS) by multiplying the pressure difference (output of Block PO5)
				between the alveoli and the pulmonary arterialized capillary blood times the respiratory
				diffusion coefficient (RSPDFC).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#PO6_and_PO7">
				<rdf:value>
				PO6 and PO7:  
				Calculation of the respiratory diffusion coefficient (RSPDFC) for diffusion of 
				oxygen between the alveoli and the blood leaving the pulmonary capillaries.  
				Block PO6 calculates a resistance to oxygen diffusion that varies in proportion
				to the amount of free fluid in the alveoli (VPF) and the amount of pulmonary tissue 
				through which the oxygen must diffuse (VPTISS).  Block 7 calculates the respiratory 
				diffusion coefficient (RSPDFC) by dividing a constant (PL2) by the resistance to 
				diffusion as calculated from block 6.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#PO5_and_PO8">
				<rdf:value>
				PO5:  Calculation of the pressure difference between alveolar PO2 (PO2ALV) and 
				arterialized blood PO2 (PO2ART) leaving the lungs.

				PO8:  
				Calculation of the rate of oxygen diffusion through the pulmonary membrane into 
				the capillaries (O2DFS) by multiplying the pressure difference (output of Block PO5)
				between the alveoli and the pulmonary arterialized capillary blood times the respiratory
				diffusion coefficient (RSPDFC).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PO2ALV"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="PO2ART"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="VPF"	units="litre" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="O2DFS" 	units="mL_per_minute" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="PL2"	units="L_mL_per_minute_per_mmHg" private_interface="none" public_interface="in"/>
		<variable name="VPTISS"	units="litre" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="RSPDFC"	units="mL_per_minute_per_mmHg" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="PO6_and_PO7">
				<eq/>
				<ci>RSPDFC</ci>
				<apply>
					<divide/>
					<ci>PL2</ci>
					<apply>
						<plus/>
						<ci>VPTISS</ci>
						<ci>VPF</ci>
					</apply>
				</apply>
			</apply>
			<apply id="PO5_and_PO8">
				<eq/>
				<ci>O2DFS</ci>
				<apply>
					<times/>
					<apply>
						<minus/>
						<ci>PO2ALV</ci>
						<ci>PO2ART</ci>
					</apply>
					<ci>RSPDFC</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="respiratory_O2_diffusion_into_capillaries" component_2="alveolar_PO2"/>
		<map_variables variable_1="PO2ALV" variable_2="PO2ALV"/>
	</connection>
	<connection>
		<map_components component_1="respiratory_O2_diffusion_into_capillaries" component_2="arterial_PO2"/>
		<map_variables variable_1="PO2ART" variable_2="PO2ART"/>
	</connection>
	<connection>
		<map_components component_1="respiratory_O2_diffusion_into_capillaries" component_2="pulmonary_O2_uptake"/>
		<map_variables variable_1="VPF" variable_2="VPF"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="respiratory_O2_diffusion_into_capillaries" component_2="pulmonary_O2_uptake_parameter_values"/>
		<map_variables variable_1="PL2" variable_2="PL2"/>
		<map_variables variable_1="VPTISS" variable_2="VPTISS"/>
	</connection>

<!-- ========================================	OXYGEN VOLUME OF ARTERIAL BLOOD	============================================= -->
	<component 	name="O2_volume_of_arterial_blood" 
				cmeta:id="O2_volume_of_arterial_blood">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#O2_volume_of_arterial_blood">
				<rdf:value>
				PO9:  
				Calculation of the difference between oxygen diffusion into the capillary blood 
				of the lungs (O2DFS) and the rate of oxygen utilization by the body (O2UTIL).

				PO10:  
				Calculation of the rate of change of oxygen per liter of blood passing through 
				the lungs (DOVA) by dividing the rate of change of total amount of oxygen entering 
				the arterial blood per minute (output of Block 9) by the rate of blood flow through 
				the lungs (QRO).  

				PO11:  
				Calculation of the volume of oxygen in milliliters in each liter of arterial blood (OVA) 
				leaving the left ventricle by integrating the rate of change of oxygen in the 
				arterial blood (DOVA) with respect to time.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#PO9_and_PO10">
				<rdf:value>
				PO9:  
				Calculation of the difference between oxygen diffusion into the capillary blood 
				of the lungs (O2DFS) and the rate of oxygen utilization by the body (O2UTIL).

				PO10:  
				Calculation of the rate of change of oxygen per liter of blood passing through 
				the lungs (DOVA) by dividing the rate of change of total amount of oxygen entering 
				the arterial blood per minute (output of Block 9) by the rate of blood flow through 
				the lungs (QRO).  
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#PO11">
				<rdf:value>
				PO11:  
				Calculation of the volume of oxygen in milliliters in each liter of arterial blood (OVA) 
				leaving the left ventricle by integrating the rate of change of oxygen in the 
				arterial blood (DOVA) with respect to time.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="O2DFS"	units="mL_per_minute" private_interface="none" public_interface="in"/>
		<variable name="O2UTIL"	units="mL_per_minute" private_interface="none" public_interface="in"/>
		<variable name="QRO"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="O2_volume_of_arterial_blood_OVA"
					name="OVA" 	initial_value="204.497"	units="mL_per_L" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable name="DOVA"	units="mL_per_L_per_minute" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="PO9_and_PO10">
				<eq/>
				<ci>DOVA</ci>
				<apply>
					<divide/>
					<apply>
						<minus/>
						<ci>O2DFS</ci>
						<ci>O2UTIL</ci>
					</apply>
					<apply>
						<times/>
						<ci>QRO</ci>
						<cn cellml:units="minute">1.0</cn>
					</apply>
				</apply>
			</apply>
			<apply id="PO11">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>OVA</ci>
				</apply>
				<ci>DOVA</ci>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="O2_volume_of_arterial_blood" component_2="respiratory_O2_diffusion_into_capillaries"/>
		<map_variables variable_1="O2DFS" variable_2="O2DFS"/>
	</connection>
	<connection>
		<map_components component_1="O2_volume_of_arterial_blood" component_2="total_O2_utilization"/>
		<map_variables variable_1="O2UTIL" variable_2="O2UTIL"/>
	</connection>
	<connection>
		<map_components component_1="O2_volume_of_arterial_blood" component_2="pulmonary_O2_uptake"/>
		<map_variables variable_1="QRO" variable_2="QRO"/>
		<map_variables variable_1="OVA" variable_2="OVA"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- ========================================	ARTERIAL OXYGEN PRESSURE	============================================= -->
	<component 	name="arterial_PO2" 
				cmeta:id="arterial_PO2">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#arterial_PO2">
				<rdf:value>
				PO12:  
				Calculation of the arterial oxygen saturation (OSA) by dividing concentration 
				of arterial oxygen in the arterial blood (OVA) by the hematocrit (HM) and by a
				constant that relates the saturation to oxygen content.

				PO13:  
				Calculation of PO2 in the arterial blood (PO2ART) at each level of arterial 
				hemoglobin oxygen saturation (OSA).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#PO12">
				<rdf:value>
				PO12:  
				Calculation of the arterial oxygen saturation (OSA) by dividing concentration 
				of arterial oxygen in the arterial blood (OVA) by the hematocrit (HM) and by a
				constant that relates the saturation to oxygen content.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#PO13">
				<rdf:value>
				PO13:  
				Calculation of PO2 in the arterial blood (PO2ART) at each level of arterial 
				hemoglobin oxygen saturation (OSA).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="OVA"	units="mL_per_L" private_interface="none" public_interface="in"/>
		<variable name="HM"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="arterial_PO2_PO2ART"
					name="PO2ART" 	units="mmHg" private_interface="none" public_interface="out"/>
		<variable 	cmeta:id="arterial_PO2_OSA"
					name="OSA" 	units="dimensionless" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="PO12">
				<eq/>
				<ci>OSA</ci>
				<apply>
					<divide/>
					<apply>
						<divide/>
						<ci>OVA</ci>
						<ci>HM</ci>
					</apply>
					<cn cellml:units="dimensionless">5.25</cn>
				</apply>
			</apply>
			<apply id="PO13">
				<eq/>
				<ci>PO2ART</ci>
				<piecewise>
					<piece>
						<apply>
							<plus/>
							<cn cellml:units="mmHg">114</cn>
							<apply>
								<times/>
								<apply>
									<minus/>
									<ci>OSA</ci>
									<cn cellml:units="dimensionless">1</cn>
								</apply>
								<cn cellml:units="mmHg">6667</cn>
							</apply>
						</apply>
						<apply>
							<gt/>
							<ci>OSA</ci>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
					</piece>
					<piece>
						<apply>
							<plus/>
							<cn cellml:units="mmHg">74</cn>
							<apply>
								<times/>
								<apply>
									<minus/>
									<ci>OSA</ci>
									<cn cellml:units="dimensionless">0.936</cn>
								</apply>
								<cn cellml:units="mmHg">625</cn>
							</apply>
						</apply>
						<apply>
							<and/>
							<apply>
								<gt/>
								<ci>OSA</ci>
								<cn cellml:units="dimensionless">0.936</cn>
							</apply>
							<apply>
								<leq/>
								<ci>OSA</ci>
								<cn cellml:units="dimensionless">1</cn>
							</apply>
						</apply>
					</piece>
					<piece>
						<apply>
							<plus/>
							<cn cellml:units="mmHg">46</cn>
							<apply>
								<times/>
								<apply>
									<minus/>
									<ci>OSA</ci>
									<cn cellml:units="dimensionless">0.8</cn>
								</apply>
								<cn cellml:units="mmHg">205.882</cn>
							</apply>
						</apply>
						<apply>
							<and/>
							<apply>
								<gt/>
								<ci>OSA</ci>
								<cn cellml:units="dimensionless">0.8</cn>
							</apply>
							<apply>
								<leq/>
								<ci>OSA</ci>
								<cn cellml:units="dimensionless">0.936</cn>
							</apply>
						</apply>
					</piece>
					<otherwise>
						<apply>
							<times/>
							<ci>OSA</ci>
							<cn cellml:units="mmHg">57.5</cn>
						</apply>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="arterial_PO2" component_2="O2_volume_of_arterial_blood"/>
		<map_variables variable_1="OVA" variable_2="OVA"/>
	</connection>
	<connection>
		<map_components component_1="arterial_PO2" component_2="pulmonary_O2_uptake"/>
		<map_variables variable_1="PO2ART" variable_2="PO2ART"/>
		<map_variables variable_1="OSA" variable_2="OSA"/>
		<map_variables variable_1="HM" variable_2="HM"/>
	</connection>

<!-- =====================================		CHEMORECEPTOR ADAPTATION OF ALVEOLAR VENTILATION		========================================= -->
	<component 	name="chemoreceptor_adaptation_of_alveolar_ventilation" 
				cmeta:id="chemoreceptor_adaptation_of_alveolar_ventilation">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#chemoreceptor_adaptation_of_alveolar_ventilation">
				<rdf:value>
				Containment grouping component for "acute_chemoreceptor_adaptation_of_alveolar_ventilation"
				and "progressive_chemoreceptor_adaptation_of_alveolar_ventilation".

				PO14, PO15, PO16, PO17, PO18, PO19, PO20, PO21, PO22, PO23, PO24, and PO22:  
				This system of blocks calculates the effect of the O2 chemoreceptors in the carotid 
				and aortic bodies on alveoli ventilation (ALVENT).  That is, when the arterial PO2 
				from Block 13 (PO2ART) falls below normal, this increases the alveolar ventilation 
				because of increased chemoreceptor stimulation.  The increase in ventilation occurs 
				in two stages.  One of these is an acute stage (calculated in Blocks 14-18) which 
				becomes fully activated within a few minutes.  The second stage is a progressive 
				adaptation of this chemoreceptor control mechanism to increase pulmonary ventilation 
				another several fold over 1 to 3 days (calculated in Blocks 19-24).  

				The output of Block 18 (O2VTS2) is the initial acute adjustment of ventilation.  
				Blocks 16 and 17 set the upper and lower limits to this acute response to low oxygen.  
				The delayed effect on ventilation is the output of Block 24 (O2VAD2).  Blocks 19, 20, 
				and 21 adjust the sensitivity of this delayed response.  Block 22 provides the time 
				constant for this response.  Block 2 multiplies the short-time constant response (O2VST2) 
				times the long-time constant response (O2VAD2).  Another input to Block 2 is the rate 
				of oxygen utilization by the body [O2UTIL].  Physiologically, this is not a stimulus 
				to ventilation.  However, in this model we do not calculate CO2 in the blood which is 
				a powerful stimulant of ventilation.  Since the amount of carbon dioxide that is formed
				over a period of minutes is approximately proportional to the rate of oxygen utilization, 
				we have used this O2UTIL factor as one of the normalized stimulatory factors of alveolar 
				ventilation in Block 2, but realizing that this is simply a substitute for rate of carbon 
				dioxide formation if the model were worked out in much greater detail.  Still another input
				is a special factor (VNTSTM) which allows the overall level of alveolar ventilation to be 
				increased or decreased artificially.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

	</component>
	
<!-- ===================================	ACUTE CHEMORECEPTOR ADAPTATION OF ALVEOLAR VENTILATION		================================== -->
	<component 	name="acute_chemoreceptor_adaptation_of_alveolar_ventilation" 
				cmeta:id="acute_chemoreceptor_adaptation_of_alveolar_ventilation">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#acute_chemoreceptor_adaptation_of_alveolar_ventilation">
				<rdf:value>
				See description in "chemoreceptor_adaptation_of_alveolar_ventilation".
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PO2ART"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="O2VTS2" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable name="O2VTST"	units="dimensionless" private_interface="none" public_interface="none"/>
		<variable name="O2VTST1"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="PO14_and_PO15">
				<eq/>
				<ci>O2VTST1</ci>
				<apply>
					<divide/>
					<apply>
						<minus/>
						<ci>PO2ART</ci>
						<cn cellml:units="mmHg">67</cn>
					</apply>
					<cn cellml:units="mmHg">30</cn>
				</apply>
			</apply>
			<apply id="PO16_and_PO17">
				<eq/>
				<ci>O2VTST</ci>
				<piecewise>
					<piece>
						<cn cellml:units="dimensionless">1</cn>
						<apply>
							<gt/>
							<ci>O2VTST1</ci>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
					</piece>
					<piece>
						<cn cellml:units="dimensionless">0.6</cn>
						<apply>
							<lt/>
							<ci>O2VTST1</ci>
							<cn cellml:units="dimensionless">0.6</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>O2VTST1</ci>
					</otherwise>
				</piecewise>
			</apply>
			<apply id="PO18">
				<eq/>
				<ci>O2VTS2</ci>
				<apply>
					<divide/>
					<cn cellml:units="dimensionless">1</cn>
					<ci>O2VTST</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="acute_chemoreceptor_adaptation_of_alveolar_ventilation" component_2="arterial_PO2"/>
		<map_variables variable_1="PO2ART" variable_2="PO2ART"/>
	</connection>

<!-- ==============================	PROGRESSIVE CHEMORECEPTOR ADAPTATION OF ALVEOLAR VENTILATION	================================== -->
	<component 	name="progressive_chemoreceptor_adaptation_of_alveolar_ventilation" 
				cmeta:id="progressive_chemoreceptor_adaptation_of_alveolar_ventilation">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#progressive_chemoreceptor_adaptation_of_alveolar_ventilation">
				<rdf:value>
				See description in chemoreceptor_adaptation_of_alveolar_ventilation.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="O2VTS2"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="O2VAD2" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable name="DO2VAD"	units="per_minute" private_interface="none" public_interface="none"/>
		<variable name="O2VAD1"	initial_value="2.368e-07"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="PO19_to_PO22">
				<eq/>
				<ci>DO2VAD</ci>
				<apply>
					<times/>
					<apply>
						<minus/>
						<apply>
							<times/>
							<apply>
								<minus/>
								<ci>O2VTS2</ci>
								<cn cellml:units="dimensionless">1</cn>
							</apply>
							<cn cellml:units="dimensionless">3</cn>
						</apply>
						<ci>O2VAD1</ci>
					</apply>
					<cn cellml:units="per_minute">0.0005</cn>
				</apply>
			</apply>
			<apply id="PO23">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>O2VAD1</ci>
				</apply>
				<ci>DO2VAD</ci>
			</apply>
			<apply id="PO24">
				<eq/>
				<ci>O2VAD2</ci>
				<apply>
					<plus/>
					<ci>O2VAD1</ci>
					<cn cellml:units="dimensionless">1</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="progressive_chemoreceptor_adaptation_of_alveolar_ventilation" component_2="acute_chemoreceptor_adaptation_of_alveolar_ventilation"/>
		<map_variables variable_1="O2VTS2" variable_2="O2VTS2"/>
	</connection>
	<connection>
		<map_components component_1="progressive_chemoreceptor_adaptation_of_alveolar_ventilation" component_2="pulmonary_O2_uptake"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- ==========================================	PULMONARY OXYGEN UPTAKE PARAMETER VALUES		============================================= -->
	<component 	name="pulmonary_O2_uptake_parameter_values"
				cmeta:id="pulmonary_O2_uptake_parameter_values">
		<variable name="PO2AMB" 	units="mmHg" 	initial_value="150"			private_interface="none"	public_interface="out"/>	<!-- ambiant PO2 -->
		<variable name="PL2" 		units="L_mL_per_minute_per_mmHg" 	initial_value="1.8"			private_interface="none"	public_interface="out"/>	<!-- constant, computation of RSPDFC [P] -->
		<variable name="VPTISS" 	units="litre" 	initial_value="0.0175"		private_interface="none"	public_interface="out"/>	<!-- pulmonary tissue fluid volume [P] -->
		<variable name="VNTSTM" 	units="dimensionless" 	initial_value="1"			private_interface="none"	public_interface="out"/>	<!-- sensitivity controller for alveolar ventilation [P] -->
	</component>

<!-- ============================================================================================================================================================ -->

<!-- ===================================================	RED CELLS AND VISCOSITY MODEL	====================================================== -->
	<component 	name="red_cells_and_viscosity" 
				cmeta:id="red_cells_and_viscosity">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#red_cells_and_viscosity">
				<rdf:value>
				The red cell volume is considered to be controlled by two principal factors that 
				control the production of erythropoietin:  
				(1) the arterial blood oxygen saturation (OSA) and renal function as determined by 
				renal blood flow (RFN), and 
				(2) the fraction (REK) of the renal mass that is functional.

				Encapsulation grouping component containing all the components in the Red Cells and Viscosity Model. 
				The inputs and outputs of the Red Cells and Viscosity Model must be passed by this component.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

		<variable name="time"	units="minute"	private_interface="out" public_interface="in"/>

<!-- Inputs from components in other models -->
		<variable name="VP"	units="litre" private_interface="out" public_interface="in"/>

<!-- Outputs to components in other models -->
		<variable name="VIM" 	units="dimensionless" private_interface="in" public_interface="out"/>
		<variable name="HM" 	units="dimensionless" private_interface="in" public_interface="out"/>
		<variable name="HM1" 	units="dimensionless" private_interface="in" public_interface="out"/>
		<variable name="VRC" 	units="litre" private_interface="in" public_interface="out"/>
	</component>

<!-- OUTPUT CONNECTIONS -->
	<connection>
		<map_components component_1="red_cells_and_viscosity" component_2="blood_viscosity"/>
		<map_variables variable_1="VIM" variable_2="VIM"/>
	</connection>
<!--	<connection>
		<map_components component_1="red_cells_and_viscosity" component_2="hematocrit_fraction"/>
		<map_variables variable_1="HM" variable_2="HM"/>
		<map_variables variable_1="HM1" variable_2="HM1"/>
	</connection> -->
<!--	<connection>
		<map_components component_1="red_cells_and_viscosity" component_2="RBC_volume"/>
		<map_variables variable_1="VRC" variable_2="VRC"/>
	</connection> -->

<!-- ========================================	BLOOD VISCOSITY CALCULATIONS	============================================= -->
	<component 	name="blood_viscosity_calculations" 
				cmeta:id="blood_viscosity_calculations">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#blood_viscosity_calculations">
				<rdf:value>
				Containment grouping component for "hematocrit_fraction", "viscosity_due_to_RBCs"
				and "blood_viscosity".
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
	</component>

<!-- ========================================	HEMATOCRIT_FRACTION	============================================= -->
	<component 	name="hematocrit_fraction" 
				cmeta:id="hematocrit_fraction">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#hematocrit_fraction">
				<rdf:value>
				RC6:  
				Calculation of blood volume (VB) by adding the volume of the red blood cells (VRC) 
				to the plasma volume (VP).

				RC7:  
				The fraction of the blood that is composed of red blood cells (HM1) is equal to 
				the volume of red blood cells (VRC) divided by the blood volume (VB).

				RC8:  
				The hematocrit (HM) equals the fraction of the blood that is red cells (HM1) 
				times 100.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#RC6">
				<rdf:value>
				RC6:  
				Calculation of blood volume (VB) by adding the volume of the red blood cells (VRC) 
				to the plasma volume (VP).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#RC7">
				<rdf:value>
				RC7:  
				The fraction of the blood that is composed of red blood cells (HM1) is equal to 
				the volume of red blood cells (VRC) divided by the blood volume (VB).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#RC8">
				<rdf:value>
				RC8:  
				The hematocrit (HM) equals the fraction of the blood that is red cells (HM1) 
				times 100.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="VP"		units="litre" private_interface="none" public_interface="in"/>
		<variable name="VRC"	units="litre" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="HM" 	units="dimensionless" private_interface="none" public_interface="out"/>
		<variable	cmeta:id="hematocrit_fraction_HM1"
					name="HM1" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable name="VB"		units="litre" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="RC6">
				<eq/>
				<ci>VB</ci>
				<apply>
					<plus/>
					<ci>VP</ci>
					<ci>VRC</ci>
				</apply>
			</apply>
			<apply id="RC7">
				<eq/>
				<ci>HM1</ci>
				<apply>
					<divide/>
					<ci>VRC</ci>
					<ci>VB</ci>
				</apply>
			</apply>
			<apply id="RC8">
				<eq/>
				<ci>HM</ci>
				<apply>
					<times/>
					<cn cellml:units="dimensionless">100</cn>
					<ci>HM1</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="hematocrit_fraction" component_2="red_cells_and_viscosity"/>
		<map_variables variable_1="HM" variable_2="HM"/>
		<map_variables variable_1="HM1" variable_2="HM1"/>
		<map_variables variable_1="VP" variable_2="VP"/>
	</connection>
	<connection>
		<map_components component_1="hematocrit_fraction" component_2="RBC_volume"/>
		<map_variables variable_1="VRC" variable_2="VRC"/>
	</connection>

<!-- ========================================	VISCOSITY DUE TO RED BLOOD CELLS	============================================= -->
	<component 	name="viscosity_due_to_RBCs" 
				cmeta:id="viscosity_due_to_RBCs">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#viscosity_due_to_RBCs">
				<rdf:value>
				RC9, RC10, and RC11:  
				Curve-fitting blocks to calculate the portion of the viscosity of the blood that
				is caused by red blood cells (VIE).  The two variables (HMK and HKM) are 
				curve-fitting constants.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#RC9_to_RC11">
				<rdf:value>
				RC9, RC10, and RC11:  
				Curve-fitting blocks to calculate the portion of the viscosity of the blood that
				is caused by red blood cells (VIE).  The two variables (HMK and HKM) are 
				curve-fitting constants.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="HM"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="VIE" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="HMK"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="HKM"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="RC9_to_RC11">
				<eq/>
				<ci>VIE</ci>
				<apply>
					<divide/>
					<ci>HM</ci>
					<apply>
						<times/>
						<apply>
							<minus/>
							<ci>HMK</ci>
							<ci>HM</ci>
						</apply>
						<ci>HKM</ci>
					</apply>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="viscosity_due_to_RBCs" component_2="hematocrit_fraction"/>
		<map_variables variable_1="HM" variable_2="HM"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="viscosity_due_to_RBCs" component_2="red_cells_and_viscosity_parameter_values"/>
		<map_variables variable_1="HMK" variable_2="HMK"/>
		<map_variables variable_1="HKM" variable_2="HKM"/>
	</connection>

<!-- ========================================	BLOOD VISCOSITY	============================================= -->
	<component 	name="blood_viscosity" 
				cmeta:id="blood_viscosity">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#blood_viscosity">
				<rdf:value>
				RC12:  
				The viscosity of the blood (VIB) when calculated as a multiple of the viscosity 
				of water is equal to the viscosity effect caused by the red cells (VIE) plus a 
				constant determined by the viscosity of the plasma.  

				RC13:  
				Calculation of a normalized viscosity multiplier factor (VIM) that is used elsewhere 
				in the circulation to calculate the effect of changes in the viscosity from normal 
				(assumed to be 1.0) on various circulatory effects.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#RC12">
				<rdf:value>
				RC12:  
				The viscosity of the blood (VIB) when calculated as a multiple of the viscosity 
				of water is equal to the viscosity effect caused by the red cells (VIE) plus a 
				constant determined by the viscosity of the plasma.  
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#RC13">
				<rdf:value>
				RC13:  
				Calculation of a normalized viscosity multiplier factor (VIM) that is used elsewhere 
				in the circulation to calculate the effect of changes in the viscosity from normal 
				(assumed to be 1.0) on various circulatory effects.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="VIE"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="blood_viscosity_VIM"
					name="VIM" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable name="VIB"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="RC12">
				<eq/>
				<ci>VIB</ci>
				<apply>
					<plus/>
					<ci>VIE</ci>
					<cn cellml:units="dimensionless">1.5</cn>
				</apply>
			</apply>
			<apply id="RC13">
				<eq/>
				<ci>VIM</ci>
				<apply>
					<times/>
					<cn cellml:units="dimensionless">0.3333</cn>
					<ci>VIB</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="blood_viscosity" component_2="viscosity_due_to_RBCs"/>
		<map_variables variable_1="VIE" variable_2="VIE"/>
	</connection>

<!-- ========================================	RED_BLOOD_CELLS_FORMATION_AND_DESTRUCTION	============================================= -->
	<component 	name="RBC_formation_and_destruction" 
				cmeta:id="RBC_formation_and_destruction">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#RBC_formation_and_destruction">
				<rdf:value>
				Containment grouping component for "oxygen_stimulation", "RBC_production",
				"RBC_destruction" and "blood_viscosity".
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
	</component>

<!-- ========================================	OXYGEN_STIMULATION	============================================= -->
	<component 	name="oxygen_stimulation" 
				cmeta:id="oxygen_stimulation">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#oxygen_stimulation">
				<rdf:value>
				RC1, RC1A, RC1B, RC1C, RC1D, RC2, RC2C, and RC2D:  
				Calculation of the effect of atmospheric O2 pressure (PO2AMB) on the 
				driving force (HM7) for production of red blood cells.  RC1A, RC1B, and RC1D 
				calculate the effect of pressures below the level of 80 mmHg, and RC1 the effect 
				of pressures above 80.  Blocks RC2, RC2C, and RC2D provide limits to the effects.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#RC1D">
				<rdf:value>
				RC1, RC1A, RC1B, RC1C, RC1D, RC2, RC2C, and RC2D:  
				Calculation of the effect of atmospheric O2 pressure (PO2AMB) on the 
				driving force (HM7) for production of red blood cells.  RC1A, RC1B, and RC1D 
				calculate the effect of pressures below the level of 80 mmHg, and RC1 the effect 
				of pressures above 80.  Blocks RC2, RC2C, and RC2D provide limits to the effects.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#RC1A_and_RC1B">
				<rdf:value>
				RC1, RC1A, RC1B, RC1C, RC1D, RC2, RC2C, and RC2D:  
				Calculation of the effect of atmospheric O2 pressure (PO2AMB) on the 
				driving force (HM7) for production of red blood cells.  RC1A, RC1B, and RC1D 
				calculate the effect of pressures below the level of 80 mmHg, and RC1 the effect 
				of pressures above 80.  Blocks RC2, RC2C, and RC2D provide limits to the effects.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#RC1">
				<rdf:value>
				RC1, RC1A, RC1B, RC1C, RC1D, RC2, RC2C, and RC2D:  
				Calculation of the effect of atmospheric O2 pressure (PO2AMB) on the 
				driving force (HM7) for production of red blood cells.  RC1A, RC1B, and RC1D 
				calculate the effect of pressures below the level of 80 mmHg, and RC1 the effect 
				of pressures above 80.  Blocks RC2, RC2C, and RC2D provide limits to the effects.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#RC1C_and_RC2C">
				<rdf:value>
				RC1, RC1A, RC1B, RC1C, RC1D, RC2, RC2C, and RC2D:  
				Calculation of the effect of atmospheric O2 pressure (PO2AMB) on the 
				driving force (HM7) for production of red blood cells.  RC1A, RC1B, and RC1D 
				calculate the effect of pressures below the level of 80 mmHg, and RC1 the effect 
				of pressures above 80.  Blocks RC2, RC2C, and RC2D provide limits to the effects.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#RC2">
				<rdf:value>
				RC1, RC1A, RC1B, RC1C, RC1D, RC2, RC2C, and RC2D:  
				Calculation of the effect of atmospheric O2 pressure (PO2AMB) on the 
				driving force (HM7) for production of red blood cells.  RC1A, RC1B, and RC1D 
				calculate the effect of pressures below the level of 80 mmHg, and RC1 the effect 
				of pressures above 80.  Blocks RC2, RC2C, and RC2D provide limits to the effects.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="HM"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="HM7" 	units="mmHg" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="PO2AMB"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="HM6"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="PO2AM1"	units="mmHg" private_interface="none" public_interface="none"/>
		<variable name="HM3"	units="mmHg" private_interface="none" public_interface="none"/>
		<variable name="HM4"	units="mmHg" private_interface="none" public_interface="none"/>
		<variable name="HM5"	units="mmHg" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="RC1D">
				<eq/>
				<ci>PO2AM1</ci>
				<piecewise>
					<piece>
						<cn cellml:units="mmHg">80</cn>
						<apply>
							<gt/>
							<ci>PO2AMB</ci>
							<cn cellml:units="mmHg">80</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>PO2AMB</ci>
					</otherwise>
				</piecewise>
			</apply>
			<apply id="RC1A_and_RC1B">
				<eq/>
				<ci>HM3</ci>
				<apply>
					<times/>
					<apply>
						<minus/>
						<ci>PO2AM1</ci>
						<cn cellml:units="mmHg">40</cn>
					</apply>
					<ci>HM</ci>
				</apply>
			</apply>
			<apply id="RC1">
				<eq/>
				<ci>HM4</ci>
				<apply>
					<minus/>
					<ci>PO2AMB</ci>
					<cn cellml:units="mmHg">40</cn>
				</apply>
			</apply>
			<apply id="RC1C_and_RC2C">
				<eq/>
				<ci>HM5</ci>
				<piecewise>
					<piece>
						<cn cellml:units="mmHg">0</cn>
						<apply>
							<lt/>
							<apply>
								<plus/>
								<ci>HM3</ci>
								<ci>HM4</ci>
							</apply>
							<cn cellml:units="mmHg">0</cn>
						</apply>
					</piece>
					<otherwise>
						<apply>
							<plus/>
							<ci>HM3</ci>
							<ci>HM4</ci>
						</apply>
					</otherwise>
				</piecewise>
			</apply>
			<apply id="RC2">
				<eq/>
				<ci>HM7</ci>
				<apply>
					<minus/>
					<ci>HM6</ci>
					<ci>HM5</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="oxygen_stimulation" component_2="hematocrit_fraction"/>
		<map_variables variable_1="HM" variable_2="HM"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="oxygen_stimulation" component_2="red_cells_and_viscosity_parameter_values"/>
		<map_variables variable_1="PO2AMB" variable_2="PO2AMB"/>
		<map_variables variable_1="HM6" variable_2="HM6"/>
	</connection>

<!-- ========================================	RED_BLOOD_CELL_PRODUCTION	============================================= -->
	<component 	name="RBC_production" 
				cmeta:id="RBC_production">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#RBC_production">
				<rdf:value>
				RC2A, RC2B, and RC2E:  
				Calculation of the rate of red blood cell production (RC1), with a lower limit 
				of zero set by Block RC2E, and the rate of production partly determined by the 
				amount of kidney mass available (REK) to produce erythropoition.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#RC2A_RC2B_and_RC2E">
				<rdf:value>
				RC2A, RC2B, and RC2E:  
				Calculation of the rate of red blood cell production (RC1), with a lower limit 
				of zero set by Block RC2E, and the rate of production partly determined by the 
				amount of kidney mass available (REK) to produce erythropoition.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="HM7"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="RC1" 	units="L_per_minute" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="HM8"	units="L_per_minute_per_mmHg" private_interface="none" public_interface="in"/>
		<variable name="REK"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="RC2A_RC2B_and_RC2E">
				<eq/>
				<ci>RC1</ci>
				<piecewise>
					<piece>
						<cn cellml:units="L_per_minute">0</cn>
						<apply>
							<lt/>
							<apply>
								<plus/>
								<apply>
									<times/>
									<ci>HM7</ci>
									<ci>HM8</ci>
									<ci>REK</ci>
								</apply>
								<cn cellml:units="L_per_minute">0.000005</cn>
							</apply>
							<cn cellml:units="L_per_minute">0</cn>
						</apply>
					</piece>
					<otherwise>
						<apply>
							<plus/>
							<apply>
								<times/>
								<ci>HM7</ci>
								<ci>HM8</ci>
								<ci>REK</ci>
							</apply>
							<cn cellml:units="L_per_minute">0.000005</cn>
						</apply>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="RBC_production" component_2="oxygen_stimulation"/>
		<map_variables variable_1="HM7" variable_2="HM7"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="RBC_production" component_2="red_cells_and_viscosity_parameter_values"/>
		<map_variables variable_1="HM8" variable_2="HM8"/>
		<map_variables variable_1="REK" variable_2="REK"/>
	</connection>

<!-- ========================================	RED_BLOOD_CELL_DESTRUCTION	============================================= -->
	<component 	name="RBC_destruction" 
				cmeta:id="RBC_destruction">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#RBC_destruction">
				<rdf:value>
				RC5:  
				Calculation of the rate of red cell volume destruction (RC2) caused by the presence 
				of an already large red cell volume (VRC).  The rate factor for this effect is (RKC).  
				Also increased blood viscosity is considered to cause increased destruction.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#RC5">
				<rdf:value>
				RC5:  
				Calculation of the rate of red cell volume destruction (RC2) caused by the presence 
				of an already large red cell volume (VRC).  The rate factor for this effect is (RKC).  
				Also increased blood viscosity is considered to cause increased destruction.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="VRC"	units="litre" private_interface="none" public_interface="in"/>
		<variable name="VIM"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="RC2" 	units="L_per_minute" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="RKC"	units="per_minute" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="RC5">
				<eq/>
				<ci>RC2</ci>
				<apply>
					<times/>
					<ci>VRC</ci>
					<ci>RKC</ci>
					<ci>VIM</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="RBC_destruction" component_2="RBC_volume"/>
		<map_variables variable_1="VRC" variable_2="VRC"/>
		<map_variables variable_1="RC2" variable_2="RC2"/>
	</connection>
	<connection>
		<map_components component_1="RBC_destruction" component_2="blood_viscosity"/>
		<map_variables variable_1="VIM" variable_2="VIM"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="RBC_destruction" component_2="red_cells_and_viscosity_parameter_values"/>
		<map_variables variable_1="RKC" variable_2="RKC"/>
	</connection>

<!-- ========================================	RED_BLOOD_CELL_VOLUME	============================================= -->
	<component 	name="RBC_volume" 
				cmeta:id="RBC_volume">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#RBC_volume">
				<rdf:value>
				RC3:  
				Calculation of the rate of change of red blood cell volume (RCD) by adding 
				the rate of RBC production (RC1) and subtracting the rate of destruction (RC2).
				NB - Parameter TRRBC is not in diagram.

				RC4:  
				Calculation of the instantaneous volume of red blood cells by integrating the rate 
				of change in total volume of red cells (RCD).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#RC3">
				<rdf:value>
				RC3:  
				Calculation of the rate of change of red blood cell volume (RCD) by adding 
				the rate of RBC production (RC1) and subtracting the rate of destruction (RC2).
				NB - Parameter TRRBC is not in diagram.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#RC4">
				<rdf:value>
				RC4:  
				Calculation of the instantaneous volume of red blood cells by integrating the rate 
				of change in total volume of red cells (RCD).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="RC1"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="RC2"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="RBC_volume_VRC"
					name="VRC" 	initial_value="2.00439"	units="litre" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="TRRBC"	units="L_per_minute" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="RCD"	units="L_per_minute" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="RC3">
				<eq/>
				<ci>RCD</ci>
				<apply>
					<plus/>
					<apply>
						<minus/>
						<ci>RC1</ci>
						<ci>RC2</ci>
					</apply>
					<ci>TRRBC</ci>
				</apply>
			</apply>
			<apply id="RC4">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>VRC</ci>
				</apply>
				<ci>RCD</ci>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="RBC_volume" component_2="RBC_production"/>
		<map_variables variable_1="RC1" variable_2="RC1"/>
	</connection>
	<connection>
		<map_components component_1="RBC_volume" component_2="red_cells_and_viscosity"/>
		<map_variables variable_1="VRC" variable_2="VRC"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="RBC_volume" component_2="red_cells_and_viscosity_parameter_values"/>
		<map_variables variable_1="TRRBC" variable_2="TRRBC"/>
	</connection>

<!-- ============================================		RED CELLS AND VISCOSITY PARAMETER VALUES	================================================ -->
	<component 	name="red_cells_and_viscosity_parameter_values"
				cmeta:id="red_cells_and_viscosity_parameter_values">
		<variable name="HMK" 		units="dimensionless" 	initial_value="90"			private_interface="none"	public_interface="out"/>	<!-- portion of blood viscosity due to red blood cells -->
		<variable name="HKM" 		units="dimensionless" 	initial_value="0.53333"		private_interface="none"	public_interface="out"/>	<!-- blood viscosity factor caused by red blood cells -->
		<variable name="PO2AMB" 	units="mmHg" 	initial_value="150"			private_interface="none"	public_interface="out"/>	<!-- ambiant PO2 -->
		<variable name="HM6" 		units="mmHg" 	initial_value="1850"		private_interface="none"	public_interface="out"/>	<!-- erythropoietic limiter [P] -->
		<variable name="HM8" 		units="L_per_minute_per_mmHg" 	initial_value="4.714e-08"	private_interface="none"	public_interface="out"/>	<!-- sensitivity control for erythropoiesis [P] -->
		<variable name="REK" 		units="dimensionless" 	initial_value="1"			private_interface="none"	public_interface="out"/>	<!-- total functional renal mass, ratio to normal [P] -->
		<variable name="RKC" 		units="per_minute" 	initial_value="5.8e-06"		private_interface="none"	public_interface="out"/>	<!-- sensitivity for red blood cell destruction [P] -->
		<variable name="TRRBC" 		units="L_per_minute" 	initial_value="0"			private_interface="none"	public_interface="out"/>	<!-- rate of transfusion of pure RBC -->
	</component>

<!-- ============================================================================================================================================================ -->

<!-- ========================================================	STRESS RELAXATION MODEL	=========================================================== -->
	<component 	name="stress_relaxation" 
				cmeta:id="stress_relaxation">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#stress_relaxation">
				<rdf:value>
				Effect of Stress Relaxation on Basic Venous Volume (V0)
				This section calculates the effect over a period of time caused by excess volume 
				(or too little volume) in the venous tree to cause changes in the volume holding 
				capacity of the venous tree when it is fully filled with blood but at zero pressure.  
				In this model, there are two separate parallel stress relaxations of the veins.  
				One of these has a short time constant (SRK) and the other has a long time constant (SRK2).

				Encapsulation grouping component containing all the components in the Stress Relaxation Model.  
				The inputs and outputs of the Stress Relaxation Model must be passed by this component.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

		<variable name="time"	units="minute"	private_interface="out" public_interface="in"/>

<!-- Inputs from components in other models -->
		<variable name="VVE"	units="litre" private_interface="out" public_interface="in"/>

<!-- Outputs to components in other models -->
		<variable name="VV6" 	units="litre" private_interface="in" public_interface="out"/>
		<variable name="VV7" 	units="litre" private_interface="in" public_interface="out"/>
	</component>

<!-- OUTPUT CONNECTIONS -->
<!--	<connection>
		<map_components component_1="stress_relaxation" component_2="short_term_stress_relaxation"/>
		<map_variables variable_1="VV7" variable_2="VV7"/>
	</connection> -->
<!--	<connection>
		<map_components component_1="stress_relaxation" component_2="long_term_stress_relaxation"/>
		<map_variables variable_1="VV6" variable_2="VV6"/>
	</connection> -->

<!-- ========================================	SHORT-TERM STRESS RELAXATION	============================================= -->
	<component 	name="short_term_stress_relaxation" 
				cmeta:id="short_term_stress_relaxation">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#short_term_stress_relaxation">
				<rdf:value>
				SR1 and SR2:  
				Calculation of the ultimate degree of change in basic venous volume to 
				be caused by the short-term stress relaxation factor with input to the 
				system equal to the instantaneous excess venous volume (VVE); a multiplier 
				factor controls the degree of stress relaxation that will occur (SR).

				SR3, SR4, and SR5:  
				This is a delay circuit having a short time constant (SRK).  The output of 
				this circuit (VV7) approaches the ultimate degree of stress relaxation 
				caused by short-term stress relaxation as calculated from Block SR2.
				NB - REMOVED THE DAMPING FROM THE INTEGRAL!!!
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#SR1_to_SR5">
				<rdf:value>
				SR1 and SR2:  
				Calculation of the ultimate degree of change in basic venous volume to 
				be caused by the short-term stress relaxation factor with input to the 
				system equal to the instantaneous excess venous volume (VVE); a multiplier 
				factor controls the degree of stress relaxation that will occur (SR).

				SR3, SR4, and SR5:  
				This is a delay circuit having a short time constant (SRK).  The output of 
				this circuit (VV7) approaches the ultimate degree of stress relaxation 
				caused by short-term stress relaxation as calculated from Block SR2.
				NB - REMOVED THE DAMPING FROM THE INTEGRAL!!!
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="VVE"	units="litre" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute"	private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="short_term_stress_relaxation_VV7"
					name="VV7" 	initial_value="0.00366525"	units="litre" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="SR"		units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="SRK"	units="minute" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="SR1_to_SR5">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>VV7</ci>
				</apply>
				<apply>
					<divide/>
					<apply>
						<minus/>
						<apply>
							<times/>
							<apply>
								<minus/>
								<ci>VVE</ci>
								<cn cellml:units="litre">0.74</cn>
							</apply>
							<ci>SR</ci>
						</apply>
						<ci>VV7</ci>
					</apply>
					<ci>SRK</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="short_term_stress_relaxation" component_2="stress_relaxation"/>
		<map_variables variable_1="VV7" variable_2="VV7"/>
		<map_variables variable_1="VVE" variable_2="VVE"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="short_term_stress_relaxation" component_2="stress_relaxation_parameter_values"/>
		<map_variables variable_1="SR" variable_2="SR"/>
		<map_variables variable_1="SRK" variable_2="SRK"/>
	</connection>

<!-- ========================================	LONG-TERM STRESS RELAXATION	============================================= -->
	<component 	name="long_term_stress_relaxation" 
				cmeta:id="long_term_stress_relaxation">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#long_term_stress_relaxation">
				<rdf:value>
				SR1A, SR2A, SR3A, AR4A, and SR5A:  
				Similar calculations to the above but this time with a long time constant 
				for stress relaxation (SRK2), and also having a separate variable for control 
				of the ultimate degree of the stress relaxation (SR2).  The output of this 
				long time constant stress relaxation (VV6) along with the output from the 
				short time constant stress relaxation (VV7) are subtracted from the actual 
				venous volume (VVS) in Block CD15 in the hemodynamic section of the model.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#SR1A_to_SR5A">
				<rdf:value>
				SR1A, SR2A, SR3A, AR4A, and SR5A:  
				Similar calculations to the above but this time with a long time constant 
				for stress relaxation (SRK2), and also having a separate variable for control 
				of the ultimate degree of the stress relaxation (SR2).  The output of this 
				long time constant stress relaxation (VV6) along with the output from the 
				short time constant stress relaxation (VV7) are subtracted from the actual 
				venous volume (VVS) in Block CD15 in the hemodynamic section of the model.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="VVE"	units="litre" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="long_term_stress_relaxation_VV6"
					name="VV6" 	initial_value="0.0101913"	units="litre" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="SR2"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="SRK2"	units="minute" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="SR1A_to_SR5A">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>VV6</ci>
				</apply>
				<apply>
					<divide/>
					<apply>
						<minus/>
						<apply>
							<times/>
							<apply>
								<minus/>
								<ci>VVE</ci>
								<cn cellml:units="litre">0.74</cn>
							</apply>
							<ci>SR2</ci>
						</apply>
						<ci>VV6</ci>
					</apply>
					<ci>SRK2</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="long_term_stress_relaxation" component_2="stress_relaxation"/>
		<map_variables variable_1="VV6" variable_2="VV6"/>
		<map_variables variable_1="VVE" variable_2="VVE"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="long_term_stress_relaxation" component_2="stress_relaxation_parameter_values"/>
		<map_variables variable_1="SR2" variable_2="SR2"/>
		<map_variables variable_1="SRK2" variable_2="SRK2"/>
	</connection>

<!-- =========================================	STRESS RELAXATION PARAMETER VALUES	================================================== -->
	<component 	name="stress_relaxation_parameter_values"
				cmeta:id="stress_relaxation_parameter_values">
		<variable name="SR" 		units="dimensionless" 	initial_value="1"			private_interface="none"	public_interface="out"/>	<!-- sensitivity controller, short-term stress relaxation [P] -->
		<variable name="SR2" 		units="dimensionless" 	initial_value="1"			private_interface="none"	public_interface="out"/>	<!-- sensitivity controller, long-term stress relaxation [P] -->
		<variable name="SRK" 		units="minute" 	initial_value="5"			private_interface="none"	public_interface="out"/>	<!-- short time constant for stress relaxation [P] -->
		<variable name="SRK2" 		units="minute" 	initial_value="10000"		private_interface="none"	public_interface="out"/>	<!-- long time constant for stress relaxation [P] -->
	</component>

<!-- ============================================================================================================================================================ -->

<!-- ========================================================	THIRST DRINKING AND SALT APPETITE MODEL	=========================================================== -->
	<component 	name="thirst_drinking_and_salt_appetite" 
				cmeta:id="thirst_drinking_and_salt_appetite">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#thirst_drinking_and_salt_appetite">
				<rdf:value>
				The salt appetite is considered in this model to be related to the adequacy
				of body metabolism, as measured by the PO2 level in the non-muscle tissue
				cells (POT).  Also, when the concentration of angiotensin increases (ANM),
				this, too, increases salt intake.  For instance, in circulatory shock, when
				the adequacy of metabolism falls, the person develops a salt appetite.  For
				lack of information, no control function of salt concentration per se has
				been assumed, merely that when the body salt falls, circulatory effectiveness
				falls, angiotensin increases, and a salt appetite develops.

				Three separate factors are assumed to drive the thirst mechanism, the
				concentration of antidiuretic hormone, which in turn is driven by changes
				in electrolyte composition (as detailed in another section) and second, the
				effect of angiotensin on thirst, and third, the effect of the salt appetite
				stimulation on thirst.

				Encapsulation grouping component containing all the components in the Thirst, Drinking 
				and Salt Appetite Model. The inputs and outputs of the Thirst, Drinking and Salt Appetite
				Model must be passed by this component.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

		<variable name="time"	units="minute"	private_interface="out" public_interface="in"/>

<!-- Inputs from components in other models -->
		<variable name="ADHC"	units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="ANM"	units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="POT"	units="mmHg" private_interface="out" public_interface="in"/>

<!-- Outputs to components in other models -->
		<variable name="TVD" 	units="L_per_minute" private_interface="in" public_interface="out"/>
		<variable name="STH" 	units="dimensionless" private_interface="in" public_interface="out"/>
	</component>

<!-- OUTPUT CONNECTIONS -->
<!--	<connection>
		<map_components component_1="thirst_drinking_and_salt_appetite" component_2="rate_of_fluid_intake"/>
		<map_variables variable_1="TVD" variable_2="TVD"/>
	</connection> -->
<!--	<connection>
		<map_components component_1="thirst_drinking_and_salt_appetite" component_2="effect_of_salt_appetite_stimulation_on_thirst"/>
		<map_variables variable_1="STH" variable_2="STH"/>
	</connection> -->

<!-- ========================================	EFFECT OF SALT APPETITE STIMULATION ON THIRST	============================================= -->
	<component 	name="effect_of_salt_appetite_stimulation_on_thirst" 
				cmeta:id="effect_of_salt_appetite_stimulation_on_thirst">

		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#effect_of_salt_appetite_stimulation_on_thirst">
				<rdf:value>
				TS1, TS1A, TS2, TS2A, TS2B, TS2C, TS3, and TS4:
				These are curve-fitting blocks to derive a value for salt appetite and for partial control of
				thirst (STH) based on the input values of PO2 in the non-muscle tissue cells (POT) and the
				angiotensin multiplier effect (ANM).  The constant ANMSLT sets the sensitivity of salt appetite
				to angiotensin, and the constant Z10 sets the PO2 level below which POT exerts its effects.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#TS2_TS2A_and_TS2B">
				<rdf:value>
				TS1, TS1A, TS2, TS2A, TS2B, TS2C, TS3, and TS4:
				These are curve-fitting blocks to derive a value for salt appetite and for partial control of
				thirst (STH) based on the input values of PO2 in the non-muscle tissue cells (POT) and the
				angiotensin multiplier effect (ANM).  The constant ANMSLT sets the sensitivity of salt appetite
				to angiotensin, and the constant Z10 sets the PO2 level below which POT exerts its effects.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#TS1_TS1A_and_TS2C">
				<rdf:value>
				TS1, TS1A, TS2, TS2A, TS2B, TS2C, TS3, and TS4:
				These are curve-fitting blocks to derive a value for salt appetite and for partial control of
				thirst (STH) based on the input values of PO2 in the non-muscle tissue cells (POT) and the
				angiotensin multiplier effect (ANM).  The constant ANMSLT sets the sensitivity of salt appetite
				to angiotensin, and the constant Z10 sets the PO2 level below which POT exerts its effects.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#TS3_and_TS4">
				<rdf:value>
				TS1, TS1A, TS2, TS2A, TS2B, TS2C, TS3, and TS4:
				These are curve-fitting blocks to derive a value for salt appetite and for partial control of
				thirst (STH) based on the input values of PO2 in the non-muscle tissue cells (POT) and the
				angiotensin multiplier effect (ANM).  The constant ANMSLT sets the sensitivity of salt appetite
				to angiotensin, and the constant Z10 sets the PO2 level below which POT exerts its effects.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

<!-- Inputs from other components -->
		<variable name="ANM"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="POT"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="effect_of_salt_appetite_stimulation_on_thirst_STH"
					name="STH" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="ANMSLT"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="Z10"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="Z11" 	units="per_mmHg2" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="ANMSML"	units="dimensionless" private_interface="none" public_interface="none"/>
		<variable name="STH1"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="TS2_TS2A_and_TS2B">
				<eq/>
				<ci>ANMSML</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<apply>
							<minus/>
							<ci>ANM</ci>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
						<ci>ANMSLT</ci>
					</apply>
					<cn cellml:units="dimensionless">1</cn>
				</apply>
			</apply>
			<apply id="TS1_TS1A_and_TS2C">
				<eq/>
				<ci>STH1</ci>
				<apply>
					<times/>
					<apply>
						<power/>
						<apply>
							<minus/>
							<ci>Z10</ci>
							<ci>POT</ci>
						</apply>
						<cn cellml:units="dimensionless">2</cn>
					</apply>
					<ci>Z11</ci>
					<ci>ANMSML</ci>
				</apply>
			</apply>
			<apply id="TS3_and_TS4">
				<eq/>
				<ci>STH</ci>
				<piecewise>
					<piece>
						<cn cellml:units="dimensionless">0.8</cn>
						<apply>
							<lt/>
							<ci>STH1</ci>
							<cn cellml:units="dimensionless">0.8</cn>
						</apply>
					</piece>
					<piece>
						<cn cellml:units="dimensionless">8</cn>
						<apply>
							<gt/>
							<ci>STH1</ci>
							<cn cellml:units="dimensionless">8</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>STH1</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="effect_of_salt_appetite_stimulation_on_thirst" component_2="thirst_drinking_and_salt_appetite"/>
		<map_variables variable_1="STH" variable_2="STH"/>
		<map_variables variable_1="ANM" variable_2="ANM"/>
		<map_variables variable_1="POT" variable_2="POT"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="effect_of_salt_appetite_stimulation_on_thirst" component_2="thirst_drinking_and_salt_appetite_parameter_values"/>
		<map_variables variable_1="ANMSLT" variable_2="ANMSLT"/>
		<map_variables variable_1="Z10" variable_2="Z10"/>
		<map_variables variable_1="Z11" variable_2="Z11"/>
	</connection>

<!-- ==============================================	EFFECT OF ANTIDIURETIC HOMONE ON THIRST	=============================================== -->
	<component 	name="effect_of_antidiuretic_hormone_on_thirst" 
				cmeta:id="effect_of_antidiuretic_hormone_on_thirst">

		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#effect_of_antidiuretic_hormone_on_thirst">
				<rdf:value>
				TS5, TS6, and TS7:  
				These blocks are a sensitivity controller for calculating a multiplier effect
				of antidiuretic hormone on thirst (AHCM) from an antidiuretic hormone 
				concentration factor in the circulating body fluids (ADHC).  The sensitivity is
				controlled by the control factor (AHTHM).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#TS5_to_TS7">
				<rdf:value>
				TS5, TS6, and TS7:  
				These blocks are a sensitivity controller for calculating a multiplier effect
				of antidiuretic hormone on thirst (AHCM) from an antidiuretic hormone 
				concentration factor in the circulating body fluids (ADHC).  The sensitivity is
				controlled by the control factor (AHTHM).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="ADHC"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="AHCM" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="AHTHM" 	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="TS5_to_TS7">
				<eq/>
				<ci>AHCM</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<apply>
							<minus/>
							<ci>ADHC</ci>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
						<ci>AHTHM</ci>
					</apply>
					<cn cellml:units="dimensionless">1</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="effect_of_antidiuretic_hormone_on_thirst" component_2="thirst_drinking_and_salt_appetite"/>
		<map_variables variable_1="ADHC" variable_2="ADHC"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="effect_of_antidiuretic_hormone_on_thirst" component_2="thirst_drinking_and_salt_appetite_parameter_values"/>
		<map_variables variable_1="AHTHM" variable_2="AHTHM"/>
	</connection>


<!-- =========================================	EFFECT OF ANGIOTENSIN ON THIRST	  ============================================================== -->
	<component 	name="effect_of_angiotensin_on_thirst" 
				cmeta:id="effect_of_angiotensin_on_thirst">

		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#effect_of_angiotensin_on_thirst">
				<rdf:value>
				TS10 and TS11:  
				Calculation of the drive to stimulate thirst caused by angiotensin (ANMH) from
				the generalized angiotensin multiplier (ANM).  The sensitivity of this calculation
				is controlled by the angiotensin-thirst sensitivity control variable (ANMTM).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#TS10_and_TS11">
				<rdf:value>
				TS10 and TS11:  
				Calculation of the drive to stimulate thirst caused by angiotensin (ANMH) from
				the generalized angiotensin multiplier (ANM).  The sensitivity of this calculation
				is controlled by the angiotensin-thirst sensitivity control variable (ANMTM).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

<!-- Inputs from other components -->
		<variable name="ANM"		units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="ANMTH" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="ANMTM" 	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="TS10_and_TS11">
				<eq/>
				<ci>ANMTH</ci>
				<apply>
					<times/>
					<apply>
						<minus/>
						<ci>ANM</ci>
						<cn cellml:units="dimensionless">1</cn>
					</apply>
					<ci>ANMTM</ci>
					<cn cellml:units="dimensionless">0.001</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="effect_of_angiotensin_on_thirst" component_2="thirst_drinking_and_salt_appetite"/>
		<map_variables variable_1="ANM" variable_2="ANM"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="effect_of_angiotensin_on_thirst" component_2="thirst_drinking_and_salt_appetite_parameter_values"/>
		<map_variables variable_1="ANMTM" variable_2="ANMTM"/>
	</connection>


<!-- ================================================		RATE OF FLUID INTAKE	=============================================================== -->
	<component 	name="rate_of_fluid_intake" 
				cmeta:id="rate_of_fluid_intake">

		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#rate_of_fluid_intake">
				<rdf:value>
				TS8 and TS9:  
				Calculation of a thirst drive (AHTH) based on antidiuretic hormone and salt 
				appetite by multiplying three factors, the salt appetite drive (STH), the antidiuretic 
				hormone concentration multiplier (AHCM), and a constant.  Block TS9 sets a lower limit 
				to AHTH equal to zero.

				TS12 and TS13:  
				A temporary calculation for rate of intake of fluid by the body (TVZ) is equal to the 
				drinking drive (AHTH) caused by the product of the salt appetite drive (STH) and the 
				antidiuretic-thirst drive (AHTH), plus the angiotensin-thirst drive (ANMTH).  Block 
				TS13 sets the lower limit of (TVZ) to zero.

				TS14, TS15, and TS16:  
				This is a delay circuit which causes the actual rate of fluid intake (TVD) to be delayed 
				with respect to changes in the temporarily calculated rate of fluid intake (TVZ) by a 
				time constant TVDLL.  Also shown in Block TS14 is a variable (DR) that can be used for 
				forced input of water over and above the natural drinking desires; this can be used for 
				intravenous infusion of water as well.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#TS8">
				<rdf:value>
				TS8:  
				Calculation of a thirst drive (AHTH) based on antidiuretic hormone and salt 
				appetite by multiplying three factors, the salt appetite drive (STH), the antidiuretic 
				hormone concentration multiplier (AHCM), and a constant.  
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#TS9">
				<rdf:value>
				TS9:
				Block TS9 sets a lower limit to AHTH equal to zero.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#TS12">
				<rdf:value>
				TS12:  
				A temporary calculation for rate of intake of fluid by the body (TVZ) is equal to the 
				drinking drive (AHTH) caused by the product of the salt appetite drive (STH) and the 
				antidiuretic-thirst drive (AHTH), plus the angiotensin-thirst drive (ANMTH).  
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#TS13">
				<rdf:value>
				TS13:
				Block TS13 sets the lower limit of (TVZ) to zero.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#TS14_to_TS16">
				<rdf:value>
				TS14, TS15, and TS16:  
				This is a delay circuit which causes the actual rate of fluid intake (TVD) to be delayed 
				with respect to changes in the temporarily calculated rate of fluid intake (TVZ) by a 
				time constant TVDLL.  Also shown in Block TS14 is a variable (DR) that can be used for 
				forced input of water over and above the natural drinking desires; this can be used for 
				intravenous infusion of water as well.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

<!-- Inputs from other components -->
		<variable name="STH" 	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="AHCM" 	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="ANMTH" 	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="time" 	units="minute" 		private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="rate_of_fluid_intake_TVD"
					name="TVD" 	initial_value="0.000980838"	units="L_per_minute" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="DR" 	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="TVDDL" 	units="minute" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="AHTH" 	units="dimensionless" private_interface="none" public_interface="none"/>
		<variable name="AHTH1" 	units="dimensionless" private_interface="none" public_interface="none"/>
		<variable name="TVZ" 	units="L_per_minute" private_interface="none" public_interface="none"/>
		<variable name="TVZ1" 	units="L_per_minute" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="TS8">
				<eq/>
				<ci>AHTH1</ci>
				<apply>
					<times/>
					<ci>AHCM</ci>
					<ci>STH</ci>
					<cn cellml:units="dimensionless">0.001</cn>
				</apply>
			</apply>
			<apply id="TS9">
				<eq/>
				<ci>AHTH</ci>
				<piecewise>
					<piece>
						<cn cellml:units="dimensionless">0</cn>
						<apply>
							<lt/>
							<ci>AHTH1</ci>
							<cn cellml:units="dimensionless">0</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>AHTH1</ci>
					</otherwise>
				</piecewise>
			</apply>
			<apply id="TS12">
				<eq/>
				<ci>TVZ1</ci>
				<apply>
					<times/>
					<apply>
						<plus/>
						<ci>ANMTH</ci>
						<ci>AHTH</ci>
					</apply>
					<cn cellml:units="L_per_minute">1</cn>
				</apply>
			</apply>
			<apply id="TS13">
				<eq/>
				<ci>TVZ</ci>
				<piecewise>
					<piece>
						<cn cellml:units="L_per_minute">0</cn>
						<apply>
							<lt/>
							<ci>TVZ1</ci>
							<cn cellml:units="L_per_minute">0</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>TVZ1</ci>
					</otherwise>
				</piecewise>
			</apply>
			<apply id="TS14_to_TS16">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>TVD</ci>
				</apply>
				<apply>
					<divide/>
					<apply>
						<minus/>
						<apply>
							<plus/>
							<ci>TVZ</ci>
							<ci>DR</ci>
						</apply>
						<ci>TVD</ci>
					</apply>
					<ci>TVDDL</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="rate_of_fluid_intake" component_2="effect_of_antidiuretic_hormone_on_thirst"/>
		<map_variables variable_1="AHCM" variable_2="AHCM"/>
	</connection>
	<connection>
		<map_components component_1="rate_of_fluid_intake" component_2="effect_of_salt_appetite_stimulation_on_thirst"/>
		<map_variables variable_1="STH" variable_2="STH"/>
	</connection>
	<connection>
		<map_components component_1="rate_of_fluid_intake" component_2="effect_of_angiotensin_on_thirst"/>
		<map_variables variable_1="ANMTH" variable_2="ANMTH"/>
	</connection>
	<connection>
		<map_components component_1="rate_of_fluid_intake" component_2="thirst_drinking_and_salt_appetite"/>
		<map_variables variable_1="TVD" variable_2="TVD"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="rate_of_fluid_intake" component_2="thirst_drinking_and_salt_appetite_parameter_values"/>
		<map_variables variable_1="DR" variable_2="DR"/>
		<map_variables variable_1="TVDDL" variable_2="TVDDL"/>
	</connection>

<!-- =========================================	THIRST, DRINKING AND SALT APPETITE PARAMETER VALUES		=========================================== -->
	<component 	name="thirst_drinking_and_salt_appetite_parameter_values"
				cmeta:id="thirst_drinking_and_salt_appetite_parameter_values">
		<variable name="Z10" 		units="mmHg" 	initial_value="45"			private_interface="none"	public_interface="out"/>	<!-- damping factor, STH [P] -->
		<variable name="Z11" 		units="per_mmHg2" 	initial_value="0.01"		private_interface="none"	public_interface="out"/>	<!-- damping factor, STH [P] -->
		<variable name="ANMSLT" 	units="dimensionless" 	initial_value="2"			private_interface="none"	public_interface="out"/>	<!-- sensitivity controller ANMSML [P] -->
		<variable name="AHTHM"		units="dimensionless" 	initial_value="2"			private_interface="none"	public_interface="out"/>	<!-- sensitivity controller, effect of ADH on thirst [P] -->
		<variable name="ANMTM" 		units="dimensionless" 	initial_value="1.5"			private_interface="none"	public_interface="out"/>	<!-- sensitivity controller of ANMTH [P] -->
		<variable name="DR" 		units="L_per_minute" 	initial_value="0"			private_interface="none"	public_interface="out"/>	<!-- rate of water drinking (in addition of thirst) -->
		<variable name="TVDDL" 		units="minute" 	initial_value="30"			private_interface="none"	public_interface="out"/>	<!-- TVD damping coefficient [P] -->
	</component>

<!-- ============================================================================================================================================================ -->

<!-- ========================================================	VOLUME RECEPTORS MODEL	=========================================================== -->
	<component 	name="volume_receptors" 
				cmeta:id="volume_receptors">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#volume_receptors">
				<rdf:value>
				The volume receptor nervous feedback mechanism:
				The volume receptors are considered to be activated by right atrial pressure (PRA), 
				and feedback is provided to control non-muscle arterial resistance and venous tone.

				Encapsulation grouping component containing all the components in the Volume Receptors Model.
				The inputs and outputs of the Volume Receptors Model must be passed by this component.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

		<variable name="time"	units="minute"	private_interface="out" public_interface="in"/>

<!-- Inputs from components in other models -->
		<variable name="PRA"	units="mmHg" private_interface="out" public_interface="in"/>

<!-- Outputs to components in other models -->
		<variable name="ATRRFB" 	units="dimensionless" private_interface="in" public_interface="out"/>
		<variable name="ATRVFB" 	units="litre" private_interface="in" public_interface="out"/>
	</component>

<!-- OUTPUT CONNECTIONS -->
	<connection>
		<map_components component_1="volume_receptors" component_2="volume_effect_on_arteries"/>
		<map_variables variable_1="ATRRFB" variable_2="ATRRFB"/>
	</connection>
	<connection>
		<map_components component_1="volume_receptors" component_2="volume_effect_on_unstressed_venous_volume"/>
		<map_variables variable_1="ATRVFB" variable_2="ATRVFB"/>
	</connection>

<!-- ========================================	EFFECT OF PRESSURE ON VOLUME RECEPTORS	============================================= -->
	<component 	name="effect_of_pressure_on_volume_receptors" 
				cmeta:id="effect_of_pressure_on_volume_receptors">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#effect_of_pressure_on_volume_receptors">
				<rdf:value>
				VR1 and VR2:  
				The function curve in Block VR1 and sensitivity control in VR2 (controlled by 
				variable AH9) provide a relationship between right atrial pressure (PRA) and an 
				intermediate factor (AHZ) that controls the degree of nervous feedback.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#VR1_and_VR2">
				<rdf:value>
				VR1 and VR2:  
				The function curve in Block VR1 and sensitivity control in VR2 (controlled by 
				variable AH9) provide a relationship between right atrial pressure (PRA) and an 
				intermediate factor (AHZ) that controls the degree of nervous feedback.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#VR1_cont">
				<rdf:value>
				VR1 and VR2:  
				The function curve in Block VR1 and sensitivity control in VR2 (controlled by 
				variable AH9) provide a relationship between right atrial pressure (PRA) and an 
				intermediate factor (AHZ) that controls the degree of nervous feedback.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PRA"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="effect_of_pressure_on_volume_receptors_AHZ"
					name="AHZ" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="AH10"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="AH9"	units="per_mmHg" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable	cmeta:id="effect_of_pressure_on_volume_receptors_AHZ1"
					name="AHZ1"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="VR1_and_VR2">
				<eq/>
				<ci>AHZ1</ci>
				<apply>
					<times/>
					<apply>
						<power/>
						<apply>
							<abs/>
							<ci>PRA</ci>
						</apply>
						<ci>AH10</ci>
					</apply>
					<ci>AH9</ci>
				</apply>
			</apply>
			<apply id="VR1_cont">
				<eq/>
				<ci>AHZ</ci>
				<piecewise>
					<piece>
						<apply>
							<minus/>
							<ci>AHZ1</ci>
						</apply>
						<apply>
							<lt/>
							<ci>PRA</ci>
							<cn cellml:units="mmHg">0</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>AHZ1</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="effect_of_pressure_on_volume_receptors" component_2="volume_receptors"/>
		<map_variables variable_1="PRA" variable_2="PRA"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="effect_of_pressure_on_volume_receptors" component_2="volume_receptors_parameter_values"/>
		<map_variables variable_1="AH9" variable_2="AH9"/>
		<map_variables variable_1="AH10" variable_2="AH10"/>
	</connection>

<!-- ========================================	TIME-DEPENDENT VOLUME RECEPTOR ADAPTATION	============================================= -->
	<component 	name="time_dependent_volume_receptor_adaptation" 
				cmeta:id="time_dependent_volume_receptor_adaptation">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#time_dependent_volume_receptor_adaptation">
				<rdf:value>
				VR3, VR4, and VR5:  
				Series of blocks to provide autoresetting of the volume receptors back 
				toward zero with time.  The degree of reset is the variable (AHY), and 
				the time constant for resetting is the variable (AH11).  
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#VR3_to_VR5">
				<rdf:value>
				VR3, VR4, and VR5:  
				Series of blocks to provide autoresetting of the volume receptors back 
				toward zero with time.  The degree of reset is the variable (AHY), and 
				the time constant for resetting is the variable (AH11).  
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="AHZ"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" 		private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="AHY" 	initial_value="0.301963"	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="AH11"	units="minute" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="VR3_to_VR5">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>AHY</ci>
				</apply>
				<apply>
					<divide/>
					<apply>
						<minus/>
						<ci>AHZ</ci>
						<ci>AHY</ci>
					</apply>
					<ci>AH11</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="time_dependent_volume_receptor_adaptation" component_2="effect_of_pressure_on_volume_receptors"/>
		<map_variables variable_1="AHZ" variable_2="AHZ"/>
	</connection>
	<connection>
		<map_components component_1="time_dependent_volume_receptor_adaptation" component_2="volume_receptors"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="time_dependent_volume_receptor_adaptation" component_2="volume_receptors_parameter_values"/>
		<map_variables variable_1="AH11" variable_2="AH11"/>
	</connection>

<!-- ========================================	TOTAL VOLUME NERVOUS FEEDBACK	============================================= -->
	<component 	name="total_volume_nervous_feedback" 
				cmeta:id="total_volume_nervous_feedback">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#total_volume_nervous_feedback">
				<rdf:value>
				VR6:
				The final degree of effect of the volume nervous feedback mechanism is 
				the output from block VR6 (AH7).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#VR6">
				<rdf:value>
				VR6:
				The final degree of effect of the volume nervous feedback mechanism is 
				the output from block VR6 (AH7).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="AHZ"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="AHY"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="total_volume_nervous_feedback_AH7"
					name="AH7" 	units="dimensionless" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="VR6">
				<eq/>
				<ci>AH7</ci>
				<apply>
					<minus/>
					<ci>AHZ</ci>
					<ci>AHY</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="total_volume_nervous_feedback" component_2="effect_of_pressure_on_volume_receptors"/>
		<map_variables variable_1="AHZ" variable_2="AHZ"/>
	</connection>
	<connection>
		<map_components component_1="total_volume_nervous_feedback" component_2="time_dependent_volume_receptor_adaptation"/>
		<map_variables variable_1="AHY" variable_2="AHY"/>
	</connection>

<!-- ========================================	VOLUME EFFECT ON ARTERIES	============================================= -->
	<component 	name="volume_effect_on_arteries" 
				cmeta:id="volume_effect_on_arteries">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#volume_effect_on_arteries">
				<rdf:value>
				VR7 and VR8:  
				Sensitivity control for the volume receptor nervous feedback effect on the 
				non-muscle arterial resistance.  The output multiplier effect for feedback 
				to the arteries is the variable (ATRRFB) and the sensitivity controller is 
				the variable (ATRFBM).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#VR7_and_VR8">
				<rdf:value>
				VR7 and VR8:  
				Sensitivity control for the volume receptor nervous feedback effect on the 
				non-muscle arterial resistance.  The output multiplier effect for feedback 
				to the arteries is the variable (ATRRFB) and the sensitivity controller is 
				the variable (ATRFBM).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="AH7"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="volume_effect_on_arteries_ATRRFB"
					name="ATRRFB" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="ATRFBM"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="VR7_and_VR8">
				<eq/>
				<ci>ATRRFB</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<ci>AH7</ci>
						<ci>ATRFBM</ci>
					</apply>
					<cn cellml:units="dimensionless">1</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="volume_effect_on_arteries" component_2="total_volume_nervous_feedback"/>
		<map_variables variable_1="AH7" variable_2="AH7"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="volume_effect_on_arteries" component_2="volume_receptors_parameter_values"/>
		<map_variables variable_1="ATRFBM" variable_2="ATRFBM"/>
	</connection>

<!-- ========================================	VOLUME EFFECT ON UNSTRESSED VENOUS VOLUME	============================================= -->
	<component 	name="volume_effect_on_unstressed_venous_volume" 
				cmeta:id="volume_effect_on_unstressed_venous_volume">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#volume_effect_on_unstressed_venous_volume">
				<rdf:value>
				VR9:  
				Sensitivity control for volume receptor feedback to the venous system.  
				The output of Block 9 (ATRVFB) controls V0 of the venous tree.  The sensitivity 
				controller is the variable (ATRVM).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#VR9">
				<rdf:value>
				VR9:  
				Sensitivity control for volume receptor feedback to the venous system.  
				The output of Block 9 (ATRVFB) controls V0 of the venous tree.  The sensitivity 
				controller is the variable (ATRVM).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="AH7"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="volume_effect_on_unstressed_venous_volume_ATRVFB"
					name="ATRVFB" 	units="litre" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="ATRVM"	units="litre" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="VR9">
				<eq/>
				<ci>ATRVFB</ci>
				<apply>
					<times/>
					<ci>AH7</ci>
					<ci>ATRVM</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="volume_effect_on_unstressed_venous_volume" component_2="total_volume_nervous_feedback"/>
		<map_variables variable_1="AH7" variable_2="AH7"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="volume_effect_on_unstressed_venous_volume" component_2="volume_receptors_parameter_values"/>
		<map_variables variable_1="ATRVM" variable_2="ATRVM"/>
	</connection>

<!-- ===========================================		VOLUME RECEPTORS PARAMETER VALUES		================================================= -->
	<component 	name="volume_receptors_parameter_values"
				cmeta:id="volume_receptors_parameter_values">
		<variable name="AH10" 		units="dimensionless" 	initial_value="0.333"		private_interface="none"	public_interface="out"/>	<!-- curve fitting exponent, right atrial pres. on vol receptors [P] -->
		<variable name="AH11" 		units="minute" 	initial_value="1000"		private_interface="none"	public_interface="out"/>	<!-- time constant, volume receptor adaptation [P] -->
		<variable name="AH9" 		units="per_mmHg" 	initial_value="1"			private_interface="none"	public_interface="out"/>	<!-- sensitivity control of AHZ [P] -->
		<variable name="ATRFBM" 	units="dimensionless" 	initial_value="0"			private_interface="none"	public_interface="out"/>	<!-- sensitivity controller of ATRRFB -->
		<variable name="ATRVM" 		units="litre" 	initial_value="0"			private_interface="none"	public_interface="out"/>	<!-- sensitivity controller of ATRVFB -->
	</component>

<!-- ============================================================================================================================================================ -->

<!-- ========================================================	KIDNEY MODEL	=========================================================== -->
	<component 	name="kidney" 
				cmeta:id="kidney">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#kidney">
				<rdf:value>
				FUNCTION OF THE KIDNEY

				This section is a highly simplified analysis of renal function, including analysis of 
				blood flow through the kidney and of the formation of glomerular filtrate.  Then the 
				changes that occur in the filtrate as it passes through the tubules are calculated.  
				However, only four substances are considered as they pass through the tubules: 
				sodium, potassium, urea, and water.

				The control effects of angiotensin, aldosterone, antidiuretic hormone, and nervous 
				signals are also presented.  

				Encapsulation grouping component containing all the components in the Kidney Model. The inputs and 
				outputs of the Kidney Model must be passed by this component.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

		<variable name="time"	units="minute"		  private_interface="out" 	public_interface="in"/>

<!-- Inputs from components in other models -->
		<variable name="ADHMK"	units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="AMK"	units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="AMNA"	units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="ANM"	units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="ANPX"	units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="AUM"	units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="CKE"	units="monovalent_mEq_per_litre" private_interface="out" public_interface="in"/>
		<variable name="CNA"	units="monovalent_mEq_per_litre" private_interface="out" public_interface="in"/>
		<variable name="HM1"	units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="MYOGRS"	units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="PA"		units="mmHg" private_interface="out" public_interface="in"/>
		<variable name="PAMKRN"	units="dimensionless" private_interface="out" public_interface="in"/>
		<variable name="PPC"	units="mmHg" private_interface="out" public_interface="in"/>
		<variable name="VTW"	units="litre" private_interface="out" public_interface="in"/>

<!-- Outputs to components in other models -->
		<variable name="RBF" 	units="L_per_minute" private_interface="in" public_interface="out"/>
		<variable name="MDFLW" 	units="L_per_minute" private_interface="in" public_interface="out"/>
		<variable name="NOD" 	units="monovalent_mEq_per_minute" private_interface="in" public_interface="out"/>
		<variable name="KOD" 	units="monovalent_mEq_per_minute" private_interface="in" public_interface="out"/>
		<variable name="VUD" 	units="L_per_minute" private_interface="in" public_interface="out"/>
	</component>

<!-- OUTPUT CONNECTIONS -->
	<connection>
		<map_components component_1="kidney" component_2="actual_renal_blood_flow"/>
		<map_variables variable_1="RBF" variable_2="RBF"/>
	</connection>
	<connection>
		<map_components component_1="kidney" component_2="proximal_tubular_and_macula_densa_flow"/>
		<map_variables variable_1="MDFLW" variable_2="MDFLW"/>
	</connection>
	<connection>
		<map_components component_1="kidney" component_2="actual_Na_excretion_rate"/>
		<map_variables variable_1="NOD" variable_2="NOD"/>
	</connection>
	<connection>
		<map_components component_1="kidney" component_2="actual_K_excretion_rate"/>
		<map_variables variable_1="KOD" variable_2="KOD"/>
	</connection>
	<connection>
		<map_components component_1="kidney" component_2="actual_urine_volume"/>
		<map_variables variable_1="VUD" variable_2="VUD"/>
	</connection>

<!-- ========================================	PERFUSION PRESSURE	============================================= -->
	<component 	name="perfusion_pressure" 
				cmeta:id="perfusion_pressure">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#perfusion_pressure">
				<rdf:value>
				KD1:  
				The perfusion pressure of the kidneys (PAR) is calculated by subtracting any 
				pressure gradient caused by renal arterial constriction (GBL) from the systemic 
				arterial pressure (PA).  This block allows one to simulate Goldblatt hypertension.

				KD2:  
				This block allows one to simulate other experiments.  The factor (RAPRSP), when 
				set to any value besides zero, will fix the renal perfusion pressure (PAR) to an 
				exact value that will not change regardless of changes in systemic arterial pressure.  
				The factor (RFCDFT) allows one to test the hypothetical condition that function of 
				the kidney over a long period of time asymptotically approaches normal output 
				function regardless of changes in arterial pressure.  That is, PAR drifts continually
				back toward the normal mean value of 100 rather than being determined by the systemic
				arterial pressure, simulating shift of the renal function curve.  This is used to test 
				theories that in the long run kidney output function can be independent of arterial 
				pressure.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD2A">
				<rdf:value>
				KD2:  
				This block allows one to simulate other experiments.  The factor (RAPRSP), when 
				set to any value besides zero, will fix the renal perfusion pressure (PAR) to an 
				exact value that will not change regardless of changes in systemic arterial pressure.  
				The factor (RFCDFT) allows one to test the hypothetical condition that function of 
				the kidney over a long period of time asymptotically approaches normal output 
				function regardless of changes in arterial pressure.  That is, PAR drifts continually
				back toward the normal mean value of 100 rather than being determined by the systemic
				arterial pressure, simulating shift of the renal function curve.  This is used to test 
				theories that in the long run kidney output function can be independent of arterial 
				pressure.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD1_KD2_and_KD2A">
				<rdf:value>
				KD1:  
				The perfusion pressure of the kidneys (PAR) is calculated by subtracting any 
				pressure gradient caused by renal arterial constriction (GBL) from the systemic 
				arterial pressure (PA).  This block allows one to simulate Goldblatt hypertension.

				KD2:  
				This block allows one to simulate other experiments.  The factor (RAPRSP), when 
				set to any value besides zero, will fix the renal perfusion pressure (PAR) to an 
				exact value that will not change regardless of changes in systemic arterial pressure.  
				The factor (RFCDFT) allows one to test the hypothetical condition that function of 
				the kidney over a long period of time asymptotically approaches normal output 
				function regardless of changes in arterial pressure.  That is, PAR drifts continually
				back toward the normal mean value of 100 rather than being determined by the systemic
				arterial pressure, simulating shift of the renal function curve.  This is used to test 
				theories that in the long run kidney output function can be independent of arterial 
				pressure.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

<!-- Inputs from other components -->
		<variable name="PA"		units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute"	private_interface="none" 	public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="perfusion_pressure_PAR"
					name="PAR" 	units="mmHg" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="GBL"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="RAPRSP"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="RFCDFT"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="RCDFPC"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="RCDFDP"	units="minute" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="PAR1"	initial_value="103.525"	units="mmHg" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD2A">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>PAR1</ci>
				</apply>
				<apply>
					<divide/>
					<apply>
						<minus/>
						<apply>
							<plus/>
							<cn cellml:units="mmHg">100</cn>
							<apply>
								<times/>
								<apply>
									<minus/>
									<ci>PA</ci>
									<cn cellml:units="mmHg">100</cn>
								</apply>
								<ci>RCDFPC</ci>
							</apply>
						</apply>
						<ci>PAR1</ci>
					</apply>
					<ci>RCDFDP</ci>
				</apply>
			</apply>
			<apply id="KD1_KD2_and_KD2A">
				<eq/>
				<ci>PAR</ci>
				<piecewise>
					<piece>
						<ci>RAPRSP</ci>
						<apply>
							<and/>
							<apply>
								<gt/>
								<ci>RAPRSP</ci>
								<cn cellml:units="mmHg">0</cn>
							</apply>
							<apply>
								<leq/>
								<ci>RFCDFT</ci>
								<cn cellml:units="dimensionless">0</cn>
							</apply>
						</apply>
					</piece>
					<piece>
						<ci>PAR1</ci>
						<apply>
							<gt/>
							<ci>RFCDFT</ci>
							<cn cellml:units="dimensionless">0</cn>
						</apply>
					</piece>
					<otherwise>
						<apply>
							<minus/>
							<ci>PA</ci>
							<ci>GBL</ci>
						</apply>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="perfusion_pressure" component_2="kidney"/>
		<map_variables variable_1="PA" variable_2="PA"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="perfusion_pressure" component_2="kidney_parameter_values"/>
		<map_variables variable_1="GBL" variable_2="GBL"/>
		<map_variables variable_1="RAPRSP" variable_2="RAPRSP"/>
		<map_variables variable_1="RFCDFT" variable_2="RFCDFT"/>
		<map_variables variable_1="RCDFPC" variable_2="RCDFPC"/>
		<map_variables variable_1="RCDFDP" variable_2="RCDFDP"/>
	</connection>

<!-- ========================================	RENAL AUTOREGULATORY FEEDBACK FACTOR		============================================= -->
	<component 	name="renal_autoregulatory_feedback_factor" 
				cmeta:id="renal_autoregulatory_feedback_factor">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#renal_autoregulatory_feedback_factor">
				<rdf:value>
				KD57, KD58, KD59, KD60, KD61, KD62, KD63, KD64, KD65, KD66, and KD67:  
				Calculation of an autoregulatory feedback factor that affects the degree of constriction 
				of both afferent and efferent arterioles (RNAUG2) which is the output of Block 64.  
				This feedback effect, and the resistance of the afferent and efferent arterioles, 
				increases in proportion to the calculation from these blocks and in response to the
				flow rate of fluid in the tubules at the macula densa (MDFLW) which is the input to
				Block 57.  Blocks 57, 58, and 59 calculate the sensitivity of this feedback mechanism, 
				and the sensitivity control factor is RNAUGN in Block 58.  Blocks 60 and 61 calculate 
				the time constant of development of this feedback in the arterioles after any change in 
				rate of flow (MDFLW) at the macula densa.  The time constant of this feedback response 
				is RNAGTC in Block 60.  The value RNAULL is the lower limit to the autoregulatory 
				response (RNAUG1) as set by Block 62.  RNAUUL is the upper limit, as set by Block 63.  
				Block 65, 66, and 67 calculate obliterative adaptation of this feedback response in case
				such as this does occur.  The sensitivity of this, RNAUAD, in Block 66 is set at zero 
				because many persons believe there is no such decay of this feedback response.  Yet others 
				have postulated such a feedback response, in which case RNAUAD would then become the factor 
				that sets the time constant of the loss of the feedback response with time.  The output of
				this total system from Block 14 is RNAUG2.
				NB - REMOVED DAMPING FROM KD57-KD61!!!!!!!!!
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD57_to_KD61">
				<rdf:value>
				KD57, KD58, KD59, KD60 and KD61: 
				Calculation of an autoregulatory feedback factor that affects the degree of constriction 
				of both afferent and efferent arterioles (RNAUG2) which is the output of Block 64.  
				This feedback effect, and the resistance of the afferent and efferent arterioles, 
				increases in proportion to the calculation from these blocks and in response to the
				flow rate of fluid in the tubules at the macula densa (MDFLW) which is the input to
				Block 57.  Blocks 57, 58, and 59 calculate the sensitivity of this feedback mechanism, 
				and the sensitivity control factor is RNAUGN in Block 58.  Blocks 60 and 61 calculate 
				the time constant of development of this feedback in the arterioles after any change in 
				rate of flow (MDFLW) at the macula densa.  The time constant of this feedback response 
				is RNAGTC in Block 60.  
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD62_and_KD63">
				<rdf:value>
				KD62 and KD63: 
				The value RNAULL is the lower limit to the autoregulatory response (RNAUG1) as set by Block 62.  
				RNAUUL is the upper limit, as set by Block 63.  
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD64">
				<rdf:value>
				KD64: 
				Calculation of an autoregulatory feedback factor that affects the degree of constriction 
				of both afferent and efferent arterioles (RNAUG2) which is the output of Block 64.  
				This feedback effect, and the resistance of the afferent and efferent arterioles, 
				increases in proportion to the calculation from these blocks and in response to the
				flow rate of fluid in the tubules at the macula densa (MDFLW) which is the input to
				Block 57.    
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD65_to_KD67">
				<rdf:value>
				KD65, KD66, and KD67: 
				Block 65, 66, and 67 calculate obliterative adaptation of this feedback response in case
				such as this does occur.  The sensitivity of this, RNAUAD, in Block 66 is set at zero 
				because many persons believe there is no such decay of this feedback response.  Yet others 
				have postulated such a feedback response, in which case RNAUAD would then become the factor 
				that sets the time constant of the loss of the feedback response with time.  The output of
				this total system from Block 14 is RNAUG2.
				NB - REMOVED DAMPING FROM KD57-KD61!!!!!!!!!
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="MDFLW"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute" 	private_interface="none"	public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="renal_autoregulatory_feedback_factor_RNAUG2"
					name="RNAUG2" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="RNAUGN"	units="minute_per_L" private_interface="none" public_interface="in"/>
		<variable name="RNAULL"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="RNAUUL"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="RNAUAD"	units="per_minute" private_interface="none" public_interface="in"/>
	
<!-- Internal variables -->
		<variable	cmeta:id="renal_autoregulatory_feedback_factor_RNAUG1"
					name="RNAUG1"	units="dimensionless" private_interface="none" public_interface="none"/>
		<variable	cmeta:id="renal_autoregulatory_feedback_factor_RNAUG1T"
					name="RNAUG1T"	units="dimensionless" private_interface="none" public_interface="none"/>
		<variable	name="RNAUG3"	initial_value="0.0"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD57_to_KD61">
				<eq/>
				<ci>RNAUG1T</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<apply>
							<minus/>
							<ci>MDFLW</ci>
							<cn cellml:units="L_per_minute">1</cn>
						</apply>
						<ci>RNAUGN</ci>
					</apply>
					<cn cellml:units="dimensionless">1</cn>
				</apply>
			</apply>
			<apply id="KD62_and_KD63">
				<eq/>
				<ci>RNAUG1</ci>
				<piecewise>
					<piece>
						<ci>RNAULL</ci>
						<apply>
							<lt/>
							<ci>RNAUG1T</ci>
							<ci>RNAULL</ci>
						</apply>
					</piece>
					<piece>
						<ci>RNAUUL</ci>
						<apply>
							<gt/>
							<ci>RNAUG1T</ci>
							<ci>RNAUUL</ci>
						</apply>
					</piece>
					<otherwise>
						<ci>RNAUG1T</ci>
					</otherwise>
				</piecewise>
			</apply>
			<apply id="KD64">
				<eq/>
				<ci>RNAUG2</ci>
				<apply>
					<minus/>
					<ci>RNAUG1</ci>
					<ci>RNAUG3</ci>
				</apply>
			</apply>
			<apply id="KD65_to_KD67">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>RNAUG3</ci>
				</apply>
				<apply>
					<times/>
					<apply>
						<minus/>
						<ci>RNAUG2</ci>
						<cn cellml:units="dimensionless">1</cn>
					</apply>
					<ci>RNAUAD</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="renal_autoregulatory_feedback_factor" component_2="proximal_tubular_and_macula_densa_flow"/>
		<map_variables variable_1="MDFLW" variable_2="MDFLW"/>
	</connection>
	<connection>
		<map_components component_1="renal_autoregulatory_feedback_factor" component_2="kidney"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="renal_autoregulatory_feedback_factor" component_2="kidney_parameter_values"/>
		<map_variables variable_1="RNAUGN" variable_2="RNAUGN"/>
		<map_variables variable_1="RNAULL" variable_2="RNAULL"/>
		<map_variables variable_1="RNAUUL" variable_2="RNAUUL"/>
		<map_variables variable_1="RNAUAD" variable_2="RNAUAD"/>
	</connection>

<!-- ========================================	AFFERENT ARTERIAL RESISTANCE	============================================= -->
	<component 	name="afferent_arterial_resistance" 
				cmeta:id="afferent_arterial_resistance">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#afferent_arterial_resistance">
				<rdf:value>
				Containment grouping component for "autonomic_effect_on_AAR", "angiotensin_effect_on_AAR",
				"AAR_calculation" and "atrial_natriuretic_peptide_effect_on_AAR".
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
	</component>

<!-- ========================================	AUTONOMIC EFFECT ON AFFERENT RESISTANCE	============================================= -->
	<component 	name="autonomic_effect_on_AAR" 
				cmeta:id="autonomic_effect_on_AAR">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#autonomic_effect_on_AAR">
				<rdf:value>
				KD10, KD11, KD12, and KD13:  
				Calculation of the effect of autonomic stimulation (AUM) on afferent arteriolar 
				resistance (AUMK).  A sensitivity controller for this is in Block 11 (ARF).  A 
				limit is in Block 13 equal to 0.8.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD10_to_KD12">
				<rdf:value>
				KD10, KD11, KD12, and KD13:  
				Calculation of the effect of autonomic stimulation (AUM) on afferent arteriolar 
				resistance (AUMK).  A sensitivity controller for this is in Block 11 (ARF).  A 
				limit is in Block 13 equal to 0.8.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD13">
				<rdf:value>
				KD10, KD11, KD12, and KD13:  
				Calculation of the effect of autonomic stimulation (AUM) on afferent arteriolar 
				resistance (AUMK).  A sensitivity controller for this is in Block 11 (ARF).  A 
				limit is in Block 13 equal to 0.8.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="AUM"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="AUMK" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="ARF"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="AUMKT"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD10_to_KD12">
				<eq/>
				<ci>AUMKT</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<apply>
							<minus/>
							<ci>AUM</ci>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
						<ci>ARF</ci>
					</apply>
					<cn cellml:units="dimensionless">1</cn>
				</apply>
			</apply>
			<apply id="KD13">
				<eq/>
				<ci>AUMK</ci>
				<piecewise>
					<piece>
						<cn cellml:units="dimensionless">0.8</cn>
						<apply>
							<lt/>
							<ci>AUMKT</ci>
							<cn cellml:units="dimensionless">0.8</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>AUMKT</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="autonomic_effect_on_AAR" component_2="kidney"/>
		<map_variables variable_1="AUM" variable_2="AUM"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="autonomic_effect_on_AAR" component_2="kidney_parameter_values"/>
		<map_variables variable_1="ARF" variable_2="ARF"/>
	</connection>

<!-- ========================================	ANGIOTENSIN EFFECT ON AFFERENT RESISTANCE	============================================= -->
	<component 	name="angiotensin_effect_on_AAR" 
				cmeta:id="angiotensin_effect_on_AAR">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#angiotensin_effect_on_AAR">
				<rdf:value>
				KD3, KD7 and KD8:
				Calculation of a temporary value for the effect of angiotensin on the afferent arteriolar 
				resistance (ANMAR). The angiotensin-related factors that affect the afferent arteriolar
				resistance are an angiotensin multiplier factor (ANM), and an angiotensin multiplier sensitivity 
				controller (ANMAM).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD3_KD7_and_KD8">
				<rdf:value>
				KD3, KD7 and KD8:
				Calculation of a temporary value for the effect of angiotensin on the afferent arteriolar 
				resistance (ANMAR). The angiotensin-related factors that affect the afferent arteriolar
				resistance are an angiotensin multiplier factor (ANM), and an angiotensin multiplier sensitivity 
				controller (ANMAM).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD8A">
				<rdf:value>
				KD3, KD7 and KD8:
				Calculation of a temporary value for the effect of angiotensin on the afferent arteriolar 
				resistance (ANMAR). The angiotensin-related factors that affect the afferent arteriolar
				resistance are an angiotensin multiplier factor (ANM), and an angiotensin multiplier sensitivity 
				controller (ANMAM).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="ANM"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="ANMAR" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="ANMAM"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="ANMARL"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="ANMAR1"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD3_KD7_and_KD8">
				<eq/>
				<ci>ANMAR1</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<apply>
							<minus/>
							<ci>ANM</ci>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
						<ci>ANMAM</ci>
					</apply>
					<cn cellml:units="dimensionless">1</cn>
				</apply>
			</apply>
			<apply id="KD8A">
				<eq/>
				<ci>ANMAR</ci>
				<piecewise>
					<piece>
						<ci>ANMARL</ci>
						<apply>
							<lt/>
							<ci>ANMAR1</ci>
							<ci>ANMARL</ci>
						</apply>
					</piece>
					<otherwise>
						<ci>ANMAR1</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="angiotensin_effect_on_AAR" component_2="kidney"/>
		<map_variables variable_1="ANM" variable_2="ANM"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="angiotensin_effect_on_AAR" component_2="kidney_parameter_values"/>
		<map_variables variable_1="ANMAM" variable_2="ANMAM"/>
		<map_variables variable_1="ANMARL" variable_2="ANMARL"/>
	</connection>

<!-- ========================================	AFFERENT ARTERIAL RESISTANCE CALCULATION		============================================= -->
	<component 	name="AAR_calculation" 
				cmeta:id="AAR_calculation">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#AAR_calculation">
				<rdf:value>
				KD9:
				Calculation of a temporary value for the afferent arteriolar resistance (AAR1), except for  
				the effect of atrial natriuretic peptide on this resistance which is calculated later. 				
				The factors that affect the afferent arteriolar resistance are the angiotensin multiplier 
				on afferent arterioles (ANMAR), an autonomic multiplier factor for nervous control of afferent 
				resistance (AUMK), an autoregulatory feedback multiplier effect on afferent arteriolar 
				resistance (RNAUG2), a myogenic autoregulation factor (myogrs), and a basic afferent 
				arteriolar resistance factor (AAR1) which allows for intrarenal alterations.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD9">
				<rdf:value>
				KD9:
				Calculation of a temporary value for the afferent arteriolar resistance (AAR1), except for  
				the effect of atrial natriuretic peptide on this resistance which is calculated later. 				
				The factors that affect the afferent arteriolar resistance are the angiotensin multiplier 
				on afferent arterioles (ANMAR), an autonomic multiplier factor for nervous control of afferent 
				resistance (AUMK), an autoregulatory feedback multiplier effect on afferent arteriolar 
				resistance (RNAUG2), a myogenic autoregulation factor (myogrs), and a basic afferent 
				arteriolar resistance factor (AAR1) which allows for intrarenal alterations.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PAMKRN"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="AUMK"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="RNAUG2"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="ANMAR"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="MYOGRS"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="AAR_calculation_AAR1"
					name="AAR1" 	units="mmHg_minute_per_L" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="AARK"	units="mmHg_minute_per_L" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD9">
				<eq/>
				<ci>AAR1</ci>
				<apply>
					<times/>
					<ci>AARK</ci>
					<ci>PAMKRN</ci>
					<ci>AUMK</ci>
					<ci>RNAUG2</ci>
					<ci>ANMAR</ci>
					<cn cellml:units="dimensionless">40</cn>
					<ci>MYOGRS</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="AAR_calculation" component_2="angiotensin_effect_on_AAR"/>
		<map_variables variable_1="ANMAR" variable_2="ANMAR"/>
	</connection>
	<connection>
		<map_components component_1="AAR_calculation" component_2="kidney"/>
		<map_variables variable_1="MYOGRS" variable_2="MYOGRS"/>
		<map_variables variable_1="PAMKRN" variable_2="PAMKRN"/>
	</connection>
	<connection>
		<map_components component_1="AAR_calculation" component_2="renal_autoregulatory_feedback_factor"/>
		<map_variables variable_1="RNAUG2" variable_2="RNAUG2"/>
	</connection>
	<connection>
		<map_components component_1="AAR_calculation" component_2="autonomic_effect_on_AAR"/>
		<map_variables variable_1="AUMK" variable_2="AUMK"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="AAR_calculation" component_2="kidney_parameter_values"/>
		<map_variables variable_1="AARK" variable_2="AARK"/>
	</connection>

<!-- ========================================	ATRIAL NATRIURETIC PEPTIDE EFFECT ON AFFERENT RESISTANCE	============================================= -->
	<component 	name="atrial_natriuretic_peptide_effect_on_AAR" 
				cmeta:id="atrial_natriuretic_peptide_effect_on_AAR">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#atrial_natriuretic_peptide_effect_on_AAR">
				<rdf:value>
				KD21, KD22, and KD23:  
				Calculation of the effect of circulating atrial natriuretic peptide on afferent 
				arteriolar resistance (AAR).  The input to this sequence is ANPX which is derived
				from the atrial natriuretic peptide section diagram.  Sensitivity is determined 
				by ANPXAF, and the lower limit of AAR is set by Block 23 to equal AARLL.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD21_and_KD22">
				<rdf:value>
				KD21 and KD22:  
				Calculation of the effect of circulating atrial natriuretic peptide on afferent 
				arteriolar resistance (AAR).  The input to this sequence is ANPX which is derived
				from the atrial natriuretic peptide section diagram.  Sensitivity is determined 
				by ANPXAF.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD23">
				<rdf:value>
				KD23:  
				The lower limit of AAR is set by Block 23 to equal AARLL.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="AAR1"	units="mmHg_minute_per_L" private_interface="none" public_interface="in"/>
		<variable name="ANPX"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="atrial_natriuretic_peptide_effect_on_AAR_AAR"
					name="AAR" 	units="mmHg_minute_per_L" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="ANPXAF"	units="mmHg_minute_per_L" private_interface="none" public_interface="in"/>
		<variable name="AARLL"	units="mmHg_minute_per_L" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable	cmeta:id="atrial_natriuretic_peptide_effect_on_AAR_AART"
					name="AART"	units="mmHg_minute_per_L" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD21_and_KD22">
				<eq/>
				<ci>AART</ci>
				<apply>
					<plus/>
					<apply>
						<minus/>
						<ci>AAR1</ci>
						<apply>
							<times/>
							<ci>ANPX</ci>
							<ci>ANPXAF</ci>
						</apply>
					</apply>
					<ci>ANPXAF</ci>
				</apply>
			</apply>
			<apply id="KD23">
				<eq/>
				<ci>AAR</ci>
				<piecewise>
					<piece>
						<ci>AARLL</ci>
						<apply>
							<lt/>
							<ci>AART</ci>
							<ci>AARLL</ci>
						</apply>
					</piece>
					<otherwise>
						<ci>AART</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="atrial_natriuretic_peptide_effect_on_AAR" component_2="AAR_calculation"/>
		<map_variables variable_1="AAR1" variable_2="AAR1"/>
	</connection>
	<connection>
		<map_components component_1="atrial_natriuretic_peptide_effect_on_AAR" component_2="kidney"/>
		<map_variables variable_1="ANPX" variable_2="ANPX"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="atrial_natriuretic_peptide_effect_on_AAR" component_2="kidney_parameter_values"/>
		<map_variables variable_1="ANPXAF" variable_2="ANPXAF"/>
		<map_variables variable_1="AARLL" variable_2="AARLL"/>
	</connection>

<!-- ========================================	EFFERENT ARTERIAL RESISTANCE	============================================= -->
	<component 	name="efferent_arterial_resistance" 
				cmeta:id="efferent_arterial_resistance">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#efferent_arterial_resistance">
				<rdf:value>
				Containment grouping component for "autonomic_effect_on_EAR", "angiotensin_effect_on_EAR",
				"effect_of_renal_autoregulatory_feedback_on_EAR" and "EAR_calculation".
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
	</component>

<!-- ========================================	AUTONOMIC EFFECT ON EFFERENT RESISTANCE	============================================= -->
	<component 	name="autonomic_effect_on_EAR" 
				cmeta:id="autonomic_effect_on_EAR">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#autonomic_effect_on_EAR">
				<rdf:value>
				KD14, KD15, and KD16:  
				Calculation from AUMK (the output of Block 13), the effect of autonomic stimulation 
				on efferent arteriolar resistance.  The output of Block 16 multiplies efferent 
				arteriolar resistance in Block 6.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD14_to_KD16">
				<rdf:value>
				KD14, KD15, and KD16:  
				Calculation from AUMK (the output of Block 13), the effect of autonomic stimulation 
				on efferent arteriolar resistance.  The output of Block 16 multiplies efferent 
				arteriolar resistance in Block 6.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="AUMK"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="AUMK2" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="AUMK1"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD14_to_KD16">
				<eq/>
				<ci>AUMK2</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<apply>
							<minus/>
							<ci>AUMK</ci>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
						<ci>AUMK1</ci>
					</apply>
					<cn cellml:units="dimensionless">1</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="autonomic_effect_on_EAR" component_2="autonomic_effect_on_AAR"/>
		<map_variables variable_1="AUMK" variable_2="AUMK"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="autonomic_effect_on_EAR" component_2="kidney_parameter_values"/>
		<map_variables variable_1="AUMK1" variable_2="AUMK1"/>
	</connection>

<!-- ========================================	ANGIOTENSIN EFFECT ON EFFERENT RESISTANCE	============================================= -->
	<component 	name="angiotensin_effect_on_EAR" 
				cmeta:id="angiotensin_effect_on_EAR">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#angiotensin_effect_on_EAR">
				<rdf:value>
				KD3, KD4 and KD5:
				Calculation of a temporary value for the effect of angiotensin on the efferent arteriolar 
				resistance (ANMER). The angiotensin-related factors that affect the efferent arteriolar
				resistance are an angiotensin multiplier (ANM), and a sensitivity control for the effect of 
				angiotensin on the efferent arterioles (ANMEM).	
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD3_to_KD5">
				<rdf:value>
				KD3, KD4 and KD5:
				Calculation of a temporary value for the effect of angiotensin on the efferent arteriolar 
				resistance (ANMER). The angiotensin-related factors that affect the efferent arteriolar
				resistance are an angiotensin multiplier (ANM), and a sensitivity control for the effect of 
				angiotensin on the efferent arterioles (ANMEM).	
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="ANM"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="ANMER" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="ANMEM"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD3_to_KD5">
				<eq/>
				<ci>ANMER</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<apply>
							<minus/>
							<ci>ANM</ci>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
						<ci>ANMEM</ci>
					</apply>
					<cn cellml:units="dimensionless">1</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="angiotensin_effect_on_EAR" component_2="kidney"/>
		<map_variables variable_1="ANM" variable_2="ANM"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="angiotensin_effect_on_EAR" component_2="kidney_parameter_values"/>
		<map_variables variable_1="ANMEM" variable_2="ANMEM"/>
	</connection>

<!-- ==========================	EFFECT OF RENAL AUTOREGULATORY FEEDBACK ON EFFERENT RESISTANCE	=============================== -->
	<component 	name="effect_of_renal_autoregulatory_feedback_on_EAR" 
				cmeta:id="effect_of_renal_autoregulatory_feedback_on_EAR">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#effect_of_renal_autoregulatory_feedback_on_EAR">
				<rdf:value>
				KD17, KD18, and KD19:  
				Sensitivity control of the renal autoregulatory feedback on efferent arteriolar 
				resistance.  The sensitivity is controlled by (EFAFR) in Block 18.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD17_to_KD19">
				<rdf:value>
				KD17, KD18, and KD19:  
				Sensitivity control of the renal autoregulatory feedback on efferent arteriolar 
				resistance.  The sensitivity is controlled by (EFAFR) in Block 18.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="RNAUG2"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="effect_of_renal_autoregulatory_feedback_on_EAR_RNAUG4"
					name="RNAUG4" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="EFAFR"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD17_to_KD19">
				<eq/>
				<ci>RNAUG4</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<apply>
							<minus/>
							<ci>RNAUG2</ci>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
						<ci>EFAFR</ci>
					</apply>
					<cn cellml:units="dimensionless">1</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="effect_of_renal_autoregulatory_feedback_on_EAR" component_2="renal_autoregulatory_feedback_factor"/>
		<map_variables variable_1="RNAUG2" variable_2="RNAUG2"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="effect_of_renal_autoregulatory_feedback_on_EAR" component_2="kidney_parameter_values"/>
		<map_variables variable_1="EFAFR" variable_2="EFAFR"/>
	</connection>

<!-- ========================================	EFFERENT ARTERIAL RESISTANCE CALCULATION		============================================= -->
	<component 	name="EAR_calculation" 
				cmeta:id="EAR_calculation">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#EAR_calculation">
				<rdf:value>
				KD6 and KD6A:  
				Calculation of the efferent arteriolar resistance of the kidneys (EAR).  The various factors 
				that affect this are: the angiotensin multiplier on efferent arterioles (ANMER), the basic 
				efferent arteriolar resistance when all other factors are normal (EARK), a multiplier factor 
				from Block KD19 that determines feedback from the renal autoregulatory mechanism, a multiplier
				factor from Block 16 that determines autonomic nervous signal control of efferent arteriolar 
				resistance, and a factor (MYOGRS) for any myogenic autoregulation that might occur in the 
				efferent arterioles.  Block KD6A sets the lower limit for the efferent arteriolar resistance (EAR)
				at a level equal to the factor (EARLL).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD6">
				<rdf:value>
				KD6:  
				Calculation of the efferent arteriolar resistance of the kidneys (EAR).  The various factors 
				that affect this are: the angiotensin multiplier on efferent arterioles (ANMER), the basic 
				efferent arteriolar resistance when all other factors are normal (EARK), a multiplier factor 
				from Block KD19 that determines feedback from the renal autoregulatory mechanism, a multiplier
				factor from Block 16 that determines autonomic nervous signal control of efferent arteriolar 
				resistance, and a factor (MYOGRS) for any myogenic autoregulation that might occur in the 
				efferent arterioles.  
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD6A">
				<rdf:value>
				KD6A:
				Block KD6A sets the lower limit for the efferent arteriolar resistance (EAR)
				at a level equal to the factor (EARLL).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="ANMER"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="AUMK2"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="MYOGRS"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="RNAUG4"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="EAR_calculation_EAR"
					name="EAR" 	units="mmHg_minute_per_L" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="EARK"	units="mmHg_minute_per_L" private_interface="none" public_interface="in"/>
		<variable name="EARLL"	units="mmHg_minute_per_L" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable	cmeta:id="EAR_calculation_EAR1"
					name="EAR1"	units="mmHg_minute_per_L" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD6">
				<eq/>
				<ci>EAR1</ci>
				<apply>
					<times/>
					<cn cellml:units="dimensionless">43.333</cn>
					<ci>EARK</ci>
					<ci>ANMER</ci>
					<ci>RNAUG4</ci>
					<ci>MYOGRS</ci>
					<ci>AUMK2</ci>
				</apply>
			</apply>
			<apply id="KD6A">
				<eq/>
				<ci>EAR</ci>
				<piecewise>
					<piece>
						<ci>EARLL</ci>
						<apply>
							<lt/>
							<ci>EAR1</ci>
							<ci>EARLL</ci>
						</apply>
					</piece>
					<otherwise>
						<ci>EAR1</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="EAR_calculation" component_2="angiotensin_effect_on_EAR"/>
		<map_variables variable_1="ANMER" variable_2="ANMER"/>
	</connection>
	<connection>
		<map_components component_1="EAR_calculation" component_2="autonomic_effect_on_EAR"/>
		<map_variables variable_1="AUMK2" variable_2="AUMK2"/>
	</connection>
	<connection>
		<map_components component_1="EAR_calculation" component_2="kidney"/>
		<map_variables variable_1="MYOGRS" variable_2="MYOGRS"/>
	</connection>
	<connection>
		<map_components component_1="EAR_calculation" component_2="effect_of_renal_autoregulatory_feedback_on_EAR"/>
		<map_variables variable_1="RNAUG4" variable_2="RNAUG4"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="EAR_calculation" component_2="kidney_parameter_values"/>
		<map_variables variable_1="EARK" variable_2="EARK"/>
		<map_variables variable_1="EARLL" variable_2="EARLL"/>
	</connection>

<!-- ========================================	TOTAL RENAL RESISTANCE	============================================= -->
	<component 	name="total_renal_resistance" 
				cmeta:id="total_renal_resistance">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#total_renal_resistance">
				<rdf:value>
				KD20:  
				Calculation of the total renal resistance (RR) by adding efferent arteriolar 
				resistance (EAR) to afferent resistance (AAR).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD20">
				<rdf:value>
				KD20:  
				Calculation of the total renal resistance (RR) by adding efferent arteriolar 
				resistance (EAR) to afferent resistance (AAR).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="AAR"	units="mmHg_minute_per_L" private_interface="none" public_interface="in"/>
		<variable name="EAR"	units="mmHg_minute_per_L" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="total_renal_resistance_RR"
					name="RR" 	units="mmHg_minute_per_L" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD20">
				<eq/>
				<ci>RR</ci>
				<apply>
					<plus/>
					<ci>AAR</ci>
					<ci>EAR</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="total_renal_resistance" component_2="EAR_calculation"/>
		<map_variables variable_1="EAR" variable_2="EAR"/>
	</connection>
	<connection>
		<map_components component_1="total_renal_resistance" component_2="atrial_natriuretic_peptide_effect_on_AAR"/>
		<map_variables variable_1="AAR" variable_2="AAR"/>
	</connection>

<!-- ========================================	NORMAL RENAL BLOOD FLOW	============================================= -->
	<component 	name="normal_renal_blood_flow" 
				cmeta:id="normal_renal_blood_flow">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#normal_renal_blood_flow">
				<rdf:value>
				KD24A:  
				Renal perfusion pressure (PAR) divided by renal resistance (RR) equals the 
				renal blood flow for normal kidneys (RFN).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD24A">
				<rdf:value>
				KD24A:  
				Renal perfusion pressure (PAR) divided by renal resistance (RR) equals the 
				renal blood flow for normal kidneys (RFN).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="RR"	units="mmHg_minute_per_L" private_interface="none" public_interface="in"/>
		<variable name="PAR"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="normal_renal_blood_flow_RFN"
					name="RFN" 	units="L_per_minute" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD24A">
				<eq/>
				<ci>RFN</ci>
				<apply>
					<divide/>
					<ci>PAR</ci>
					<ci>RR</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="normal_renal_blood_flow" component_2="total_renal_resistance"/>
		<map_variables variable_1="RR" variable_2="RR"/>
	</connection>
	<connection>
		<map_components component_1="normal_renal_blood_flow" component_2="perfusion_pressure"/>
		<map_variables variable_1="PAR" variable_2="PAR"/>
	</connection>

<!-- ========================================	ACTUAL RENAL BLOOD FLOW	============================================= -->
	<component 	name="actual_renal_blood_flow" 
				cmeta:id="actual_renal_blood_flow">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#actual_renal_blood_flow">
				<rdf:value>
				KD73:  
				Calculation of the actual renal blood flow (RBF) by multiplying the normalized 
				renal blood flow (RFN) for two normal kidneys times the fraction of normal kidney
				mass present in the body (REK).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD73">
				<rdf:value>
				KD73:  
				Calculation of the actual renal blood flow (RBF) by multiplying the normalized 
				renal blood flow (RFN) for two normal kidneys times the fraction of normal kidney
				mass present in the body (REK).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="RFN"	units="L_per_minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="actual_renal_blood_flow_RBF"
					name="RBF" 	units="L_per_minute" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="REK"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD73">
				<eq/>
				<ci>RBF</ci>
				<apply>
					<times/>
					<ci>REK</ci>
					<ci>RFN</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="actual_renal_blood_flow" component_2="normal_renal_blood_flow"/>
		<map_variables variable_1="RFN" variable_2="RFN"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="actual_renal_blood_flow" component_2="kidney_parameter_values"/>
		<map_variables variable_1="REK" variable_2="REK"/>
	</connection>

<!-- ========================================	GLOMERULAR CAPILLARIES	============================================= -->
	<component 	name="glomerular_capillaries" 
				cmeta:id="glomerular_capillaries">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#glomerular_capillaries">
				<rdf:value>
				Containment grouping component for "glomerular_colloid_osmotic_pressure",
				"glomerular_pressure", "glomerular_filtration_rate".
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
	</component>

<!-- ========================================	GLOMERULAR COLLOID OSMOTIC PRESSURE	============================================= -->
	<component 	name="glomerular_colloid_osmotic_pressure" 
				cmeta:id="glomerular_colloid_osmotic_pressure">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#glomerular_colloid_osmotic_pressure">
				<rdf:value>
				KD68, KD69, KD70, KD71, KD71A, KD72, KD72A, and KD72B:  
				Calculation of the colloid osmotic pressure of the proteins in the plasma of the 
				fluid flowing through the glomerular capillaries (GLPC).  This calculation is based 
				on four input factors, fractional hematocrit (HM1) in Block 68, normalized rate of 
				blood flow (RFN) in Block 69, normalized rate of flow through the two kidneys (GFN)
				in Block 70, and plasma protein concentration in the blood elsewhere in the body (PPC) 
				in Block 72A.  The output of Block 72A is damped in Block 72B by the damping factor GPPD; 
				this is to prevent oscillation in the feedback circuit.
				NB - REMOVED DAMPING FROM KD72-KD72B!!!!
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD68_to_KD71">
				<rdf:value>
				KD68, KD69, KD70, KD71, KD71A, KD72, KD72A, and KD72B:  
				Calculation of the colloid osmotic pressure of the proteins in the plasma of the 
				fluid flowing through the glomerular capillaries (GLPC).  This calculation is based 
				on four input factors, fractional hematocrit (HM1) in Block 68, normalized rate of 
				blood flow (RFN) in Block 69, normalized rate of flow through the two kidneys (GFN)
				in Block 70, and plasma protein concentration in the blood elsewhere in the body (PPC) 
				in Block 72A.  The output of Block 72A is damped in Block 72B by the damping factor GPPD; 
				this is to prevent oscillation in the feedback circuit.
				NB - REMOVED DAMPING FROM KD72-KD72B!!!!
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD71A">
				<rdf:value>
				KD68, KD69, KD70, KD71, KD71A, KD72, KD72A, and KD72B:  
				Calculation of the colloid osmotic pressure of the proteins in the plasma of the 
				fluid flowing through the glomerular capillaries (GLPC).  This calculation is based 
				on four input factors, fractional hematocrit (HM1) in Block 68, normalized rate of 
				blood flow (RFN) in Block 69, normalized rate of flow through the two kidneys (GFN)
				in Block 70, and plasma protein concentration in the blood elsewhere in the body (PPC) 
				in Block 72A.  The output of Block 72A is damped in Block 72B by the damping factor GPPD; 
				this is to prevent oscillation in the feedback circuit.
				NB - REMOVED DAMPING FROM KD72-KD72B!!!!
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD72_to_KD72B">
				<rdf:value>
				KD68, KD69, KD70, KD71, KD71A, KD72, KD72A, and KD72B:  
				Calculation of the colloid osmotic pressure of the proteins in the plasma of the 
				fluid flowing through the glomerular capillaries (GLPC).  This calculation is based 
				on four input factors, fractional hematocrit (HM1) in Block 68, normalized rate of 
				blood flow (RFN) in Block 69, normalized rate of flow through the two kidneys (GFN)
				in Block 70, and plasma protein concentration in the blood elsewhere in the body (PPC) 
				in Block 72A.  The output of Block 72A is damped in Block 72B by the damping factor GPPD; 
				this is to prevent oscillation in the feedback circuit.
				NB - REMOVED DAMPING FROM KD72-KD72B!!!!
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="HM1"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="RFN"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="GFN"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="PPC"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="glomerular_colloid_osmotic_pressure_GLPC"
					name="GLPC" 	units="mmHg" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="GPPD"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="GLPCA"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable	cmeta:id="glomerular_colloid_osmotic_pressure_EFAFPR"
					name="EFAFPR"	units="dimensionless" private_interface="none" public_interface="none"/>
		<variable	cmeta:id="glomerular_colloid_osmotic_pressure_EFAFPR1"
					name="EFAFPR1"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD68_to_KD71">
				<eq/>
				<ci>EFAFPR1</ci>
				<apply>
					<divide/>
					<apply>
						<times/>
						<ci>RFN</ci>
						<apply>
							<minus/>
							<cn cellml:units="dimensionless">1</cn>
							<ci>HM1</ci>
						</apply>
					</apply>
					<apply>
						<minus/>
						<apply>
							<times/>
							<ci>RFN</ci>
							<apply>
								<minus/>
								<cn cellml:units="dimensionless">1</cn>
								<ci>HM1</ci>
							</apply>
						</apply>
						<ci>GFN</ci>
					</apply>
				</apply>
			</apply>
			<apply id="KD71A">
				<eq/>
				<ci>EFAFPR</ci>
				<piecewise>
					<piece>
						<cn cellml:units="dimensionless">1</cn>
						<apply>
							<lt/>
							<ci>EFAFPR1</ci>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>EFAFPR1</ci>
					</otherwise>
				</piecewise>
			</apply>
			<apply id="KD72_to_KD72B">
				<eq/>
				<ci>GLPC</ci>
				<piecewise>
					<piece>
						<apply>
							<times/>
							<apply>
								<power/>
								<ci>EFAFPR</ci>
								<cn cellml:units="dimensionless">1.35</cn>
							</apply>
							<ci>PPC</ci>
							<cn cellml:units="dimensionless">0.98</cn>
						</apply>
						<apply>
							<gt/>
							<ci>GLPCA</ci>
							<cn cellml:units="mmHg">0</cn>
						</apply>
					</piece>
					<otherwise>
						<apply>
							<plus/>
							<ci>PPC</ci>
							<cn cellml:units="mmHg">4</cn>
						</apply>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="glomerular_colloid_osmotic_pressure" component_2="kidney"/>
		<map_variables variable_1="HM1" variable_2="HM1"/>
		<map_variables variable_1="PPC" variable_2="PPC"/>
	</connection>
	<connection>
		<map_components component_1="glomerular_colloid_osmotic_pressure" component_2="normal_renal_blood_flow"/>
		<map_variables variable_1="RFN" variable_2="RFN"/>
	</connection>
	<connection>
		<map_components component_1="glomerular_colloid_osmotic_pressure" component_2="glomerular_filtration_rate"/>
		<map_variables variable_1="GFN" variable_2="GFN"/>
		<map_variables variable_1="GLPC" variable_2="GLPC"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="glomerular_colloid_osmotic_pressure" component_2="kidney_parameter_values"/>
		<map_variables variable_1="GPPD" variable_2="GPPD"/>
		<map_variables variable_1="GLPCA" variable_2="GLPCA"/>
	</connection>

<!-- ========================================	GLOMERULAR PRESSURE		============================================= -->
	<component 	name="glomerular_pressure" 
				cmeta:id="glomerular_pressure">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#glomerular_pressure">
				<rdf:value>
				KD24:  
				Arterial pressure drop (APD) in the renal arteries and afferent arterioles 
				before the blood gets to the glomerulus equals RFN times efferent arterial 
				resistance (AAR).

				KD25:  
				Calculation of glomerular pressure (GLP) by subtracting afferent pressure drop (APD) 
				from the input pressure to the kidney (PAR).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD24">
				<rdf:value>
				KD24:  
				Arterial pressure drop (APD) in the renal arteries and afferent arterioles 
				before the blood gets to the glomerulus equals RFN times efferent arterial 
				resistance (AAR).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD25">
				<rdf:value>
				KD25:  
				Calculation of glomerular pressure (GLP) by subtracting afferent pressure drop (APD) 
				from the input pressure to the kidney (PAR).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="AAR"	units="mmHg_minute_per_L" private_interface="none" public_interface="in"/>
		<variable name="PAR"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="RFN"	units="L_per_minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="glomerular_pressure_GLP"
					name="GLP" 	units="mmHg" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable	cmeta:id="glomerular_pressure_APD"
					name="APD"	units="mmHg" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD24">
				<eq/>
				<ci>APD</ci>
				<apply>
					<times/>
					<ci>AAR</ci>
					<ci>RFN</ci>
				</apply>
			</apply>
			<apply id="KD25">
				<eq/>
				<ci>GLP</ci>
				<apply>
					<minus/>
					<ci>PAR</ci>
					<ci>APD</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="glomerular_pressure" component_2="atrial_natriuretic_peptide_effect_on_AAR"/>
		<map_variables variable_1="AAR" variable_2="AAR"/>
	</connection>
	<connection>
		<map_components component_1="glomerular_pressure" component_2="perfusion_pressure"/>
		<map_variables variable_1="PAR" variable_2="PAR"/>
	</connection>
	<connection>
		<map_components component_1="glomerular_pressure" component_2="normal_renal_blood_flow"/>
		<map_variables variable_1="RFN" variable_2="RFN"/>
	</connection>

<!-- ========================================	GLOMERULAR FILTRATION RATE	============================================= -->
	<component 	name="glomerular_filtration_rate" 
				cmeta:id="glomerular_filtration_rate">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#glomerular_filtration_rate">
				<rdf:value>
					KD26:  
					Calculation of average filtration pressure through the glomerular 
					capillary walls (PFL) by subtracting intrarenal pressure (PXTP) and 
					colloid osmotic pressure of the glomerular plasma (GLPC) from the average 
					glomerular pressure (GLP).

					KD27 and KD28:  
					Calculation of the normalized glomerular filtration rate (GFN) if both kidneys 
					are fully functional.  This is calculated by multiplying the pressure drop 
					across the glomerular capillary membrane (PFL) times the glomerular filtration 
					coefficient (GFLC).  The lower limit for glomerular filtration is set in Block 28 
					by the value GFNLL.
					NB - DAMPING REMOVED FROM KD27!!!
					
					KD51:  
					Calculation of the actual glomerular filtration rate (GFR) by multiplying the rate 
					that would be true if both kidneys were totally intact (GFN) times the fraction of 
					normal kidney mass actually functioning (REK).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD26">
				<rdf:value>
					KD26:  
					Calculation of average filtration pressure through the glomerular 
					capillary walls (PFL) by subtracting intrarenal pressure (PXTP) and 
					colloid osmotic pressure of the glomerular plasma (GLPC) from the average 
					glomerular pressure (GLP).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD27">
				<rdf:value>
					KD27:  
					Calculation of the normalized glomerular filtration rate (GFN) if both kidneys 
					are fully functional.  This is calculated by multiplying the pressure drop 
					across the glomerular capillary membrane (PFL) times the glomerular filtration 
					coefficient (GFLC).  
					NB - DAMPING REMOVED FROM KD27!!!
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD28">
				<rdf:value>
					KD28:
					The lower limit for glomerular filtration is set in Block 28 
					by the value GFNLL.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD51">
				<rdf:value>
					KD51:  
					Calculation of the actual glomerular filtration rate (GFR) by multiplying the rate 
					that would be true if both kidneys were totally intact (GFN) times the fraction of 
					normal kidney mass actually functioning (REK).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="GLP"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="GLPC"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable	cmeta:id="glomerular_filtration_rate_GFN"
					name="GFN" 	units="L_per_minute" private_interface="none" public_interface="out"/>
		<variable name="GFR" 	units="L_per_minute" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="PXTP"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="GFLC"	units="L_per_minute_per_mmHg" private_interface="none" public_interface="in"/>
		<variable name="GFNLL"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="REK"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable	cmeta:id="glomerular_filtration_rate_PFL"
					name="PFL"	units="mmHg" private_interface="none" public_interface="none"/>
		<variable	cmeta:id="glomerular_filtration_rate_GFN1"
					name="GFN1"	units="L_per_minute" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD26">
				<eq/>
				<ci>PFL</ci>
				<apply>
					<minus/>
					<apply>
						<minus/>
						<ci>GLP</ci>
						<ci>GLPC</ci>
					</apply>
					<ci>PXTP</ci>
				</apply>
			</apply>
			<apply id="KD27">
				<eq/>
				<ci>GFN1</ci>
				<apply>
					<times/>
						<ci>PFL</ci>
						<ci>GFLC</ci>
				</apply>
			</apply>
			<apply id="KD28">
				<eq/>
				<ci>GFN</ci>
				<piecewise>
					<piece>
						<ci>GFNLL</ci>
						<apply>
							<lt/>
							<ci>GFN1</ci>
							<ci>GFNLL</ci>
						</apply>
					</piece>
					<otherwise>
						<ci>GFN1</ci>
					</otherwise>
				</piecewise>
			</apply>
			<apply id="KD51">
				<eq/>
				<ci>GFR</ci>
				<apply>
					<times/>
					<ci>GFN</ci>
					<ci>REK</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="glomerular_filtration_rate" component_2="glomerular_pressure"/>
		<map_variables variable_1="GLP" variable_2="GLP"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="glomerular_filtration_rate" component_2="kidney_parameter_values"/>
		<map_variables variable_1="PXTP" variable_2="PXTP"/>
		<map_variables variable_1="GFLC" variable_2="GFLC"/>
		<map_variables variable_1="GFNLL" variable_2="GFNLL"/>
		<map_variables variable_1="REK" variable_2="REK"/>
	</connection>

<!-- ========================================	PROXIMAL TUBULAR AND MACULA DENSA FLOW	============================================= -->
	<component 	name="proximal_tubular_and_macula_densa_flow" 
				cmeta:id="proximal_tubular_and_macula_densa_flow">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#proximal_tubular_and_macula_densa_flow">
				<rdf:value>
				KD29:  
				Calculation of normalized rate of flow of fluid out of the proximal tubules (PTFL) 
				making the assumption that this is directly proportional to the normalized glomerular 
				filtration rate (GFN).  The value (1.0) is considered to be the normal flow of fluid 
				out of the proximal tubules when all functions of the kidneys are normal.

				KD30, KD31, and KD32:  
				This is a sensitivity controller to determine the normalized rate of flow of tubular 
				fluid at the macula densa level in the kidneys (MDFLW) when the normalized rate of flow 
				out of the proximal tubules (PTFL) changes from the normalized mean value of 1.  The
				multiplier value MDFL1 in Block 31 determines how many times as much the normalized 
				value for macula densa flow (MDFLW) changes with respect to change in proximal tubular 
				outflow (PTFL).

				KD33:  
				This block sets a lower limit of macula densa flow  (MDFLW) equal to zero.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD29">
				<rdf:value>
				KD29:  
				Calculation of normalized rate of flow of fluid out of the proximal tubules (PTFL) 
				making the assumption that this is directly proportional to the normalized glomerular 
				filtration rate (GFN).  The value (1.0) is considered to be the normal flow of fluid 
				out of the proximal tubules when all functions of the kidneys are normal.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD30_to_KD32">
				<rdf:value>
				KD30, KD31, and KD32:  
				This is a sensitivity controller to determine the normalized rate of flow of tubular 
				fluid at the macula densa level in the kidneys (MDFLW) when the normalized rate of flow 
				out of the proximal tubules (PTFL) changes from the normalized mean value of 1.  The
				multiplier value MDFL1 in Block 31 determines how many times as much the normalized 
				value for macula densa flow (MDFLW) changes with respect to change in proximal tubular 
				outflow (PTFL).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD33">
				<rdf:value>
				KD33:  
				This block sets a lower limit of macula densa flow  (MDFLW) equal to zero.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="GFN"	units="L_per_minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="proximal_tubular_and_macula_densa_flow_MDFLW"
					name="MDFLW" 	units="L_per_minute" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="MDFL1"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable	cmeta:id="proximal_tubular_and_macula_densa_flow_PTFL"
					name="PTFL"	units="L_per_minute" private_interface="none" public_interface="none"/>
		<variable 	cmeta:id="proximal_tubular_and_macula_densa_flow_MDFLWT"
					name="MDFLWT"	units="L_per_minute" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD29">
				<eq/>
				<ci>PTFL</ci>
				<apply>
					<times/>
					<ci>GFN</ci>
					<cn cellml:units="dimensionless">8</cn>
				</apply>
			</apply>
			<apply id="KD30_to_KD32">
				<eq/>
				<ci>MDFLWT</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<apply>
							<minus/>
							<ci>PTFL</ci>
							<cn cellml:units="L_per_minute">1</cn>
						</apply>
						<ci>MDFL1</ci>
					</apply>
					<cn cellml:units="L_per_minute">1</cn>
				</apply>
			</apply>
			<apply id="KD33">
				<eq/>
				<ci>MDFLW</ci>
				<piecewise>
					<piece>
						<cn cellml:units="L_per_minute">0</cn>
						<apply>
							<lt/>
							<ci>MDFLWT</ci>
							<cn cellml:units="L_per_minute">0</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>MDFLWT</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="proximal_tubular_and_macula_densa_flow" component_2="glomerular_filtration_rate"/>
		<map_variables variable_1="GFN" variable_2="GFN"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="proximal_tubular_and_macula_densa_flow" component_2="kidney_parameter_values"/>
		<map_variables variable_1="MDFL1" variable_2="MDFL1"/>
	</connection>

<!-- ========================================	RENAL TISSUE OSMOTIC PRESSURE	============================================= -->
	<component 	name="renal_tissue_osmotic_pressure" 
				cmeta:id="renal_tissue_osmotic_pressure">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#renal_tissue_osmotic_pressure">
				<rdf:value>
				KD79, KD80, and KD81:  
				Calculation of the renal tissue fluid colloid osmotic pressure (RTSPPC) based on 
				the average colloid osmotic pressure of the plasma in the glomerulus (GLPC) times 
				a factor caused by reabsorption of fluid into the plasma flowing through the 
				capillaries surrounding the tubules (RTPPR), and minus a factor resulting from a
				protein differential between the capillaries and the tissue spaces (RTPPRS).  The 
				lower limit of RTSPPC is set to 1.0 by Block 81.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD79_and_KD80">
				<rdf:value>
				KD79 and KD80:  
				Calculation of the renal tissue fluid colloid osmotic pressure (RTSPPC) based on 
				the average colloid osmotic pressure of the plasma in the glomerulus (GLPC) times 
				a factor caused by reabsorption of fluid into the plasma flowing through the 
				capillaries surrounding the tubules (RTPPR), and minus a factor resulting from a
				protein differential between the capillaries and the tissue spaces (RTPPRS).  
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD81">
				<rdf:value>
				KD81:
				The lower limit of RTSPPC is set to 1.0 by Block 81.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="GLPC"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="RTSPPC" 	units="mmHg" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="RTPPR"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="RTPPRS"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="RTSPPC1"	units="mmHg" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD79_and_KD80">
				<eq/>
				<ci>RTSPPC1</ci>
				<apply>
					<minus/>
					<apply>
						<times/>
						<ci>GLPC</ci>
						<ci>RTPPR</ci>
					</apply>
					<ci>RTPPRS</ci>
				</apply>
			</apply>
			<apply id="KD81">
				<eq/>
				<ci>RTSPPC</ci>
				<piecewise>
					<piece>
						<cn cellml:units="mmHg">1</cn>
						<apply>
							<lt/>
							<ci>RTSPPC1</ci>
							<cn cellml:units="mmHg">1</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>RTSPPC1</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="renal_tissue_osmotic_pressure" component_2="glomerular_colloid_osmotic_pressure"/>
		<map_variables variable_1="GLPC" variable_2="GLPC"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="renal_tissue_osmotic_pressure" component_2="kidney_parameter_values"/>
		<map_variables variable_1="RTPPR" variable_2="RTPPR"/>
		<map_variables variable_1="RTPPRS" variable_2="RTPPRS"/>
	</connection>

<!-- ========================================	UREA HANDLING	============================================= -->
	<component 	name="urea_handling" 
				cmeta:id="urea_handling">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#urea_handling">
				<rdf:value>
				Containment grouping component for "plasma_urea_concentration",
				"glomerular_urea_concentration".
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
	</component>

<!-- ========================================	GLOMERULAR UREA CONCENTRATION	============================================= -->
	<component 	name="glomerular_urea_concentration" 
				cmeta:id="glomerular_urea_concentration">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#glomerular_urea_concentration">
				<rdf:value>
				KD53 and KD54:  
				Calculation of the concentration of urea in the glomerular filtrate and also in the plasma (PLURC). 
				Subtraction in Block 53 of the urinary output of urea (UROD) from rate of formation of urea in the body (URFORM)
				and the result integrated in Block 54 calculates the total urea in the plasma and other body fluids (PLUR).  
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD53_and_KD54">
				<rdf:value>
				KD53 and KD54:  
				Calculation of the concentration of urea in the glomerular filtrate and also in the plasma (PLURC). 
				Subtraction in Block 53 of the urinary output of urea (UROD) from rate of formation of urea in the body (URFORM)
				and the result integrated in Block 54 calculates the total urea in the plasma and other body fluids (PLUR).  
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

<!-- Inputs from other components -->
		<variable name="UROD"	units="mOsm_per_minute" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute"	private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="PLUR" 	initial_value="159.549"	units="mOsm" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="URFORM"	units="mOsm_per_minute" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD53_and_KD54">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>PLUR</ci>
				</apply>
				<apply>
					<minus/>
					<ci>URFORM</ci>
					<ci>UROD</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="glomerular_urea_concentration" component_2="actual_urea_excretion_rate"/>
		<map_variables variable_1="UROD" variable_2="UROD"/>
	</connection>
	<connection>
		<map_components component_1="glomerular_urea_concentration" component_2="kidney"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="glomerular_urea_concentration" component_2="kidney_parameter_values"/>
		<map_variables variable_1="URFORM" variable_2="URFORM"/>
	</connection>

<!-- ========================================	PLASMA UREA CONCENTRATION		============================================= -->
	<component 	name="plasma_urea_concentration" 
				cmeta:id="plasma_urea_concentration">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#plasma_urea_concentration">
				<rdf:value>
				KD55:  
				Calculation of the concentration of urea in the glomerular filtrate and also 
				in the plasma (PLURC). 
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD55">
				<rdf:value>
				KD55:  
				Calculation of the concentration of urea in the glomerular filtrate and also 
				in the plasma (PLURC). 
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="PLUR"	units="mOsm" private_interface="none" public_interface="in"/>
		<variable name="VTW"	units="litre" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="PLURC" 	units="mOsm_per_litre" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD55">
                <eq/>
                <ci>PLURC</ci>
                <apply>
                    <divide/>
                    <ci>PLUR</ci>
                    <ci>VTW</ci>
                </apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="plasma_urea_concentration" component_2="glomerular_urea_concentration"/>
		<map_variables variable_1="PLUR" variable_2="PLUR"/>
	</connection>
	<connection>
		<map_components component_1="plasma_urea_concentration" component_2="kidney"/>
		<map_variables variable_1="VTW" variable_2="VTW"/>
	</connection>

<!-- ========================================	RENAL PERITUBULAR CAPILLARIES		============================================= -->
	<component 	name="renal_peritubular_capillaries" 
				cmeta:id="renal_peritubular_capillaries">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#renal_peritubular_capillaries">
				<rdf:value>
				Containment grouping component for "peritubular_capillary_pressure" and
				"peritubular_capillary_reabsorption_factor".
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
	</component>

<!-- ========================================	PERITUBULAR CAPILLARY PRESSURE		============================================= -->
	<component 	name="peritubular_capillary_pressure" 
				cmeta:id="peritubular_capillary_pressure">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#peritubular_capillary_pressure">
				<rdf:value>
				KD74, KD75, KD76, and KD77:  
				Calculation of renal peritubular capillary pressure.  Blocks KD74, KD75 and KD76 
				are a sensitivity control to determine the effect of changes in RFN on the calculation.  
				In Block KD77, the output of Block KD76 is multiplied by a resistance from the 
				glomerulus back to the large veins (RVRS). 
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD74_to_KD77">
				<rdf:value>
				KD74, KD75, KD76, and KD77:  
				Calculation of renal peritubular capillary pressure.  Blocks KD74, KD75 and KD76 
				are a sensitivity control to determine the effect of changes in RFN on the calculation.  
				In Block KD77, the output of Block KD76 is multiplied by a resistance from the 
				glomerulus back to the large veins (RVRS). 
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="RFN"	units="L_per_minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="RCPRS" 	units="mmHg" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="RFABX"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="RVRS"	units="mmHg_minute_per_L" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD74_to_KD77">
				<eq/>
				<ci>RCPRS</ci>
				<apply>
					<times/>
					<apply>
						<plus/>
						<apply>
							<times/>
							<apply>
								<minus/>
								<ci>RFN</ci>
								<cn cellml:units="L_per_minute">1.2</cn>
							</apply>
							<ci>RFABX</ci>
						</apply>
						<cn cellml:units="L_per_minute">1.2</cn>
					</apply>
					<ci>RVRS</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="peritubular_capillary_pressure" component_2="normal_renal_blood_flow"/>
		<map_variables variable_1="RFN" variable_2="RFN"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="peritubular_capillary_pressure" component_2="kidney_parameter_values"/>
		<map_variables variable_1="RFABX" variable_2="RFABX"/>
		<map_variables variable_1="RVRS" variable_2="RVRS"/>
	</connection>

<!-- ========================================	PERITUBULAR CAPILLARY REABSORPTION FACTOR	============================================= -->
	<component 	name="peritubular_capillary_reabsorption_factor" 
				cmeta:id="peritubular_capillary_reabsorption_factor">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#peritubular_capillary_reabsorption_factor">
				<rdf:value>
				KD78:  
				The pressure difference for absorption of fluid into the peritubular 
				capillaries (RABSPR) is equal to the average colloid osmotic pressure 
				in the peritubular capillaries (RABSPR), which is equal to the average 
				colloid osmotic pressure in the glomerulus (GLPC), minus renal tissue 
				fluid colloid osmotic pressure (RTSPPC), minus the renal peritubular 
				capillary pressure (RCPRS), and plus the renal tissue fluid pressure (RTSPRS).

				KD82:  
				A temporary distal tubular reabsorption factor (RFAB1) is calculated from 
				the peritubular capillary absorptive pressure difference (RABSPR) times the
				renal peritubular capillary reabsorption coefficient (RABSC).

				KD83:  
				This is a damping circuit to calculate the reabsorption factor (RFAB).  The 
				damping coefficient is RFABDP.  The purpose of this is to prevent 
				oscillation in the system.
				NB - REMOVED DAMPING FROM KD83!!

				KD84, KD85, KD86, and KD87:  
				Blocks 84, 85, and 86 are a sensitivity control for determining the effect 
				of the reabsorption factor RFAB on distal tubule reabsorption (RFABD).  The 
				sensitivity is controlled by the factor in Block 85, RFABDM.  Block 87 prevents
				the value of RFABD from falling below a value of .0001.  
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD78">
				<rdf:value>
				KD78:  
				The pressure difference for absorption of fluid into the peritubular 
				capillaries (RABSPR) is equal to the average colloid osmotic pressure 
				in the peritubular capillaries (RABSPR), which is equal to the average 
				colloid osmotic pressure in the glomerulus (GLPC), minus renal tissue 
				fluid colloid osmotic pressure (RTSPPC), minus the renal peritubular 
				capillary pressure (RCPRS), and plus the renal tissue fluid pressure (RTSPRS).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD82">
				<rdf:value>
				KD82:  
				A temporary distal tubular reabsorption factor (RFAB1) is calculated from 
				the peritubular capillary absorptive pressure difference (RABSPR) times the
				renal peritubular capillary reabsorption coefficient (RABSC).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD83">
				<rdf:value>
				KD83:  
				This is a damping circuit to calculate the reabsorption factor (RFAB).  The 
				damping coefficient is RFABDP.  The purpose of this is to prevent 
				oscillation in the system.
				NB - REMOVED DAMPING FROM KD83!!
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD84_to_KD86">
				<rdf:value>
				KD84, KD85, and KD86:  
				Blocks 84, 85, and 86 are a sensitivity control for determining the effect 
				of the reabsorption factor RFAB on distal tubule reabsorption (RFABD).  The 
				sensitivity is controlled by the factor in Block 85, RFABDM.  
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD87">
				<rdf:value>
				KD87:
				Block 87 prevents the value of RFABD from falling below a value of .0001.  
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="RCPRS"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="GLPC"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="RTSPPC"	units="mmHg" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="RFABD" 	units="dimensionless" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="RTSPRS"	units="mmHg" private_interface="none" public_interface="in"/>
		<variable name="RABSC"	units="per_mmHg" private_interface="none" public_interface="in"/>
		<variable name="RFABDP"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="RFABDM"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="RABSPR"	units="mmHg" private_interface="none" public_interface="none"/>
		<variable name="RFAB1"	units="dimensionless" private_interface="none" public_interface="none"/>
		<variable name="RFAB"	units="dimensionless" private_interface="none" public_interface="none"/>
		<variable name="RFABD1"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD78">
				<eq/>
				<ci>RABSPR</ci>
				<apply>
					<minus/>
					<apply>
						<minus/>
						<apply>
							<plus/>
							<ci>GLPC</ci>
							<ci>RTSPRS</ci>
						</apply>
						<ci>RCPRS</ci>
					</apply>
					<ci>RTSPPC</ci>
				</apply>
			</apply>
			<apply id="KD82">
				<eq/>
				<ci>RFAB1</ci>
				<apply>
					<times/>
					<ci>RABSPR</ci>
					<ci>RABSC</ci>
				</apply>
			</apply>
			<apply id="KD83">
				<eq/>
				<ci>RFAB</ci>
				<ci>RFAB1</ci>
			</apply>
			<apply id="KD84_to_KD86">
				<eq/>
				<ci>RFABD1</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<apply>
							<minus/>
							<ci>RFAB</ci>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
						<ci>RFABDM</ci>
					</apply>
					<cn cellml:units="dimensionless">1</cn>
				</apply>
			</apply>
			<apply id="KD87">
				<eq/>
				<ci>RFABD</ci>
				<piecewise>
					<piece>
						<cn cellml:units="dimensionless">0.0001</cn>
						<apply>
							<lt/>
							<ci>RFABD1</ci>
							<cn cellml:units="dimensionless">0.0001</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>RFABD1</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="peritubular_capillary_reabsorption_factor" component_2="peritubular_capillary_pressure"/>
		<map_variables variable_1="RCPRS" variable_2="RCPRS"/>
	</connection>
	<connection>
		<map_components component_1="peritubular_capillary_reabsorption_factor" component_2="glomerular_colloid_osmotic_pressure"/>
		<map_variables variable_1="GLPC" variable_2="GLPC"/>
	</connection>
	<connection>
		<map_components component_1="peritubular_capillary_reabsorption_factor" component_2="renal_tissue_osmotic_pressure"/>
		<map_variables variable_1="RTSPPC" variable_2="RTSPPC"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="peritubular_capillary_reabsorption_factor" component_2="kidney_parameter_values"/>
		<map_variables variable_1="RTSPRS" variable_2="RTSPRS"/>
		<map_variables variable_1="RABSC" variable_2="RABSC"/>
		<map_variables variable_1="RFABDP" variable_2="RFABDP"/>
		<map_variables variable_1="RFABDM" variable_2="RFABDM"/>
	</connection>

<!-- ========================================	SODIUM AND POTASSIUM HANDLING		============================================= -->
	<component 	name="sodium_and_potassium_handling" 
				cmeta:id="sodium_and_potassium_handling">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#sodium_and_potassium_handling">
				<rdf:value>
				Containment grouping component for "distal_tubular_Na_delivery", 
				"Na_reabsorption_into_distal_tubules", 
				"angiotensin_induced_Na_reabsorption_into_distal_tubules", "distal_tubular_K_delivery",
				"effect_of_physical_forces_on_distal_K_reabsorption", "effect_of_fluid_flow_on_K_reabsorption",
				"K_reabsorption_into_distal_tubules", "K_secretion_from_distal_tubules".
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
	</component>

<!-- ========================================	DISTAL TUBULAR SODIUM DELIVERY	============================================= -->
	<component 	name="distal_tubular_Na_delivery" 
				cmeta:id="distal_tubular_Na_delivery">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#distal_tubular_Na_delivery">
				<rdf:value>
				KD34:  
				Calculation of rate of delivery of sodium into the distal tubular system of 
				two normal kidneys in milliequivalents per minute (DTNAI), which is equal to 
				the normalized delivery of fluid into the distal tubules (MDFLW) times the 
				concentration of sodium in the tubules (CNA), times the factor 0.0061619.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD34">
				<rdf:value>
				KD34:  
				Calculation of rate of delivery of sodium into the distal tubular system of 
				two normal kidneys in milliequivalents per minute (DTNAI), which is equal to 
				the normalized delivery of fluid into the distal tubules (MDFLW) times the 
				concentration of sodium in the tubules (CNA), times the factor 0.0061619.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="MDFLW"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="CNA"	units="monovalent_mEq_per_litre" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="DTNAI" 	units="monovalent_mEq_per_minute" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD34">
				<eq/>
				<ci>DTNAI</ci>
				<apply>
					<times/>
					<ci>MDFLW</ci>
					<ci>CNA</ci>
					<cn cellml:units="dimensionless">0.0061619</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="distal_tubular_Na_delivery" component_2="proximal_tubular_and_macula_densa_flow"/>
		<map_variables variable_1="MDFLW" variable_2="MDFLW"/>
	</connection>
	<connection>
		<map_components component_1="distal_tubular_Na_delivery" component_2="kidney"/>
		<map_variables variable_1="CNA" variable_2="CNA"/>
	</connection>

<!-- ========================================	SODIUM REABSORPTION INTO DISTAL TUBULES	============================================= -->
	<component 	name="Na_reabsorption_into_distal_tubules" 
				cmeta:id="Na_reabsorption_into_distal_tubules">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#Na_reabsorption_into_distal_tubules">
				<rdf:value>
				KD113, KD114, and KD115:  
				Calculation of the effect of an antidiuretic hormone multiplier constant (ADHMK) 
				on the absorption of sodium by the distal tubular-collecting duct system (output 
				of Block 115).  The sensitivity of this ADH effect is adjusted by the sensitivity 
				factor AHMNAR in Block 114.
				
				KD36 and KD37:  
				Calculation of the sodium reabsorbed in the distal tubules and collecting duct (DTNARA).  
				The different factors that affect this are the basic value for the normal state (DTNAR),
				the basic blood capillary hemodynamics of the system (RFABD), the effect of antidiuretic
				hormone (from Block 115), and the effect of an aldosterone multiplier effect to cause 
				reabsorption of sodium (AMNA) as determined from the output of Block 23 in the aldosterone
				section of these diagrams.  Block 37 sets the lower limit of DTNARA at zero.  DIURET 
				allows one to simulate the effect of a diuretic.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD113_to_KD115_and_KD36">
				<rdf:value>
				KD113, KD114, and KD115:  
				Calculation of the effect of an antidiuretic hormone multiplier constant (ADHMK) 
				on the absorption of sodium by the distal tubular-collecting duct system (output 
				of Block 115).  The sensitivity of this ADH effect is adjusted by the sensitivity 
				factor AHMNAR in Block 114.
				
				KD36 and KD37:  
				Calculation of the sodium reabsorbed in the distal tubules and collecting duct (DTNARA).  
				The different factors that affect this are the basic value for the normal state (DTNAR),
				the basic blood capillary hemodynamics of the system (RFABD), the effect of antidiuretic
				hormone (from Block 115), and the effect of an aldosterone multiplier effect to cause 
				reabsorption of sodium (AMNA) as determined from the output of Block 23 in the aldosterone
				section of these diagrams.  Block 37 sets the lower limit of DTNARA at zero.  DIURET 
				allows one to simulate the effect of a diuretic.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD37">
				<rdf:value>
				KD36 and KD37:  
				Calculation of the sodium reabsorbed in the distal tubules and collecting duct (DTNARA).  
				The different factors that affect this are the basic value for the normal state (DTNAR),
				the basic blood capillary hemodynamics of the system (RFABD), the effect of antidiuretic
				hormone (from Block 115), and the effect of an aldosterone multiplier effect to cause 
				reabsorption of sodium (AMNA) as determined from the output of Block 23 in the aldosterone
				section of these diagrams.  Block 37 sets the lower limit of DTNARA at zero.  DIURET 
				allows one to simulate the effect of a diuretic.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="ADHMK"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="AMNA"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="RFABD"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="DTNARA" 	units="monovalent_mEq_per_minute" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="DTNAR"	units="monovalent_mEq_per_minute" private_interface="none" public_interface="in"/>
		<variable name="DIURET"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="AHMNAR"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="DTNARL"	units="monovalent_mEq_per_minute" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="DTNARA1"	units="monovalent_mEq_per_minute" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD113_to_KD115_and_KD36">
				<eq/>
				<ci>DTNARA1</ci>
				<apply>
					<times/>
					<apply>
						<divide/>
						<apply>
							<times/>
							<ci>AMNA</ci>
							<ci>RFABD</ci>
							<ci>DTNAR</ci>
						</apply>
						<ci>DIURET</ci>
					</apply>
					<apply>
						<plus/>
						<apply>
							<times/>
							<apply>
								<minus/>
								<ci>ADHMK</ci>
								<cn cellml:units="dimensionless">1</cn>
							</apply>
							<ci>AHMNAR</ci>
						</apply>
						<cn cellml:units="dimensionless">1</cn>
					</apply>
				</apply>
			</apply>
			<apply id="KD37">
				<eq/>
				<ci>DTNARA</ci>
				<piecewise>
					<piece>
						<ci>DTNARL</ci>
						<apply>
							<lt/>
							<ci>DTNARA1</ci>
							<ci>DTNARL</ci>
						</apply>
					</piece>
					<otherwise>
						<ci>DTNARA1</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="Na_reabsorption_into_distal_tubules" component_2="kidney"/>
		<map_variables variable_1="ADHMK" variable_2="ADHMK"/>
		<map_variables variable_1="AMNA" variable_2="AMNA"/>
	</connection>
	<connection>
		<map_components component_1="Na_reabsorption_into_distal_tubules" component_2="peritubular_capillary_reabsorption_factor"/>
		<map_variables variable_1="RFABD" variable_2="RFABD"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="Na_reabsorption_into_distal_tubules" component_2="kidney_parameter_values"/>
		<map_variables variable_1="DTNAR" variable_2="DTNAR"/>
		<map_variables variable_1="DIURET" variable_2="DIURET"/>
		<map_variables variable_1="AHMNAR" variable_2="AHMNAR"/>
		<map_variables variable_1="DTNARL" variable_2="DTNARL"/>
	</connection>

<!-- =========================	ANGIOTENSIN-INDUCED SODIUM REABSORPTION INTO DISTAL TUBULES	================================== -->
	<component 	name="angiotensin_induced_Na_reabsorption_into_distal_tubules" 
				cmeta:id="angiotensin_induced_Na_reabsorption_into_distal_tubules">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#angiotensin_induced_Na_reabsorption_into_distal_tubules">
				<rdf:value>
				KD108, KD109, KD110, KD111, and KD112:  
				Calculation of the fraction of the distal tubular reabsorption of sodium that is 
				absorbed each minute that is dependent on the availability of angiotensin (DTNANG).  
				The input factor to this system of blocks, ANM, is the angiotensin multiplier. 
				Blocks 108, 109, and 110 adjust the sensitivity of the effect in accordance with 
				the sensitivity factor ANMNAM.  Block 111 converts the output of Block 110 into
				actual milliequivalents of sodium per minute, and Block 112 places a lower limit 
				on absorption of sodium in response to angiotensin to a level of zero.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD108_to_KD111">
				<rdf:value>
				KD108, KD109, KD110 and KD111:  
				Calculation of the fraction of the distal tubular reabsorption of sodium that is 
				absorbed each minute that is dependent on the availability of angiotensin (DTNANG).  
				The input factor to this system of blocks, ANM, is the angiotensin multiplier. 
				Blocks 108, 109, and 110 adjust the sensitivity of the effect in accordance with 
				the sensitivity factor ANMNAM.  Block 111 converts the output of Block 110 into
				actual milliequivalents of sodium per minute.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD112">
				<rdf:value>
				KD112:  
				Block 112 places a lower limit on absorption of sodium in response to angiotensin to a level of zero.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="ANM"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="DTNANG" 	units="monovalent_mEq_per_minute" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="ANMNAM"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="DTNANG1"	units="monovalent_mEq_per_minute" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD108_to_KD111">
				<eq/>
				<ci>DTNANG1</ci>
				<apply>
					<times/>
					<apply>
						<plus/>
						<apply>
							<times/>
							<apply>
								<minus/>
								<ci>ANM</ci>
								<cn cellml:units="dimensionless">1</cn>
							</apply>
							<ci>ANMNAM</ci>
						</apply>
						<cn cellml:units="dimensionless">1</cn>
					</apply>
					<cn cellml:units="monovalent_mEq_per_minute">0.1</cn>
				</apply>
			</apply>
			<apply id="KD112">
				<eq/>
				<ci>DTNANG</ci>
				<piecewise>
					<piece>
						<cn cellml:units="monovalent_mEq_per_minute">0</cn>
						<apply>
							<lt/>
							<ci>DTNANG1</ci>
							<cn cellml:units="monovalent_mEq_per_minute">0</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>DTNANG1</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="angiotensin_induced_Na_reabsorption_into_distal_tubules" component_2="kidney"/>
		<map_variables variable_1="ANM" variable_2="ANM"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="angiotensin_induced_Na_reabsorption_into_distal_tubules" component_2="kidney_parameter_values"/>
		<map_variables variable_1="ANMNAM" variable_2="ANMNAM"/>
	</connection>

<!-- ========================================	DISTAL TUBULAR POTASSIUM DELIVERY	============================================= -->
	<component 	name="distal_tubular_K_delivery" 
				cmeta:id="distal_tubular_K_delivery">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#distal_tubular_K_delivery">
				<rdf:value>
				KD101 and KD102:  
				Calculation of the rate of entry of potassium into the distal tubular system (DTKI) 
				based on the rate of sodium entry into the system (DTNAI), divided by the concentration 
				of sodium in the extracellular fluid (CNA), and multiplied by the concentration of 
				potassium in the extracellular fluid (CKE).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD101_and_KD102">
				<rdf:value>
				KD101 and KD102:  
				Calculation of the rate of entry of potassium into the distal tubular system (DTKI) 
				based on the rate of sodium entry into the system (DTNAI), divided by the concentration 
				of sodium in the extracellular fluid (CNA), and multiplied by the concentration of 
				potassium in the extracellular fluid (CKE).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="DTNAI"	units="monovalent_mEq_per_minute" private_interface="none" public_interface="in"/>
		<variable name="CNA"	units="monovalent_mEq_per_litre" private_interface="none" public_interface="in"/>
		<variable name="CKE"	units="monovalent_mEq_per_litre" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="DTKI" 	units="monovalent_mEq_per_minute" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD101_and_KD102">
				<eq/>
				<ci>DTKI</ci>
				<apply>
					<divide/>
					<apply>
						<times/>
						<ci>DTNAI</ci>
						<ci>CKE</ci>
					</apply>
					<ci>CNA</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="distal_tubular_K_delivery" component_2="distal_tubular_Na_delivery"/>
		<map_variables variable_1="DTNAI" variable_2="DTNAI"/>
	</connection>
	<connection>
		<map_components component_1="distal_tubular_K_delivery" component_2="kidney"/>
		<map_variables variable_1="CNA" variable_2="CNA"/>
		<map_variables variable_1="CKE" variable_2="CKE"/>
	</connection>

<!-- ========================================	EFFECT OF PHYSICAL FORCES ON DISTAL K REBASORPTION	============================================= -->
	<component 	name="effect_of_physical_forces_on_distal_K_reabsorption" 
				cmeta:id="effect_of_physical_forces_on_distal_K_reabsorption">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#effect_of_physical_forces_on_distal_K_reabsorption">
				<rdf:value>
				KD99 and KD100:  
				Calculation of the effect of renal hemodynamics (RFABD) in affecting the 
				rate of reabsorption of potassium by the distal tubule-collecting duct 
				system (RFABK).  The intensity of this effect is controlled by factor 
				RFABKM in Block 100.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD99_and_KD100">
				<rdf:value>
				KD99 and KD100:  
				Calculation of the effect of renal hemodynamics (RFABD) in affecting the 
				rate of reabsorption of potassium by the distal tubule-collecting duct 
				system (RFABK).  The intensity of this effect is controlled by factor 
				RFABKM in Block 100.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="RFABD"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="RFABK" 	units="monovalent_mEq_per_minute" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="RFABKM"	units="monovalent_mEq_per_minute" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD99_and_KD100">
				<eq/>
				<ci>RFABK</ci>
				<apply>
					<times/>
					<apply>
						<minus/>
						<ci>RFABD</ci>
						<cn cellml:units="dimensionless">1</cn>
					</apply>
					<ci>RFABKM</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="effect_of_physical_forces_on_distal_K_reabsorption" component_2="peritubular_capillary_reabsorption_factor"/>
		<map_variables variable_1="RFABD" variable_2="RFABD"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="effect_of_physical_forces_on_distal_K_reabsorption" component_2="kidney_parameter_values"/>
		<map_variables variable_1="RFABKM" variable_2="RFABKM"/>
	</connection>

<!-- ========================================	EFFECT OF FLUID FLOW ON DISTAL K REABSORPTION	============================================= -->
	<component 	name="effect_of_fluid_flow_on_distal_K_reabsorption" 
				cmeta:id="effect_of_fluid_flow_on_distal_K_reabsorption">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#effect_of_fluid_flow_on_distal_K_reabsorption">
				<rdf:value>
				KD88, KD89, KD90, and KD90A:  
				Calculation of a multiplier factor for the effect of rate of flow of fluid into 
				the distal tubular system (MDFLW) on the rate of reabsorption of potassium from 
				the distal tubules and collecting ducts (MDFLK).  The sensitivity of this control 
				is MDFLKM in Block 89.  The lower limit of the output MDFLK is set to .1 by 
				Block 90A.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD88_to_KD90">
				<rdf:value>
				KD88, KD89 and KD90:  
				Calculation of a multiplier factor for the effect of rate of flow of fluid into 
				the distal tubular system (MDFLW) on the rate of reabsorption of potassium from 
				the distal tubules and collecting ducts (MDFLK).  The sensitivity of this control 
				is MDFLKM in Block 89.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD90A">
				<rdf:value>
				KD90A:  
				The lower limit of the output MDFLK is set to .1 by Block 90A.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="MDFLW"	units="L_per_minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="MDFLK" 	units="monovalent_mEq_per_minute" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="MDFLKM"	units="monovalent_mEq_per_litre" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="MDFLK1"	units="monovalent_mEq_per_minute" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD88_to_KD90">
				<eq/>
				<ci>MDFLK1</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<apply>
							<minus/>
							<ci>MDFLW</ci>
							<cn cellml:units="L_per_minute">1</cn>
						</apply>
						<ci>MDFLKM</ci>
					</apply>
					<cn cellml:units="monovalent_mEq_per_minute">1</cn>
				</apply>
			</apply>
			<apply id="KD90A">
				<eq/>
				<ci>MDFLK</ci>
				<piecewise>
					<piece>
						<cn cellml:units="monovalent_mEq_per_minute">0.1</cn>
						<apply>
							<lt/>
							<ci>MDFLK1</ci>
							<cn cellml:units="monovalent_mEq_per_minute">0.1</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>MDFLK1</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="effect_of_fluid_flow_on_distal_K_reabsorption" component_2="proximal_tubular_and_macula_densa_flow"/>
		<map_variables variable_1="MDFLW" variable_2="MDFLW"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="effect_of_fluid_flow_on_distal_K_reabsorption" component_2="kidney_parameter_values"/>
		<map_variables variable_1="MDFLKM" variable_2="MDFLKM"/>
	</connection>

<!-- ========================================	POTASSIUM REABSORPTION INTO DISTAL TUBULES	============================================= -->
	<component 	name="K_reabsorption_into_distal_tubules" 
				cmeta:id="K_reabsorption_into_distal_tubules">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#K_reabsorption_into_distal_tubules">
				<rdf:value>
				KD104, KD105, KD106, and KD107:  
				The rate of reabsorption of potassium in the distal tubule-collecting duct 
				system DTKA is proportional to the urinary excretion rate of potassium (KODN) 
				times a proportionality factor, .0004519, and divided by the rate of output of 
				urine from the kidneys (VUDN).  Blocks 105, 106, and 107 are a time delay circuit
				to allow for the time required for this effect to develop.  The time delay 
				constant is determined by factor I6 in Block 106.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD104_to_KD107">
				<rdf:value>
				KD104, KD105, KD106, and KD107:  
				The rate of reabsorption of potassium in the distal tubule-collecting duct 
				system DTKA is proportional to the urinary excretion rate of potassium (KODN) 
				times a proportionality factor, .0004519, and divided by the rate of output of 
				urine from the kidneys (VUDN).  Blocks 105, 106, and 107 are a time delay circuit
				to allow for the time required for this effect to develop.  The time delay 
				constant is determined by factor I6 in Block 106.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>

<!-- Inputs from other components -->
		<variable name="KODN"	units="monovalent_mEq_per_minute" private_interface="none" public_interface="in"/>
		<variable name="VUDN"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="time"	units="minute"	private_interface="none" 	public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="DTKA" 	initial_value="0.0367573"	units="monovalent_mEq_per_minute" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD104_to_KD107">
				<eq/>
				<apply>
					<diff/>
					<bvar>
						<ci>time</ci>
					</bvar>
					<ci>DTKA</ci>
				</apply>
				<apply>
					<times/>
					<apply>
						<minus/>
						<apply>
							<times/>
							<apply>
								<divide/>
								<ci>KODN</ci>
								<ci>VUDN</ci>
							</apply>
							<cn cellml:units="L_per_minute">0.0004518</cn>
						</apply>
						<ci>DTKA</ci>
					</apply>
					<cn cellml:units="per_minute">1.0</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="K_reabsorption_into_distal_tubules" component_2="normal_K_excretion"/>
		<map_variables variable_1="KODN" variable_2="KODN"/>
		<map_variables variable_1="DTKA" variable_2="DTKA"/>
	</connection>
	<connection>
		<map_components component_1="K_reabsorption_into_distal_tubules" component_2="normal_urine_volume"/>
		<map_variables variable_1="VUDN" variable_2="VUDN"/>
	</connection>
	<connection>
		<map_components component_1="K_reabsorption_into_distal_tubules" component_2="kidney"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- ========================================	POTASSIUM SECRETION FROM DISTAL TUBULES	============================================= -->
	<component 	name="K_secretion_from_distal_tubules" 
				cmeta:id="K_secretion_from_distal_tubules">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#K_secretion_from_distal_tubules">
				<rdf:value>
				KD91, KD92, and KD93:  
				Calculation of a temporary rate of potassium secretion into the distal 
				tubular-collecting tubular system (DTKSC1) based on the concentration of 
				potassium in the plasma (CKE), which is first normalized to the value 1.0 
				in Block 91, then raised to a power (CKEEX) in Block 92.  The result is 
				multiplied by the delivery of potassium into the tubular system at the 
				macula densa level of the distal tubule (MDFLK), and by a multiplier effect 
				depicting the effect of aldosterone on the secretion of potassium by the
				tubular epithelium into the tubule (AMK).

				KD94, KD95, KD96, KD97, and KD98:  
				Calculation of the actual rate of secretion of potassium into the distal 
				tubule-collecting duct system (DTKSC) by multiplying the temporary rate of 
				secretion from Block 93 (DTKSC1) times a multiplier factor based on 
				angiotensin concentration in the body fluids (ANMKE).  ANMKE is calculated 
				from a generalized body angiotensin multiplier factor (ANM) times a controller 
				for the sensitivity of this effect (ANMKEM).  ANMKE is limited to a lowest 
				value by ANMKEL in Block 97.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD94_to_KD96">
				<rdf:value>
				KD94, KD95 and KD96:  
				Calculation of the actual rate of secretion of potassium into the distal 
				tubule-collecting duct system (DTKSC) by multiplying the temporary rate of 
				secretion from Block 93 (DTKSC1) times a multiplier factor based on 
				angiotensin concentration in the body fluids (ANMKE).  ANMKE is calculated 
				from a generalized body angiotensin multiplier factor (ANM) times a controller 
				for the sensitivity of this effect (ANMKEM). 
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD97">
				<rdf:value>
				KD97:  
				ANMKE is limited to a lowest value by ANMKEL in Block 97.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD91_to_KD93_and_KD98">
				<rdf:value>
				KD91, KD92, and KD93:  
				Calculation of a temporary rate of potassium secretion into the distal 
				tubular-collecting tubular system (DTKSC1) based on the concentration of 
				potassium in the plasma (CKE), which is first normalized to the value 1.0 
				in Block 91, then raised to a power (CKEEX) in Block 92.  The result is 
				multiplied by the delivery of potassium into the tubular system at the 
				macula densa level of the distal tubule (MDFLK), and by a multiplier effect 
				depicting the effect of aldosterone on the secretion of potassium by the
				tubular epithelium into the tubule (AMK).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="CKE"	units="monovalent_mEq_per_litre" private_interface="none" public_interface="in"/>
		<variable name="AMK"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="MDFLK"	units="monovalent_mEq_per_minute" private_interface="none" public_interface="in"/>
		<variable name="ANM"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="DTKSC" 	units="monovalent_mEq_per_minute" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="ANMKEM"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="ANMKEL"	units="dimensionless" private_interface="none" public_interface="in"/>
		<variable name="CKEEX"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Internal variables -->
		<variable name="ANMKE1"	units="dimensionless" private_interface="none" public_interface="none"/>
		<variable name="ANMKE"	units="dimensionless" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD94_to_KD96">
				<eq/>
				<ci>ANMKE1</ci>
				<apply>
					<plus/>
					<apply>
						<times/>
						<apply>
							<minus/>
							<ci>ANM</ci>
							<cn cellml:units="dimensionless">1</cn>
						</apply>
						<ci>ANMKEM</ci>
					</apply>
					<cn cellml:units="dimensionless">1</cn>
				</apply>
			</apply>
			<apply id="KD97">
				<eq/>
				<ci>ANMKE</ci>
				<piecewise>
					<piece>
						<ci>ANMKEL</ci>
						<apply>
							<lt/>
							<ci>ANMKE1</ci>
							<ci>ANMKEL</ci>
						</apply>
					</piece>
					<otherwise>
						<ci>ANMKE1</ci>
					</otherwise>
				</piecewise>
			</apply>
			<apply id="KD91_to_KD93_and_KD98">
				<eq/>
				<ci>DTKSC</ci>
				<apply>
					<divide/>
					<apply>
						<times/>
						<apply>
							<power/>
							<apply>
								<divide/>
								<ci>CKE</ci>
								<cn cellml:units="monovalent_mEq_per_litre">4.4</cn>
							</apply>
							<ci>CKEEX</ci>
						</apply>
						<ci>AMK</ci>
						<cn cellml:units="dimensionless">0.08</cn>
						<ci>MDFLK</ci>
					</apply>
					<ci>ANMKE</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="K_secretion_from_distal_tubules" component_2="kidney"/>
		<map_variables variable_1="CKE" variable_2="CKE"/>
		<map_variables variable_1="AMK" variable_2="AMK"/>
		<map_variables variable_1="ANM" variable_2="ANM"/>
	</connection>
	<connection>
		<map_components component_1="K_secretion_from_distal_tubules" component_2="effect_of_fluid_flow_on_distal_K_reabsorption"/>
		<map_variables variable_1="MDFLK" variable_2="MDFLK"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="K_secretion_from_distal_tubules" component_2="kidney_parameter_values"/>
		<map_variables variable_1="ANMKEM" variable_2="ANMKEM"/>
		<map_variables variable_1="ANMKEL" variable_2="ANMKEL"/>
		<map_variables variable_1="CKEEX" variable_2="CKEEX"/>
	</connection>

<!-- ========================================	URINARY EXCRETION		============================================= -->
	<component 	name="urinary_excretion" 
				cmeta:id="urinary_excretion">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#urinary_excretion">
				<rdf:value>
				Containment grouping component for "normal_Na_excretion", "normal_K_excretion",
				"normal_urea_excretion", "normal_osmolar_and_water_excretion",
				"normal_urine_volume", "actual_Na_exretion_rate", "actual_K_excretion_rate",
				"actual_urea_excretion_rate", "actual_urine_volume".
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
	</component>

<!-- ========================================	NORMAL SODIUM EXCRETION	============================================= -->
	<component 	name="normal_Na_excretion" 
				cmeta:id="normal_Na_excretion">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#normal_Na_excretion">
				<rdf:value>
				KD35:  
				Calculation of the normalized rate of delivery of sodium into the urine (NODN) 
				if both kidneys are intact and normal.  This is calculated by subtracting from 
				the rate of entry of sodium into the distal tubular system (DTNAI) the distal 
				tubular and collecting duct reabsorption of sodium caused by the presence of
				angiotensin in the blood (DTNANG) and that caused by multiple other factors (DTNARA) 
				from Blocks 36 and 37.

				KD38:  
				This sets a lower limit for the normalized output of sodium (NODN) to zero.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD35">
				<rdf:value>
				KD35:  
				Calculation of the normalized rate of delivery of sodium into the urine (NODN) 
				if both kidneys are intact and normal.  This is calculated by subtracting from 
				the rate of entry of sodium into the distal tubular system (DTNAI) the distal 
				tubular and collecting duct reabsorption of sodium caused by the presence of
				angiotensin in the blood (DTNANG) and that caused by multiple other factors (DTNARA) 
				from Blocks 36 and 37.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD38">
				<rdf:value>
				KD38:  
				This sets a lower limit for the normalized output of sodium (NODN) to zero.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="DTNAI"	units="monovalent_mEq_per_minute" private_interface="none" public_interface="in"/>
		<variable name="DTNANG"	units="monovalent_mEq_per_minute" private_interface="none" public_interface="in"/>
		<variable name="DTNARA"	units="monovalent_mEq_per_minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="NODN" 	units="monovalent_mEq_per_minute" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable name="NODN1"	units="monovalent_mEq_per_minute" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD35">
				<eq/>
				<ci>NODN1</ci>
				<apply>
					<minus/>
					<apply>
						<minus/>
						<ci>DTNAI</ci>
						<ci>DTNARA</ci>
					</apply>
					<ci>DTNANG</ci>
				</apply>
			</apply>
			<apply id="KD38">
				<eq/>
				<ci>NODN</ci>
				<piecewise>
					<piece>
						<cn cellml:units="monovalent_mEq_per_minute">0.00000001</cn>
						<apply>
							<lt/>
							<ci>NODN1</ci>
							<cn cellml:units="monovalent_mEq_per_minute">0.00000001</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>NODN1</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="normal_Na_excretion" component_2="distal_tubular_Na_delivery"/>
		<map_variables variable_1="DTNAI" variable_2="DTNAI"/>
	</connection>
	<connection>
		<map_components component_1="normal_Na_excretion" component_2="angiotensin_induced_Na_reabsorption_into_distal_tubules"/>
		<map_variables variable_1="DTNANG" variable_2="DTNANG"/>
	</connection>
	<connection>
		<map_components component_1="normal_Na_excretion" component_2="Na_reabsorption_into_distal_tubules"/>
		<map_variables variable_1="DTNARA" variable_2="DTNARA"/>
	</connection>

<!-- ========================================	NORMAL POTASSIUM EXCRETION	============================================= -->
	<component 	name="normal_K_excretion" 
				cmeta:id="normal_K_excretion">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#normal_K_excretion">
				<rdf:value>
				KD103 and KD103A:  
				The normalized rate of excretion of potassium into the urine by two normal 
				kidneys (KODN) is equal to the rate of entry of potassium into the distal 
				tubular-collecting duct system (DTKI), minus any excess absorption caused 
				by abnormal renal hemodynamics (RFABK), plus the rate of secretion of 
				potassium by the tubular epithelium into the distal tubules and collecting 
				tubules (DTKSC), and minus the rate of absorption of potassium by all 
				portions of the distal tubule-collecting duct system DTKA.  Block 103A sets 
				the lower limit of the excretion of potassium in the urine (KODN) at zero. 
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD103">
				<rdf:value>
				KD103:  
				The normalized rate of excretion of potassium into the urine by two normal 
				kidneys (KODN) is equal to the rate of entry of potassium into the distal 
				tubular-collecting duct system (DTKI), minus any excess absorption caused 
				by abnormal renal hemodynamics (RFABK), plus the rate of secretion of 
				potassium by the tubular epithelium into the distal tubules and collecting 
				tubules (DTKSC), and minus the rate of absorption of potassium by all 
				portions of the distal tubule-collecting duct system DTKA. 
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD103A">
				<rdf:value>
				KD103A:  
				Block 103A sets the lower limit of the excretion of potassium in the urine (KODN) at zero. 
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="DTKI"	units="monovalent_mEq_per_minute" private_interface="none" public_interface="in"/>
		<variable name="RFABK"	units="monovalent_mEq_per_minute" private_interface="none" public_interface="in"/>
		<variable name="DTKSC"	units="monovalent_mEq_per_minute" private_interface="none" public_interface="in"/>
		<variable name="DTKA"	units="monovalent_mEq_per_minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="KODN" 	units="monovalent_mEq_per_minute" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable name="KODN1"	units="monovalent_mEq_per_minute" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD103">
				<eq/>
				<ci>KODN1</ci>
				<apply>
					<minus/>
					<apply>
						<minus/>
						<apply>
							<plus/>
							<ci>DTKI</ci>
							<ci>DTKSC</ci>
						</apply>
						<ci>DTKA</ci>
					</apply>
					<ci>RFABK</ci>
				</apply>
			</apply>
			<apply id="KD103A">
				<eq/>
				<ci>KODN</ci>
				<piecewise>
					<piece>
						<cn cellml:units="monovalent_mEq_per_minute">0</cn>
						<apply>
							<lt/>
							<ci>KODN1</ci>
							<cn cellml:units="monovalent_mEq_per_minute">0</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>KODN1</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="normal_K_excretion" component_2="distal_tubular_K_delivery"/>
		<map_variables variable_1="DTKI" variable_2="DTKI"/>
	</connection>
	<connection>
		<map_components component_1="normal_K_excretion" component_2="effect_of_physical_forces_on_distal_K_reabsorption"/>
		<map_variables variable_1="RFABK" variable_2="RFABK"/>
	</connection>
	<connection>
		<map_components component_1="normal_K_excretion" component_2="K_secretion_from_distal_tubules"/>
		<map_variables variable_1="DTKSC" variable_2="DTKSC"/>
	</connection>

<!-- ========================================	NORMAL UREA EXCRETION		============================================= -->
	<component 	name="normal_urea_excretion" 
				cmeta:id="normal_urea_excretion">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#normal_urea_excretion">
				<rdf:value>
				KD52:  
				Calculation of the rate of excretion of urea if both kidneys were functionally 
				intact (DTURI) by multiplying the concentration of urea in the glomerular 
				filtrate (PLURC) times the square of glomerular filtration for the two normal
				kidneys (GFN) times the numerical factor 3.84.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD52">
				<rdf:value>
				KD52:  
				Calculation of the rate of excretion of urea if both kidneys were functionally 
				intact (DTURI) by multiplying the concentration of urea in the glomerular 
				filtrate (PLURC) times the square of glomerular filtration for the two normal
				kidneys (GFN) times the numerical factor 3.84.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="GFN"	units="L_per_minute" private_interface="none" public_interface="in"/>
		<variable name="PLURC"	units="mOsm_per_litre" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="DTURI" 	units="mOsm_per_minute" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD52">
				<eq/>
				<ci>DTURI</ci>
				<apply>
					<times/>
					<apply>
						<power/>
						<ci>GFN</ci>
						<cn cellml:units="dimensionless">2</cn>
					</apply>
					<ci>PLURC</ci>
					<cn cellml:units="dimensionless">3.84</cn>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="normal_urea_excretion" component_2="plasma_urea_concentration"/>
		<map_variables variable_1="PLURC" variable_2="PLURC"/>
	</connection>
	<connection>
		<map_components component_1="normal_urea_excretion" component_2="glomerular_filtration_rate"/>
		<map_variables variable_1="GFN" variable_2="GFN"/>
	</connection>

<!-- ========================================	NORMAL OSMOLAR AND WATER EXCRETION		============================================= -->
	<component 	name="normal_osmolar_and_water_excretion" 
				cmeta:id="normal_osmolar_and_water_excretion">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#normal_osmolar_and_water_excretion">
				<rdf:value>
				KD40, KD41, and KD42:  
				Calculation of the normalized output of osmotic substances by the kidneys if 
				both kidneys are functioning totally and normally (OSMOPN) by adding together 
				in Block 40 the milliequivalents of sodium output (NODN) and potassium output (KODN),
				then multiplying in Block 41 by a factor of 2 to include the anions that go with 
				the sodium and potassium cations, and addition in Block 42 of osmotic excretion in 
				the form of urea (DUTRI).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD40_to_KD42">
				<rdf:value>
				KD40, KD41, and KD42:  
				Calculation of the normalized output of osmotic substances by the kidneys if 
				both kidneys are functioning totally and normally (OSMOPN) by adding together 
				in Block 40 the milliequivalents of sodium output (NODN) and potassium output (KODN),
				then multiplying in Block 41 by a factor of 2 to include the anions that go with 
				the sodium and potassium cations, and addition in Block 42 of osmotic excretion in 
				the form of urea (DUTRI).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="DTURI"	units="mOsm_per_minute" private_interface="none" public_interface="in"/>
		<variable name="NODN"	units="monovalent_mEq_per_minute" private_interface="none" public_interface="in"/>
		<variable name="KODN"	units="monovalent_mEq_per_minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="OSMOPN1" 	units="mOsm_per_minute" private_interface="none" public_interface="out"/>
		<variable name="OSMOPN"		units="mOsm_per_minute" private_interface="none" public_interface="out"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD40_to_KD42">
				<eq/>
				<ci>OSMOPN1</ci>
				<apply>
					<plus/>
					<ci>DTURI</ci>
					<apply>
						<times/>
						<cn cellml:units="dimensionless">2</cn>
						<apply>
							<plus/>
							<ci>NODN</ci>
							<ci>KODN</ci>
						</apply>
					</apply>
				</apply>
			</apply>
			<apply id="KD44">
				<eq/>
				<ci>OSMOPN</ci>
				<piecewise>
					<piece>
						<cn cellml:units="mOsm_per_minute">0.6</cn>
						<apply>
							<gt/>
							<ci>OSMOPN1</ci>
							<cn cellml:units="mOsm_per_minute">0.6</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>OSMOPN1</ci>
					</otherwise>
				</piecewise>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="normal_osmolar_and_water_excretion" component_2="normal_Na_excretion"/>
		<map_variables variable_1="NODN" variable_2="NODN"/>
	</connection>
	<connection>
		<map_components component_1="normal_osmolar_and_water_excretion" component_2="normal_K_excretion"/>
		<map_variables variable_1="KODN" variable_2="KODN"/>
	</connection>
	<connection>
		<map_components component_1="normal_osmolar_and_water_excretion" component_2="normal_urea_excretion"/>
		<map_variables variable_1="DTURI" variable_2="DTURI"/>
	</connection>

<!-- ========================================	NORMAL URINE VOLUME	============================================= -->
	<component 	name="normal_urine_volume" 
				cmeta:id="normal_urine_volume">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#normal_urine_volume">
				<rdf:value>
				KD43, KD44, KD45, KD46, KD47, and KD48:  
				Calculation of the normalized output of urine volume if both kidneys are totally 
				intact (VUDN) as the output of Block 48.  Blocks 43, 45, and 47 calculate the 
				portion of VUDN that is caused by excess of osmotic substances (OSMOP1) over and
				above the normal amount (OSMOPN).  Blocks 44 and 46 calculate the portion of VUDN 
				that is caused by that portion of OSMOPN that is below the normal value of .6.  
				The sensitivity of this portion of urine output varies markedly with the antidiuretic 
				hormone effect on the kidney (ADHMK).  Block 48 summates the total VUDN caused by the
				osmotic substances above the normal level of .6 plus those caused by the osmotic 
				substances below the normal level of .6.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD43">
				<rdf:value>
				KD43, KD44, KD45, KD46, KD47, and KD48:  
				Calculation of the normalized output of urine volume if both kidneys are totally 
				intact (VUDN) as the output of Block 48.  Blocks 43, 45, and 47 calculate the 
				portion of VUDN that is caused by excess of osmotic substances (OSMOP1) over and
				above the normal amount (OSMOPN).  Blocks 44 and 46 calculate the portion of VUDN 
				that is caused by that portion of OSMOPN that is below the normal value of .6.  
				The sensitivity of this portion of urine output varies markedly with the antidiuretic 
				hormone effect on the kidney (ADHMK).  Block 48 summates the total VUDN caused by the
				osmotic substances above the normal level of .6 plus those caused by the osmotic 
				substances below the normal level of .6.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD45">
				<rdf:value>
				KD43, KD44, KD45, KD46, KD47, and KD48:  
				Calculation of the normalized output of urine volume if both kidneys are totally 
				intact (VUDN) as the output of Block 48.  Blocks 43, 45, and 47 calculate the 
				portion of VUDN that is caused by excess of osmotic substances (OSMOP1) over and
				above the normal amount (OSMOPN).  Blocks 44 and 46 calculate the portion of VUDN 
				that is caused by that portion of OSMOPN that is below the normal value of .6.  
				The sensitivity of this portion of urine output varies markedly with the antidiuretic 
				hormone effect on the kidney (ADHMK).  Block 48 summates the total VUDN caused by the
				osmotic substances above the normal level of .6 plus those caused by the osmotic 
				substances below the normal level of .6.
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD46_to_KD48">
				<rdf:value>
				KD43, KD44, KD45, KD46, KD47, and KD48:  
				Calculation of the normalized output of urine volume if both kidneys are totally 
				intact (VUDN) as the output of Block 48.  Blocks 43, 45, and 47 calculate the 
				portion of VUDN that is caused by excess of osmotic substances (OSMOP1) over and
				above the normal amount (OSMOPN).  Blocks 44 and 46 calculate the portion of VUDN 
				that is caused by that portion of OSMOPN that is below the normal value of .6.  
				The sensitivity of this portion of urine output varies markedly with the antidiuretic 
				hormone effect on the kidney (ADHMK).  Block 48 summates the total VUDN caused by the
				osmotic substances above the normal level of .6 plus those caused by the osmotic 
				substances below the normal level of .6.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="OSMOPN"		units="mOsm_per_minute" private_interface="none" public_interface="in"/>
		<variable name="OSMOPN1"	units="mOsm_per_minute" private_interface="none" public_interface="in"/>
		<variable name="ADHMK"	units="dimensionless" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="VUDN" 	units="L_per_minute" private_interface="none" public_interface="out"/>

<!-- Internal variables -->
		<variable name="OSMOP1T"	units="mOsm_per_minute" private_interface="none" public_interface="none"/>
		<variable name="OSMOP1"		units="mOsm_per_minute" private_interface="none" public_interface="none"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD43">
				<eq/>
				<ci>OSMOP1T</ci>
				<apply>
					<minus/>
					<ci>OSMOPN1</ci>
					<cn cellml:units="mOsm_per_minute">0.6</cn>
				</apply>
			</apply>
			<apply id="KD45">
				<eq/>
				<ci>OSMOP1</ci>
				<piecewise>
					<piece>
						<cn cellml:units="mOsm_per_minute">0</cn>
						<apply>
							<lt/>
							<ci>OSMOP1T</ci>
							<cn cellml:units="mOsm_per_minute">0</cn>
						</apply>
					</piece>
					<otherwise>
						<ci>OSMOP1T</ci>
					</otherwise>
				</piecewise>
			</apply>
			<apply id="KD46_to_KD48">
				<eq/>
				<ci>VUDN</ci>
				<apply>
					<plus/>
					<apply>
						<divide/>
						<ci>OSMOPN</ci>
						<apply>
							<times/>
							<cn cellml:units="mOsm_per_litre">600</cn>
							<ci>ADHMK</ci>
						</apply>
					</apply>
					<apply>
						<divide/>
						<ci>OSMOP1</ci>
						<cn cellml:units="mOsm_per_litre">360</cn>
					</apply>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="normal_urine_volume" component_2="normal_osmolar_and_water_excretion"/>
		<map_variables variable_1="OSMOPN1" variable_2="OSMOPN1"/>
		<map_variables variable_1="OSMOPN" variable_2="OSMOPN"/>
	</connection>
	<connection>
		<map_components component_1="normal_urine_volume" component_2="kidney"/>
		<map_variables variable_1="ADHMK" variable_2="ADHMK"/>
	</connection>

<!-- ========================================	ACTUAL_SODIUM_EXCRETION_RATE	============================================= -->
	<component 	name="actual_Na_excretion_rate" 
				cmeta:id="actual_Na_excretion_rate">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#actual_Na_excretion_rate">
				<rdf:value>
				KD39:  
				Calculation of the actual rate of sodium output from the kidneys (NOD) by 
				multiplying the normalized rate (NODN) times the percentage of normal kidney 
				mass that is present in the body (REK).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD39">
				<rdf:value>
				KD39:  
				Calculation of the actual rate of sodium output from the kidneys (NOD) by 
				multiplying the normalized rate (NODN) times the percentage of normal kidney 
				mass that is present in the body (REK).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="NODN"	units="monovalent_mEq_per_minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="actual_Na_excretion_rate_NOD"
					name="NOD" 	units="monovalent_mEq_per_minute" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="REK"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD39">
				<eq/>
				<ci>NOD</ci>
				<apply>
					<times/>
					<ci>NODN</ci>
					<ci>REK</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="actual_Na_excretion_rate" component_2="normal_Na_excretion"/>
		<map_variables variable_1="NODN" variable_2="NODN"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="actual_Na_excretion_rate" component_2="kidney_parameter_values"/>
		<map_variables variable_1="REK" variable_2="REK"/>
	</connection>

<!-- ========================================	ACTUAL POTASSIUM EXCRETION RATE		============================================= -->
	<component 	name="actual_K_excretion_rate" 
				cmeta:id="actual_K_excretion_rate">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#actual_K_excretion_rate">
				<rdf:value>
				KD116:  
				Calculation of the actual rate of potassium output from the kidneys (KOD) by 
				multiplying the normalized rate (KODN) times the percentage of normal kidney 
				mass that is present in the body (REK).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#Kd116">
				<rdf:value>
				KD116:  
				Calculation of the actual rate of potassium output from the kidneys (KOD) by 
				multiplying the normalized rate (KODN) times the percentage of normal kidney 
				mass that is present in the body (REK).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="KODN"	units="monovalent_mEq_per_minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="actual_K_excretion_rate_KOD"
					name="KOD" 	units="monovalent_mEq_per_minute" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="REK"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD116">
				<eq/>
				<ci>KOD</ci>
				<apply>
					<times/>
					<ci>KODN</ci>
					<ci>REK</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="actual_K_excretion_rate" component_2="normal_K_excretion"/>
		<map_variables variable_1="KODN" variable_2="KODN"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="actual_K_excretion_rate" component_2="kidney_parameter_values"/>
		<map_variables variable_1="REK" variable_2="REK"/>
	</connection>

<!-- ========================================	ACTUAL UREA EXCRETION RATE	============================================= -->
	<component 	name="actual_urea_excretion_rate" 
				cmeta:id="actual_urea_excretion_rate">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#actual_urea_excretion_rate">
				<rdf:value>
				KD56:  
				Calculation of rate of excretion of urea per minute in terms of osmoles (UROD),
				which is equal to the rate of excretion if the kidneys were normal (DTURI) times
				the actual fraction of normal kidney mass in the body (REK).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD56">
				<rdf:value>
				KD56:  
				Calculation of rate of excretion of urea per minute in terms of osmoles (UROD),
				which is equal to the rate of excretion if the kidneys were normal (DTURI) times
				the actual fraction of normal kidney mass in the body (REK).
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="DTURI"	units="mOsm_per_minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable name="UROD" 	units="mOsm_per_minute" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="REK"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD56">
				<eq/>
				<ci>UROD</ci>
				<apply>
					<times/>
					<ci>DTURI</ci>
					<ci>REK</ci>
				</apply>
			</apply>
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="actual_urea_excretion_rate" component_2="normal_urea_excretion"/>
		<map_variables variable_1="DTURI" variable_2="DTURI"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="actual_urea_excretion_rate" component_2="kidney_parameter_values"/>
		<map_variables variable_1="REK" variable_2="REK"/>
	</connection>

<!-- ========================================	ACTUAL URINE VOLUME	============================================= -->
	<component 	name="actual_urine_volume" 
				cmeta:id="actual_urine_volume">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#actual_urine_volume">
				<rdf:value>
				KD49: 
				Actual rate of urinary output (VUD) calculated from the rate of output if
				both kidneys were totally intact (VUDN) by multiplying VUDN by the fraction 
				of normal kidney mass that is functional in the body (REK).

				KD50:  
				A stability test to test whether or not VUD is varying up and down too much
				and if so making appropriate mathematical corrections.  This is simply a 
				mathematical maneuver for allowing more rapid solution of the equations. 
				NB - This stability test has not been coded!!!
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD49">
				<rdf:value>
				KD49: 
				Actual rate of urinary output (VUD) calculated from the rate of output if
				both kidneys were totally intact (VUDN) by multiplying VUDN by the fraction 
				of normal kidney mass that is functional in the body (REK).
				</rdf:value>
			</rdf:Description>
			<rdf:Description rdf:about="#KD50">
				<rdf:value>
				KD50:  
				A stability test to test whether or not VUD is varying up and down too much
				and if so making appropriate mathematical corrections.  This is simply a 
				mathematical maneuver for allowing more rapid solution of the equations. 
				NB - This stability test has not been coded!!!
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
<!-- Inputs from other components -->
		<variable name="VUDN"	units="L_per_minute" private_interface="none" public_interface="in"/>

<!-- Outputs to other components -->
		<variable 	cmeta:id="actual_urine_volume_VUD"
					name="VUD" 	units="L_per_minute" private_interface="none" public_interface="out"/>

<!-- Parameters from parameter_file -->
		<variable name="REK"	units="dimensionless" private_interface="none" public_interface="in"/>

		<math xmlns="http://www.w3.org/1998/Math/MathML">
			<apply id="KD49">
				<eq/>
				<ci>VUD</ci>
				<apply>
					<times/>
					<ci>VUDN</ci>
					<ci>REK</ci>
				</apply>
			</apply>
<!--			<apply id="KD50 - STABILITY TEST">
			</apply> -->
		</math>
	</component>

<!-- INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="actual_urine_volume" component_2="normal_urine_volume"/>
		<map_variables variable_1="VUDN" variable_2="VUDN"/>
	</connection>

<!-- PARAMETER CONNECTIONS -->
	<connection>
		<map_components component_1="actual_urine_volume" component_2="kidney_parameter_values"/>
		<map_variables variable_1="REK" variable_2="REK"/>
	</connection>

<!-- ===============================================	KIDNEY PARAMETER VALUES	========================================================== -->
	<component 	name="kidney_parameter_values"
				cmeta:id="kidney_parameter_values">
		<variable name="GBL" 		units="mmHg" 	initial_value="0"			private_interface="none"	public_interface="out"/>	<!-- Goldblatt pressure clamp (mmHg) -->
		<variable name="RAPRSP" 	units="mmHg" 	initial_value="0"			private_interface="none"	public_interface="out"/>	<!-- overriding value of renal arterial pressure (if > 0) [P] -->
		<variable name="RFCDFT" 	units="dimensionless" 	initial_value="0"			private_interface="none"	public_interface="out"/>	<!-- renal function curve drift factor (if > 0) [P] -->
		<variable name="RCDFDP" 	units="minute" 	initial_value="2000"		private_interface="none"	public_interface="out"/>	<!-- renal function curve drift damping factor [P] -->
		<variable name="RCDFPC" 	units="dimensionless" 	initial_value="0"			private_interface="none"	public_interface="out"/>	<!-- renal function curve drift coefficient [P] -->
		<variable name="RNAUGN" 	units="minute_per_L" 	initial_value="0.6"			private_interface="none"	public_interface="out"/>	<!-- basal renal autoregulation feedback multiplier -->
		<variable name="RNAULL" 	units="dimensionless" 	initial_value="0.3"			private_interface="none"	public_interface="out"/>	<!-- RNAUG1 lower limit -->
		<variable name="RNAUUL" 	units="dimensionless" 	initial_value="10"			private_interface="none"	public_interface="out"/>	<!-- RNAUG1 upper limit -->
		<variable name="RNAGTC" 	units="minute" 	initial_value="15"			private_interface="none"	public_interface="out"/>	<!-- time constant, renal autoregulation feedback [P] -->
		<variable name="RNAUAD" 	units="per_minute" 	initial_value="0"			private_interface="none"	public_interface="out"/>	<!-- renal autoregulation, adaptation controller [P] -->
		<variable name="ARF" 		units="dimensionless" 	initial_value="0.5"			private_interface="none"	public_interface="out"/>	<!-- sensitivity controller of AUMK [P] -->
		<variable name="ANMAM" 		units="dimensionless" 	initial_value="1.4"			private_interface="none"	public_interface="out"/>	<!-- sensitivity effect of angiotensin on afferent arterioles [P] -->
		<variable name="ANMARL" 	units="dimensionless" 	initial_value="0.86"		private_interface="none"	public_interface="out"/>	<!-- ANMAR lower limit [P] -->
		<variable name="AARK" 		units="mmHg_minute_per_L" 	initial_value="1"			private_interface="none"	public_interface="out"/>	<!-- basic afferent arteriolar resistance [P] -->
		<variable name="AARLL" 		units="mmHg_minute_per_L" 	initial_value="4"			private_interface="none"	public_interface="out"/>	<!-- AAR lower limit [P] -->
		<variable name="ANPXAF" 	units="mmHg_minute_per_L" 	initial_value="1.5"			private_interface="none"	public_interface="out"/>	<!-- sensitivity factor of ANP on renal afferent resistance [P] -->
		<variable name="AUMK1" 		units="dimensionless" 	initial_value="0.3"			private_interface="none"	public_interface="out"/>	<!-- autonomic sensitivity controller on EAR [P] -->
		<variable name="ANMEM" 		units="dimensionless" 	initial_value="1.6"			private_interface="none"	public_interface="out"/>	<!-- sensitivity effect of angiotensin on efferent arterioles [P] -->
		<variable name="EFAFR" 		units="dimensionless" 	initial_value="0"			private_interface="none"	public_interface="out"/>	<!-- efferent arteriolar feedback, sensitivity controller [P] -->
		<variable name="EARK" 		units="mmHg_minute_per_L" 	initial_value="1"			private_interface="none"	public_interface="out"/>	<!-- basic efferent arteriolar resistance [P] -->
		<variable name="EARLL" 		units="mmHg_minute_per_L" 	initial_value="24"			private_interface="none"	public_interface="out"/>	<!-- lower limit for EAR [P] -->
		<variable name="REK" 		units="dimensionless" 	initial_value="1"			private_interface="none"	public_interface="out"/>	<!-- total functional renal mass, ratio to normal [P] -->
		<variable name="GPPD" 		units="dimensionless" 	initial_value="1.0"			private_interface="none"	public_interface="out"/>	<!-- damping coefficient GLPC [P] -->
		<variable name="GLPCA" 		units="mmHg" 	initial_value="1.0"			private_interface="none"	public_interface="out"/>	<!-- if > 0, activates GLPC comput. due to filtration fraction -->
		<variable name="PXTP" 		units="mmHg" 	initial_value="8"			private_interface="none"	public_interface="out"/>	<!-- proximal tubular hydrostatic pressure [P] -->
		<variable name="GFLC" 		units="L_per_minute_per_mmHg" 	initial_value="0.0208333"	private_interface="none"	public_interface="out"/>	<!-- glomerular filtration coefficient [P] -->
		<variable name="GFNLL" 		units="L_per_minute" 	initial_value="0.001"		private_interface="none"	public_interface="out"/>	<!-- GFN lower limit [P] -->
		<variable name="GFNDMP" 	units="dimensionless" 	initial_value="3"			private_interface="none"	public_interface="out"/>	<!-- GFN damping coefficient [P] -->
		<variable name="URFORM" 	units="mOsm_per_minute" 	initial_value="0.24"		private_interface="none"	public_interface="out"/>	<!-- rate of urea formation -->
		<variable name="MDFL1" 		units="dimensionless" 	initial_value="10"			private_interface="none"	public_interface="out"/>	<!-- sensitivity controller of MDFLW [P] -->
		<variable name="RTPPR" 		units="dimensionless" 	initial_value="0.9"			private_interface="none"	public_interface="out"/>	<!-- renal oncotic, internal var [P] -->
		<variable name="RTPPRS" 	units="mmHg" 	initial_value="15.2"		private_interface="none"	public_interface="out"/>	<!-- renal oncotic, internal var [P] -->
		<variable name="RTSPRS" 	units="mmHg" 	initial_value="6"			private_interface="none"	public_interface="out"/>	<!-- renal tissue fluid pressure [P] -->
		<variable name="MDFLKM" 	units="monovalent_mEq_per_litre" 	initial_value="0.667"		private_interface="none"	public_interface="out"/>	<!-- sensitivity controller of MDFLK [P] -->
		<variable name="ANMKEM" 	units="dimensionless" 	initial_value="2"			private_interface="none"	public_interface="out"/>	<!-- sensitivity controller of ANMKE [P] -->
		<variable name="RVRS" 		units="mmHg_minute_per_L" 	initial_value="19.167"		private_interface="none"	public_interface="out"/>	<!-- curve fitting coefficient, RCPRS [P] -->
		<variable name="RFABX" 		units="dimensionless" 	initial_value="0.8"			private_interface="none"	public_interface="out"/>
		<variable name="RABSC" 		units="per_mmHg" 	initial_value="0.5"			private_interface="none"	public_interface="out"/>	<!-- peritubular capillary reabsorption coefficient [P] -->
		<variable name="RFABDP" 	units="dimensionless" 	initial_value="1"			private_interface="none"	public_interface="out"/>	<!-- RFAB damping factor [P] -->
		<variable name="RFABDM" 	units="dimensionless" 	initial_value="0.3"			private_interface="none"	public_interface="out"/>	<!-- sensitivity controller of RFABD [P] -->
		<variable name="DTNAR" 		units="monovalent_mEq_per_minute" 	initial_value="0.675"		private_interface="none"	public_interface="out"/>	<!-- sensitivity controller of DTNARA [P] -->
		<variable name="DTNARL" 	units="monovalent_mEq_per_minute" 	initial_value="1e-06"		private_interface="none"	public_interface="out"/>	<!-- lower limiter of DTNARA [P] -->
		<variable name="DIURET" 	units="dimensionless" 	initial_value="1"			private_interface="none"	public_interface="out"/>	<!-- diuretic effect on tubular reabsorption [P] -->
		<variable name="AHMNAR" 	units="dimensionless" 	initial_value="0.3"			private_interface="none"	public_interface="out"/>	<!-- sensitivity control, renal effect of ADHMK [P] -->
		<variable name="ANMNAM" 	units="dimensionless" 	initial_value="1"			private_interface="none"	public_interface="out"/>	<!-- sensitivity controller of DTNANG [P] -->
		<variable name="RFABKM" 	units="monovalent_mEq_per_minute" 	initial_value="0.03"		private_interface="none"	public_interface="out"/>	<!-- proportionality constant, RFABK [P] -->
		<variable name="ANMKEL" 	units="dimensionless" 	initial_value="0.3"			private_interface="none"	public_interface="out"/>	<!-- ANMKE lower limit [P] -->
		<variable name="CKEEX" 		units="dimensionless" 	initial_value="4"			private_interface="none"	public_interface="out"/>	<!-- curve fitting exponent, distal potassium reabsorption [P] -->
	</component>

<!-- ============================================================================================================================================================ -->

<!-- ============================================================		GROUPING		=============================================================== -->
   <group>
      <relationship_ref relationship="containment"/>
      <component_ref component="aldosterone">
			<component_ref component="angiotensin_control_of_aldosterone_secretion"/>
			<component_ref component="osmotic_control_of_aldosterone_secretion"/>
			<component_ref component="aldosterone_secretion"/>
			<component_ref component="aldosterone_concentration"/>
			<component_ref component="general_aldosterone_multiplier"/>
			<component_ref component="aldosterone_effect_on_cell_membrane_K_transport"/>
			<component_ref component="aldosterone_effect_on_cell_membrane_Na_transport"/>
      </component_ref>
      <component_ref component="angiotensin">
			<component_ref component="instantaneous_angiotensin_formation"/>
			<component_ref component="time_delayed_angiotensin_formation"/>
			<component_ref component="total_angiotensin_formation"/>
			<component_ref component="artificial_angiotensin_formation"/>
			<component_ref component="angiotensin_concentration"/>
			<component_ref component="general_angiotensin_multiplier"/>
			<component_ref component="angiotensin_effect_on_circulation"/>
			<component_ref component="angiotensin_effect_on_venous_constriction"/>
      </component_ref>
      <component_ref component="antidiuretic_hormone">
			<component_ref component="osmotic_control_of_ADH_secretion"/>
			<component_ref component="pressure_control_of_ADH_secretion"/>
			<component_ref component="total_ADH_secretion"/>
			<component_ref component="ADH_in_blood"/>
			<component_ref component="ADH_effect_on_nonrenal_vascular_resistance"/>
			<component_ref component="ADH_effect_on_kidney"/>
      </component_ref>
      <component_ref component="atrial_natriuretic_peptide">
			<component_ref component="total_ANP_secreted"/>
			<component_ref component="ANP_into_circulation"/>
			<component_ref component="ANP_in_plasma"/>
			<component_ref component="ANP_effect_on_renal_afferent_arteriolar_resistance"/>
      </component_ref>
      <component_ref component="autonomics">
			<component_ref component="pressure_driving_autonomic_receptors"/>
			<component_ref component="chemoreceptors_effect_of_PA"/>
			<component_ref component="chemoreceptors_effect_of_art_PO2"/>
			<component_ref component="arterial_baroreceptor_reflex"/>
			<component_ref component="CNS_ischemic_reflex"/>
			<component_ref component="autonomic_response_to_vasculature_pressure"/>
			<component_ref component="autonomic_response_to_exercise"/>
			<component_ref component="total_autonomic_stimulation"/>
			<component_ref component="actual_autonomic_stimulation"/>
			<component_ref component="autonomic_drive_on_target_organs_and_tissues"/>
      </component_ref>
		<component_ref component="capillary_dynamics">
			<component_ref component="capillary_membrane_dynamics">
				<component_ref component="capillary_pressure"/>
				<component_ref component="rate_of_fluid_out_of_capillaries"/>
			</component_ref>
			<component_ref component="plasma_volume_and_protein">
				<component_ref component="plasma_volume"/>
				<component_ref component="plasma_protein_concentration"/>
				<component_ref component="protein_destruction_and_formation"/>
				<component_ref component="plasma_leakage"/>
				<component_ref component="protein_influx_into_interstitium"/>
				<component_ref component="total_plasma_protein"/>
				<component_ref component="plasma_colloid_osmotic_pressure"/>
			</component_ref>
			<component_ref component="systemic_tissue_fluid_volume_and_protein">
				<component_ref component="total_systemic_fluid_volume"/>
				<component_ref component="interstitial_fluid_volume"/>
				<component_ref component="total_interstitial_protein"/>
				<component_ref component="interstitial_protein_concentration"/>
				<component_ref component="interstitial_colloid_osmotic_pressure"/>
				<component_ref component="lymph_protein_flow"/>
			</component_ref>
			<component_ref component="tissue_gel_and_fluid_and_lymph_flow">
				<component_ref component="hydrostatic_pressure_of_tissue_gel"/>
				<component_ref component="total_osmotic_pressure_of_tissue_gel"/>
				<component_ref component="total_tissue_pressure"/>
				<component_ref component="interstial_free_fluid_pressure"/>
				<component_ref component="interstitial_solid_tissue_pressure"/>
				<component_ref component="lymph_flow"/>
				<component_ref component="interstitial_gel_volume"/>
				<component_ref component="interstitial_free_fluid_volume"/>
			</component_ref>
		</component_ref>
		<component_ref component="circulatory_dynamics">
			<component_ref component="total_blood_volume_change"/>
			<component_ref component="right_atrium">
				<component_ref component="right_atrial_blood_volume"/>
				<component_ref component="right_atrial_pressure"/>
				<component_ref component="autonomic_stimulation_effect_on_right_atrial_pressure"/>
			</component_ref>
			<component_ref component="right_ventricle">
				<component_ref component="pressure_effect_on_right_ventricular_pumping"/>
				<component_ref component="pumping_effectiveness_of_right_ventricle"/>
				<component_ref component="right_ventricular_output"/>
			</component_ref>
			<component_ref component="pulmonary_vasculature">
				<component_ref component="pulmonary_vasculature_blood_volume"/>
				<component_ref component="pulmonary_vasculature_pressure"/>
				<component_ref component="pulmonary_arterial_resistance"/>
				<component_ref component="pulmonary_venous_resistance"/>
				<component_ref component="total_pulmonary_vascular_resistance"/>
				<component_ref component="pressure_gradient_through_the_lungs"/>
				<component_ref component="rate_of_blood_flow_from_pulmonary_veins_to_left_atrium"/>
			</component_ref>
			<component_ref component="left_atrium">
				<component_ref component="left_atrial_blood_volume"/>
				<component_ref component="left_atrial_pressure"/>
				<component_ref component="autonomic_stimulation_effect_on_left_atrial_pressure"/>
			</component_ref>
			<component_ref component="left_ventricle">
				<component_ref component="pumping_effectiveness_of_left_ventricle"/>
				<component_ref component="left_ventricular_output"/>
			</component_ref>
			<component_ref component="systemic_venous_system">
				<component_ref component="venous_blood_volume"/>
				<component_ref component="angiotensin_induced_venous_constriction"/>
				<component_ref component="venous_excess_volume"/>
				<component_ref component="venous_average_pressure"/>
				<component_ref component="venous_outflow_pressure_into_heart"/>
				<component_ref component="resistance_from_veins_to_right_atrium"/>
				<component_ref component="rate_of_blood_flow_from_veins_to_right_atrium"/>
				<component_ref component="venous_resistance"/>
				<component_ref component="NM_NR_venous_resistance"/>
			</component_ref>
			<component_ref component="systemic_arterial_system">
				<component_ref component="arterial_blood_volume"/>
				<component_ref component="arterial_pressure_and_pressure_gradient"/>
				<component_ref component="pressure_effect_on_arterial_distention"/>
				<component_ref component="non_renal_systemic_arterial_resistance_multiplier"/>
				<component_ref component="NM_NR_arterial_resistance"/>
			</component_ref>
			<component_ref component="pressure_gradient_from_arteries_to_veins"/>
			<component_ref component="M_systemic_resistance"/>
			<component_ref component="total_NM_NR_systemic_resistance"/>
			<component_ref component="blood_flow_through_M_tissues"/>
			<component_ref component="blood_flow_through_NM_NR_tissues"/>
			<component_ref component="blood_flow_through_AV_fistulas"/>
			<component_ref component="systemic_blood_flow"/>
			<component_ref component="total_peripheral_resistance"/>
		</component_ref>
		<component_ref component="electrolytes">
			<component_ref component="extracellular_Na_concentration"/>
			<component_ref component="aldosterone_effect_on_cellular_K_distribution"/>
			<component_ref component="extracellular_K_concentration"/>
			<component_ref component="intracellular_K_concentration"/>
			<component_ref component="intracellular_fluid_volume"/>
			<component_ref component="total_body_water"/>
			<component_ref component="extracellular_fluid_volume"/>
		</component_ref>
		<component_ref component="heart_hypertrophy_or_deterioration">
			<component_ref component="left_ventricular_hypertrophy"/>
			<component_ref component="right_ventricular_hypertrophy"/>
			<component_ref component="heart_deterioration"/>
		</component_ref>
		<component_ref component="heart_rate_and_stroke_volume">
			<component_ref component="effect_of_autonomic_stimulation_on_HR"/>
			<component_ref component="effect_of_PRA_on_HR"/>
			<component_ref component="effect_of_heart_deterioration_on_HR"/>
			<component_ref component="heart_rate"/>
			<component_ref component="stroke_volume_output"/>
		</component_ref>
		<component_ref component="muscle_autoregulatory_local_blood_flow_control">
			<component_ref component="M_autoregulatory_driving_force"/>
			<component_ref component="M_short_term_autoregulation">
				<component_ref component="M_ST_sensitivity_control"/>
				<component_ref component="M_ST_time_delay_and_limit"/>
			</component_ref>
			<component_ref component="M_long_term_autoregulation">
				<component_ref component="M_LT_sensitivity_control"/>
				<component_ref component="M_LT_time_delay"/>
			</component_ref>
			<component_ref component="global_M_blood_flow_autoregulation_output"/>
		</component_ref>
		<component_ref component="muscle_O2_delivery">
			<component_ref component="M_O2_blood_supply"/>
			<component_ref component="M_venous_O2_content"/>
			<component_ref component="metabolic_O2_consumption_by_M_tissue"/>
			<component_ref component="delivery_of_O2_to_M_tissues"/>
			<component_ref component="volume_of_O2_in_M_tissue"/>
			<component_ref component="pressure_of_O2_in_M_tissue_cells"/>
		</component_ref>
		<component_ref component="non_muscle_autoregulatory_local_blood_flow_control">
			<component_ref component="NM_autoregulatory_driving_force"/>
			<component_ref component="NM_short_term_autoregulation">
				<component_ref component="NM_ST_sensitivity_control"/>
				<component_ref component="NM_ST_time_delay_and_damping"/>
			</component_ref>
			<component_ref component="NM_intermediate_autoregulation">
				<component_ref component="NM_I_sensitivity_control"/>
				<component_ref component="NM_I_time_delay_and_limit"/>
			</component_ref>
			<component_ref component="NM_long_term_autoregulation">
				<component_ref component="NM_LT_sensitivity_control"/>
				<component_ref component="NM_LT_time_delay_and_limit"/>
			</component_ref>
			<component_ref component="total_NM_autoregulation"/>
			<component_ref component="global_NM_blood_flow_autoregulation_output"/>
		</component_ref>
		<component_ref component="non_muscle_O2_delivery">
			<component_ref component="NM_O2_blood_supply"/>
			<component_ref component="NM_venous_O2_content"/>
			<component_ref component="O2_consumption_by_NM_tissue"/>
			<component_ref component="delivery_of_O2_to_NM_tissues"/>
			<component_ref component="volume_of_O2_in_NM_tissue"/>
			<component_ref component="pressure_of_O2_in_NM_tissue_cells"/>
		</component_ref>
		<component_ref component="pulmonary_fluid_dynamics">
			<component_ref component="pulmonary_capillary_pressure"/>
			<component_ref component="fluid_filtration_into_pulmonary_interstitium"/>
			<component_ref component="pulmonary_interstitial_free_fluid_volume"/>
			<component_ref component="pulmonary_interstitial_fluid_pressure"/>
			<component_ref component="concentration_of_protein_in_pulmonary_interstitium"/>
			<component_ref component="colloid_osmotic_pressure_of_pulmonary_interstitium"/>
			<component_ref component="protein_leakage_into_pulmonary_interstitium"/>
			<component_ref component="lung_lymphatic_protein_flow"/>
		</component_ref>
		<component_ref component="pulmonary_O2_uptake">
			<component_ref component="total_O2_utilization"/>
			<component_ref component="alveolar_ventilation"/>
			<component_ref component="alveolar_PO2"/>
			<component_ref component="respiratory_O2_diffusion_into_capillaries"/>
			<component_ref component="O2_volume_of_arterial_blood"/>
			<component_ref component="arterial_PO2"/>
			<component_ref component="chemoreceptor_adaptation_of_alveolar_ventilation">
				<component_ref component ="acute_chemoreceptor_adaptation_of_alveolar_ventilation"/>
				<component_ref component ="progressive_chemoreceptor_adaptation_of_alveolar_ventilation"/>
			</component_ref>
		</component_ref>
		<component_ref component="red_cells_and_viscosity">
			<component_ref component="blood_viscosity_calculations">
				<component_ref component="hematocrit_fraction"/>
				<component_ref component="viscosity_due_to_RBCs"/>
				<component_ref component="blood_viscosity"/>
			</component_ref>
			<component_ref component="RBC_formation_and_destruction">
				<component_ref component="oxygen_stimulation"/>
				<component_ref component="RBC_production"/>
				<component_ref component="RBC_destruction"/>
				<component_ref component="RBC_volume"/>
			</component_ref>
		</component_ref>
		<component_ref component="stress_relaxation">
			<component_ref component="short_term_stress_relaxation"/>
			<component_ref component="long_term_stress_relaxation"/>
		</component_ref>
		<component_ref component="thirst_drinking_and_salt_appetite">
			<component_ref component="effect_of_salt_appetite_stimulation_on_thirst"/>
			<component_ref component="effect_of_antidiuretic_hormone_on_thirst"/>
			<component_ref component="effect_of_angiotensin_on_thirst"/>
			<component_ref component="rate_of_fluid_intake"/>
		</component_ref>
		<component_ref component="volume_receptors">
			<component_ref component="effect_of_pressure_on_volume_receptors"/>
			<component_ref component="time_dependent_volume_receptor_adaptation"/>
			<component_ref component="total_volume_nervous_feedback"/>
			<component_ref component="volume_effect_on_arteries"/>
			<component_ref component="volume_effect_on_unstressed_venous_volume"/>
		</component_ref>
		<component_ref component="kidney">
			<component_ref component="perfusion_pressure"/>
			<component_ref component="total_renal_resistance"/>
			<component_ref component="normal_renal_blood_flow"/>
			<component_ref component="actual_renal_blood_flow"/>
			<component_ref component="renal_tissue_osmotic_pressure"/>
			<component_ref component="proximal_tubular_and_macula_densa_flow"/>
			<component_ref component="renal_autoregulatory_feedback_factor"/>
			<component_ref component="afferent_arterial_resistance">
				<component_ref component="autonomic_effect_on_AAR"/>
				<component_ref component="angiotensin_effect_on_AAR"/>
				<component_ref component="AAR_calculation"/>
				<component_ref component="atrial_natriuretic_peptide_effect_on_AAR"/>
			</component_ref>
			<component_ref component="efferent_arterial_resistance">
				<component_ref component="autonomic_effect_on_EAR"/>
				<component_ref component="angiotensin_effect_on_EAR"/>
				<component_ref component="effect_of_renal_autoregulatory_feedback_on_EAR"/>
				<component_ref component="EAR_calculation"/>
			</component_ref>
			<component_ref component="glomerular_capillaries">
				<component_ref component="glomerular_colloid_osmotic_pressure"/>
				<component_ref component="glomerular_pressure"/>
				<component_ref component="glomerular_filtration_rate"/>
			</component_ref>
			<component_ref component="renal_peritubular_capillaries">
				<component_ref component="peritubular_capillary_pressure"/>
				<component_ref component="peritubular_capillary_reabsorption_factor"/>
			</component_ref>
			<component_ref component="sodium_and_potassium_handling">
				<component_ref component="distal_tubular_Na_delivery"/>
				<component_ref component="Na_reabsorption_into_distal_tubules"/>
				<component_ref component="angiotensin_induced_Na_reabsorption_into_distal_tubules"/>
				<component_ref component="distal_tubular_K_delivery"/>
				<component_ref component="effect_of_physical_forces_on_distal_K_reabsorption"/>
				<component_ref component="effect_of_fluid_flow_on_distal_K_reabsorption"/>
				<component_ref component="K_reabsorption_into_distal_tubules"/>
				<component_ref component="K_secretion_from_distal_tubules"/>
			</component_ref>
			<component_ref component="urea_handling">
				<component_ref component="glomerular_urea_concentration"/>
				<component_ref component="plasma_urea_concentration"/>
			</component_ref>
			<component_ref component="urinary_excretion">
				<component_ref component="normal_Na_excretion"/>
				<component_ref component="normal_K_excretion"/>
				<component_ref component="normal_urea_excretion"/>
				<component_ref component="normal_osmolar_and_water_excretion"/>
				<component_ref component="normal_urine_volume"/>
				<component_ref component="actual_Na_excretion_rate"/>
				<component_ref component="actual_K_excretion_rate"/>
				<component_ref component="actual_urea_excretion_rate"/>
				<component_ref component="actual_urine_volume"/>
			</component_ref>
		</component_ref>
    </group>
      
   <group>
      <relationship_ref relationship="encapsulation"/>
      <component_ref component="aldosterone">
			<component_ref component="aldosterone_parameter_values"/>
			<component_ref component="angiotensin_control_of_aldosterone_secretion"/>
			<component_ref component="osmotic_control_of_aldosterone_secretion"/>
			<component_ref component="aldosterone_secretion"/>
			<component_ref component="aldosterone_concentration"/>
			<component_ref component="general_aldosterone_multiplier"/>
			<component_ref component="aldosterone_effect_on_cell_membrane_K_transport"/>
			<component_ref component="aldosterone_effect_on_cell_membrane_Na_transport"/>
      </component_ref>
      <component_ref component="angiotensin">
			<component_ref component="angiotensin_parameter_values"/>
			<component_ref component="instantaneous_angiotensin_formation"/>
			<component_ref component="time_delayed_angiotensin_formation"/>
			<component_ref component="total_angiotensin_formation"/>
			<component_ref component="artificial_angiotensin_formation"/>
			<component_ref component="angiotensin_concentration"/>
			<component_ref component="general_angiotensin_multiplier"/>
			<component_ref component="angiotensin_effect_on_circulation"/>
			<component_ref component="angiotensin_effect_on_venous_constriction"/>
      </component_ref>
      <component_ref component="antidiuretic_hormone">
			<component_ref component="antidiuretic_hormone_parameter_values"/>
			<component_ref component="osmotic_control_of_ADH_secretion"/>
			<component_ref component="pressure_control_of_ADH_secretion"/>
			<component_ref component="total_ADH_secretion"/>
			<component_ref component="ADH_in_blood"/>
			<component_ref component="ADH_effect_on_nonrenal_vascular_resistance"/>
			<component_ref component="ADH_effect_on_kidney"/>
      </component_ref>
      <component_ref component="atrial_natriuretic_peptide">
			<component_ref component="atrial_natriuretic_peptide_parameter_values"/>
			<component_ref component="total_ANP_secreted"/>
			<component_ref component="ANP_into_circulation"/>
			<component_ref component="ANP_in_plasma"/>
			<component_ref component="ANP_effect_on_renal_afferent_arteriolar_resistance"/>
      </component_ref>
      <component_ref component="autonomics">
			<component_ref component="autonomics_parameter_values"/>
			<component_ref component="pressure_driving_autonomic_receptors"/>
			<component_ref component="chemoreceptors_effect_of_PA"/>
			<component_ref component="chemoreceptors_effect_of_art_PO2"/>
			<component_ref component="arterial_baroreceptor_reflex"/>
			<component_ref component="CNS_ischemic_reflex"/>
			<component_ref component="autonomic_response_to_vasculature_pressure"/>
			<component_ref component="autonomic_response_to_exercise"/>
			<component_ref component="total_autonomic_stimulation"/>
			<component_ref component="actual_autonomic_stimulation"/>
			<component_ref component="autonomic_drive_on_target_organs_and_tissues"/>
      </component_ref>
	  <component_ref component="capillary_dynamics">
			<component_ref component="capillary_dynamics_parameter_values"/>
			<component_ref component="capillary_membrane_dynamics"/>
			<component_ref component="capillary_pressure"/>
			<component_ref component="rate_of_fluid_out_of_capillaries"/>
			<component_ref component="plasma_volume_and_protein"/>
			<component_ref component="plasma_volume"/>
			<component_ref component="plasma_protein_concentration"/>
			<component_ref component="protein_destruction_and_formation"/>
			<component_ref component="plasma_leakage"/>
			<component_ref component="protein_influx_into_interstitium"/>
			<component_ref component="total_plasma_protein"/>
			<component_ref component="plasma_colloid_osmotic_pressure"/>
			<component_ref component="systemic_tissue_fluid_volume_and_protein"/>
			<component_ref component="total_systemic_fluid_volume"/>
			<component_ref component="interstitial_fluid_volume"/>
			<component_ref component="total_interstitial_protein"/>
			<component_ref component="interstitial_protein_concentration"/>
			<component_ref component="interstitial_colloid_osmotic_pressure"/>
			<component_ref component="lymph_protein_flow"/>
			<component_ref component="tissue_gel_and_fluid_and_lymph_flow"/>
			<component_ref component="hydrostatic_pressure_of_tissue_gel"/>
			<component_ref component="total_osmotic_pressure_of_tissue_gel"/>
			<component_ref component="total_tissue_pressure"/>
			<component_ref component="interstial_free_fluid_pressure"/>
			<component_ref component="interstitial_solid_tissue_pressure"/>
			<component_ref component="lymph_flow"/>
			<component_ref component="interstitial_gel_volume"/>
			<component_ref component="interstitial_free_fluid_volume"/>
		</component_ref>
		<component_ref component="circulatory_dynamics">
			<component_ref component="circulatory_dynamics_parameter_values"/>
			<component_ref component="total_blood_volume_change"/>
			<component_ref component="right_atrium"/>
			<component_ref component="right_atrial_blood_volume"/>
			<component_ref component="right_atrial_pressure"/>
			<component_ref component="autonomic_stimulation_effect_on_right_atrial_pressure"/>
			<component_ref component="right_ventricle"/>
			<component_ref component="pressure_effect_on_right_ventricular_pumping"/>
			<component_ref component="pumping_effectiveness_of_right_ventricle"/>
			<component_ref component="right_ventricular_output"/>
			<component_ref component="pulmonary_vasculature"/>
			<component_ref component="pulmonary_vasculature_blood_volume"/>
			<component_ref component="pulmonary_vasculature_pressure"/>
			<component_ref component="pulmonary_arterial_resistance"/>
			<component_ref component="pulmonary_venous_resistance"/>
			<component_ref component="total_pulmonary_vascular_resistance"/>
			<component_ref component="pressure_gradient_through_the_lungs"/>
			<component_ref component="rate_of_blood_flow_from_pulmonary_veins_to_left_atrium"/>
			<component_ref component="left_atrium"/>
			<component_ref component="left_atrial_blood_volume"/>
			<component_ref component="left_atrial_pressure"/>
			<component_ref component="autonomic_stimulation_effect_on_left_atrial_pressure"/>
			<component_ref component="left_ventricle"/>
			<component_ref component="pumping_effectiveness_of_left_ventricle"/>
			<component_ref component="left_ventricular_output"/>
			<component_ref component="systemic_venous_system"/>
			<component_ref component="venous_blood_volume"/>
			<component_ref component="angiotensin_induced_venous_constriction"/>
			<component_ref component="venous_excess_volume"/>
			<component_ref component="venous_average_pressure"/>
			<component_ref component="venous_outflow_pressure_into_heart"/>
			<component_ref component="resistance_from_veins_to_right_atrium"/>
			<component_ref component="rate_of_blood_flow_from_veins_to_right_atrium"/>
			<component_ref component="venous_resistance"/>
			<component_ref component="NM_NR_venous_resistance"/>
			<component_ref component="systemic_arterial_system"/>
			<component_ref component="arterial_blood_volume"/>
			<component_ref component="arterial_pressure_and_pressure_gradient"/>
			<component_ref component="pressure_effect_on_arterial_distention"/>
			<component_ref component="non_renal_systemic_arterial_resistance_multiplier"/>
			<component_ref component="NM_NR_arterial_resistance"/>
			<component_ref component="pressure_gradient_from_arteries_to_veins"/>
			<component_ref component="M_systemic_resistance"/>
			<component_ref component="total_NM_NR_systemic_resistance"/>
			<component_ref component="blood_flow_through_M_tissues"/>
			<component_ref component="blood_flow_through_NM_NR_tissues"/>
			<component_ref component="blood_flow_through_AV_fistulas"/>
			<component_ref component="systemic_blood_flow"/>
			<component_ref component="total_peripheral_resistance"/>
		</component_ref>
		<component_ref component="electrolytes">
			<component_ref component="electrolytes_parameter_values"/>
			<component_ref component="extracellular_Na_concentration"/>
			<component_ref component="aldosterone_effect_on_cellular_K_distribution"/>
			<component_ref component="extracellular_K_concentration"/>
			<component_ref component="intracellular_K_concentration"/>
			<component_ref component="intracellular_fluid_volume"/>
			<component_ref component="total_body_water"/>
			<component_ref component="extracellular_fluid_volume"/>
      </component_ref>
		<component_ref component="heart_hypertrophy_or_deterioration">
			<component_ref component="heart_hypertrophy_or_deterioration_parameter_values"/>
			<component_ref component="left_ventricular_hypertrophy"/>
			<component_ref component="right_ventricular_hypertrophy"/>
			<component_ref component="heart_deterioration"/>
		</component_ref>
		<component_ref component="heart_rate_and_stroke_volume">
			<component_ref component="HR_and_SV_parameter_values"/>
			<component_ref component="effect_of_autonomic_stimulation_on_HR"/>
			<component_ref component="effect_of_PRA_on_HR"/>
			<component_ref component="effect_of_heart_deterioration_on_HR"/>
			<component_ref component="heart_rate"/>
			<component_ref component="stroke_volume_output"/>
		</component_ref>
		<component_ref component="muscle_autoregulatory_local_blood_flow_control">
			<component_ref component="M_autoregulatory_local_blood_flow_parameter_values"/>
			<component_ref component="M_autoregulatory_driving_force"/>
			<component_ref component="M_short_term_autoregulation"/>
			<component_ref component="M_ST_sensitivity_control"/>
			<component_ref component="M_ST_time_delay_and_limit"/>
			<component_ref component="M_long_term_autoregulation"/>
			<component_ref component="M_LT_sensitivity_control"/>
			<component_ref component="M_LT_time_delay"/>
			<component_ref component="global_M_blood_flow_autoregulation_output"/>
		</component_ref>
		<component_ref component="muscle_O2_delivery">
			<component_ref component="M_O2_delivery_parameter_values"/>
			<component_ref component="M_O2_blood_supply"/>
			<component_ref component="M_venous_O2_content"/>
			<component_ref component="metabolic_O2_consumption_by_M_tissue"/>
			<component_ref component="delivery_of_O2_to_M_tissues"/>
			<component_ref component="volume_of_O2_in_M_tissue"/>
			<component_ref component="pressure_of_O2_in_M_tissue_cells"/>
		</component_ref>
		<component_ref component="non_muscle_autoregulatory_local_blood_flow_control">
			<component_ref component="NM_autoregulatory_local_blood_flow_parameter_values"/>
			<component_ref component="NM_autoregulatory_driving_force"/>
			<component_ref component="NM_short_term_autoregulation"/>
			<component_ref component="NM_ST_sensitivity_control"/>
			<component_ref component="NM_ST_time_delay_and_damping"/>
			<component_ref component="NM_intermediate_autoregulation"/>
			<component_ref component="NM_I_sensitivity_control"/>
			<component_ref component="NM_I_time_delay_and_limit"/>
			<component_ref component="NM_long_term_autoregulation"/>
			<component_ref component="NM_LT_sensitivity_control"/>
			<component_ref component="NM_LT_time_delay_and_limit"/>
			<component_ref component="total_NM_autoregulation"/>
			<component_ref component="global_NM_blood_flow_autoregulation_output"/>
		</component_ref>
		<component_ref component="non_muscle_O2_delivery">
			<component_ref component="NM_O2_delivery_parameter_values"/>
			<component_ref component="NM_O2_blood_supply"/>
			<component_ref component="NM_venous_O2_content"/>
			<component_ref component="O2_consumption_by_NM_tissue"/>
			<component_ref component="delivery_of_O2_to_NM_tissues"/>
			<component_ref component="volume_of_O2_in_NM_tissue"/>
			<component_ref component="pressure_of_O2_in_NM_tissue_cells"/>
		</component_ref>
		<component_ref component="pulmonary_fluid_dynamics">
			<component_ref component="pulmonary_fluid_dynamics_parameter_values"/>
			<component_ref component="pulmonary_capillary_pressure"/>
			<component_ref component="fluid_filtration_into_pulmonary_interstitium"/>
			<component_ref component="pulmonary_interstitial_free_fluid_volume"/>
			<component_ref component="pulmonary_interstitial_fluid_pressure"/>
			<component_ref component="concentration_of_protein_in_pulmonary_interstitium"/>
			<component_ref component="colloid_osmotic_pressure_of_pulmonary_interstitium"/>
			<component_ref component="protein_leakage_into_pulmonary_interstitium"/>
			<component_ref component="lung_lymphatic_protein_flow"/>
		</component_ref>
		<component_ref component="pulmonary_O2_uptake">
			<component_ref component="pulmonary_O2_uptake_parameter_values"/>
			<component_ref component="total_O2_utilization"/>
			<component_ref component="alveolar_ventilation"/>
			<component_ref component="alveolar_PO2"/>
			<component_ref component="respiratory_O2_diffusion_into_capillaries"/>
			<component_ref component="O2_volume_of_arterial_blood"/>
			<component_ref component="arterial_PO2"/>
			<component_ref component="chemoreceptor_adaptation_of_alveolar_ventilation"/>
			<component_ref component ="acute_chemoreceptor_adaptation_of_alveolar_ventilation"/>
			<component_ref component ="progressive_chemoreceptor_adaptation_of_alveolar_ventilation"/>
		</component_ref>
		<component_ref component="red_cells_and_viscosity">
			<component_ref component="red_cells_and_viscosity_parameter_values"/>
			<component_ref component="blood_viscosity_calculations"/>
			<component_ref component="hematocrit_fraction"/>
			<component_ref component="viscosity_due_to_RBCs"/>
			<component_ref component="blood_viscosity"/>
			<component_ref component="RBC_formation_and_destruction"/>
			<component_ref component="oxygen_stimulation"/>
			<component_ref component="RBC_production"/>
			<component_ref component="RBC_destruction"/>
			<component_ref component="RBC_volume"/>
		</component_ref>
		<component_ref component="stress_relaxation">
			<component_ref component="stress_relaxation_parameter_values"/>
			<component_ref component="short_term_stress_relaxation"/>
			<component_ref component="long_term_stress_relaxation"/>
		</component_ref>
		<component_ref component="thirst_drinking_and_salt_appetite">
			<component_ref component="thirst_drinking_and_salt_appetite_parameter_values"/>
			<component_ref component="effect_of_salt_appetite_stimulation_on_thirst"/>
			<component_ref component="effect_of_antidiuretic_hormone_on_thirst"/>
			<component_ref component="effect_of_angiotensin_on_thirst"/>
			<component_ref component="rate_of_fluid_intake"/>
		</component_ref>
		<component_ref component="volume_receptors">
			<component_ref component="volume_receptors_parameter_values"/>
			<component_ref component="effect_of_pressure_on_volume_receptors"/>
			<component_ref component="time_dependent_volume_receptor_adaptation"/>
			<component_ref component="total_volume_nervous_feedback"/>
			<component_ref component="volume_effect_on_arteries"/>
			<component_ref component="volume_effect_on_unstressed_venous_volume"/>
		</component_ref>
		<component_ref component="kidney">
			<component_ref component="kidney_parameter_values"/>
			<component_ref component="perfusion_pressure"/>
			<component_ref component="renal_autoregulatory_feedback_factor"/>
			<component_ref component="afferent_arterial_resistance"/>
			<component_ref component="autonomic_effect_on_AAR"/>
			<component_ref component="angiotensin_effect_on_AAR"/>
			<component_ref component="AAR_calculation"/>
			<component_ref component="atrial_natriuretic_peptide_effect_on_AAR"/>
			<component_ref component="efferent_arterial_resistance"/>
			<component_ref component="autonomic_effect_on_EAR"/>
			<component_ref component="angiotensin_effect_on_EAR"/>
			<component_ref component="effect_of_renal_autoregulatory_feedback_on_EAR"/>
			<component_ref component="EAR_calculation"/>
			<component_ref component="total_renal_resistance"/>
			<component_ref component="normal_renal_blood_flow"/>
			<component_ref component="actual_renal_blood_flow"/>
			<component_ref component="glomerular_capillaries"/>
			<component_ref component="glomerular_colloid_osmotic_pressure"/>
			<component_ref component="glomerular_pressure"/>
			<component_ref component="glomerular_filtration_rate"/>
			<component_ref component="glomerular_urea_concentration"/>
			<component_ref component="proximal_tubular_and_macula_densa_flow"/>
			<component_ref component="renal_tissue_osmotic_pressure"/>
			<component_ref component="urea_handling"/>
			<component_ref component="plasma_urea_concentration"/>
			<component_ref component="renal_peritubular_capillaries"/>
			<component_ref component="peritubular_capillary_pressure"/>
			<component_ref component="peritubular_capillary_reabsorption_factor"/>
			<component_ref component="sodium_and_potassium_handling"/>
			<component_ref component="distal_tubular_Na_delivery"/>
			<component_ref component="Na_reabsorption_into_distal_tubules"/>
			<component_ref component="angiotensin_induced_Na_reabsorption_into_distal_tubules"/>
			<component_ref component="distal_tubular_K_delivery"/>
			<component_ref component="effect_of_physical_forces_on_distal_K_reabsorption"/>
			<component_ref component="effect_of_fluid_flow_on_distal_K_reabsorption"/>
			<component_ref component="K_reabsorption_into_distal_tubules"/>
			<component_ref component="K_secretion_from_distal_tubules"/>
			<component_ref component="urinary_excretion"/>
			<component_ref component="normal_Na_excretion"/>
			<component_ref component="normal_K_excretion"/>
			<component_ref component="normal_urea_excretion"/>
			<component_ref component="normal_osmolar_and_water_excretion"/>
			<component_ref component="normal_urine_volume"/>
			<component_ref component="actual_Na_excretion_rate"/>
			<component_ref component="actual_K_excretion_rate"/>
			<component_ref component="actual_urea_excretion_rate"/>
			<component_ref component="actual_urine_volume"/>
		</component_ref>
   </group>
   
<!-- ********************************************************************************************************************************************-->
<!-- ==========================================		CONNECTIONS BETWEEN ALL MODELS		============================================== -->

<!-- ALDOSTERONE INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="aldosterone" component_2="angiotensin"/>
		<map_variables variable_1="ANM" variable_2="ANM"/>
	</connection>
	<connection>
		<map_components component_1="aldosterone" component_2="environment"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- ANGIOTENSIN INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="angiotensin" component_2="environment"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- ANTI-DIURETIC HORMONE INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="antidiuretic_hormone" component_2="electrolytes"/>
		<map_variables variable_1="CNA" variable_2="CNA"/>
	</connection>
	<connection>
		<map_components component_1="antidiuretic_hormone" component_2="autonomics"/>
		<map_variables variable_1="PA1" variable_2="PA1"/>
	</connection>
	<connection>
		<map_components component_1="antidiuretic_hormone" component_2="environment"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- ATRIAL NATRIURETIC PEPTIDE INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="atrial_natriuretic_peptide" component_2="circulatory_dynamics"/>
		<map_variables variable_1="PLA" variable_2="PLA"/>
		<map_variables variable_1="PRA" variable_2="PRA"/>
	</connection>
	<connection>
		<map_components component_1="atrial_natriuretic_peptide" component_2="environment"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- AUTONOMICS INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="autonomics" component_2="circulatory_dynamics"/>
		<map_variables variable_1="PA" variable_2="PA"/>
		<map_variables variable_1="PLA" variable_2="PLA"/>
		<map_variables variable_1="PRA" variable_2="PRA"/>
		<map_variables variable_1="PPA" variable_2="PPA"/>
		<map_variables variable_1="AVE" variable_2="AVE"/>
		<map_variables variable_1="VVR" variable_2="VVR"/>
		<map_variables variable_1="AUH" variable_2="AUH"/>
		<map_variables variable_1="AUM" variable_2="AUM"/>
		<map_variables variable_1="AU" variable_2="AU"/>
	</connection>
	<connection>
		<map_components component_1="autonomics" component_2="pulmonary_O2_uptake"/>
		<map_variables variable_1="PO2ART" variable_2="PO2ART"/>
	</connection>
	<connection>
		<map_components component_1="autonomics" component_2="environment"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- CAPILLARY DYNAMICS INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="capillary_dynamics" component_2="electrolytes"/>
		<map_variables variable_1="VEC" variable_2="VEC"/>
	</connection>
	<connection>
		<map_components component_1="capillary_dynamics" component_2="environment"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- CIRCULATORY DYNAMICS INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="circulatory_dynamics" component_2="angiotensin"/>
		<map_variables variable_1="ANU" variable_2="ANU"/>
		<map_variables variable_1="ANUVN" variable_2="ANUVN"/>
	</connection>
	<connection>
		<map_components component_1="circulatory_dynamics" component_2="antidiuretic_hormone"/>
		<map_variables variable_1="ADHMV" variable_2="ADHMV"/>
	</connection>
	<connection>
		<map_components component_1="circulatory_dynamics" component_2="temp_myogrs_and_pamk"/>
		<map_variables variable_1="PAMK" variable_2="PAMK"/>
		<map_variables variable_1="MYOGRS" variable_2="MYOGRS"/>
	</connection>
	<connection>
		<map_components component_1="circulatory_dynamics" component_2="non_muscle_autoregulatory_local_blood_flow_control"/>
		<map_variables variable_1="ARM" variable_2="ARM"/>
	</connection>
	<connection>
		<map_components component_1="circulatory_dynamics" component_2="red_cells_and_viscosity"/>
		<map_variables variable_1="VIM" variable_2="VIM"/>
		<map_variables variable_1="VRC" variable_2="VRC"/>
	</connection>
	<connection>
		<map_components component_1="circulatory_dynamics" component_2="volume_receptors"/>
		<map_variables variable_1="ATRVFB" variable_2="ATRVFB"/>
		<map_variables variable_1="PRA" variable_2="PRA"/>
		<map_variables variable_1="ATRRFB" variable_2="ATRRFB"/>
	</connection>
	<connection>
		<map_components component_1="circulatory_dynamics" component_2="capillary_dynamics"/>
		<map_variables variable_1="PC" variable_2="PC"/>
		<map_variables variable_1="VP" variable_2="VP"/>
		<map_variables variable_1="RVS" variable_2="RVS"/>
		<map_variables variable_1="BFN" variable_2="BFN"/>
		<map_variables variable_1="PVS" variable_2="PVS"/>
	</connection>
	<connection>
		<map_components component_1="circulatory_dynamics" component_2="heart_hypertrophy_or_deterioration"/>
		<map_variables variable_1="HPR" variable_2="HPR"/>
		<map_variables variable_1="HMD" variable_2="HMD"/>
		<map_variables variable_1="HPL" variable_2="HPL"/>
		<map_variables variable_1="QAO" variable_2="QAO"/>
		<map_variables variable_1="PA" variable_2="PA"/>
		<map_variables variable_1="PPA" variable_2="PPA"/>
	</connection>
	<connection>
		<map_components component_1="circulatory_dynamics" component_2="pulmonary_O2_uptake"/>
		<map_variables variable_1="OSA" variable_2="OSA"/>
		<map_variables variable_1="QRO" variable_2="QRO"/>
	</connection>
	<connection>
		<map_components component_1="circulatory_dynamics" component_2="muscle_autoregulatory_local_blood_flow_control"/>
		<map_variables variable_1="AMM" variable_2="AMM"/>
	</connection>
	<connection>
		<map_components component_1="circulatory_dynamics" component_2="environment"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- ELECTROLYTES INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="electrolytes" component_2="aldosterone"/>
		<map_variables variable_1="AMK" variable_2="AMK"/>
		<map_variables variable_1="CKE" variable_2="CKE"/>
	</connection>
	<connection>
		<map_components component_1="electrolytes" component_2="thirst_drinking_and_salt_appetite"/>
		<map_variables variable_1="TVD" variable_2="TVD"/>
		<map_variables variable_1="STH" variable_2="STH"/>
	</connection>
	<connection>
		<map_components component_1="electrolytes" component_2="environment"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- HEART HYPERTROPHY OR DETERIORATION INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="heart_hypertrophy_or_deterioration" component_2="non_muscle_O2_delivery"/>
		<map_variables variable_1="POT" variable_2="POT"/>
	</connection>
	<connection>
		<map_components component_1="heart_hypertrophy_or_deterioration" component_2="environment"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- MUSCLE AUTOREGULATORY LOCAL BLOOD FLOW CONTROL INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="muscle_autoregulatory_local_blood_flow_control" component_2="muscle_O2_delivery"/>
		<map_variables variable_1="PMO" variable_2="PMO"/>
	</connection>
	<connection>
		<map_components component_1="muscle_autoregulatory_local_blood_flow_control" component_2="environment"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- MUSCLE O2 DELIVERY INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="muscle_O2_delivery" component_2="circulatory_dynamics"/>
		<map_variables variable_1="BFM" variable_2="BFM"/>
	</connection>
	<connection>
		<map_components component_1="muscle_O2_delivery" component_2="pulmonary_O2_uptake"/>
		<map_variables variable_1="OVA" variable_2="OVA"/>
		<map_variables variable_1="RMO" variable_2="RMO"/>
	</connection>
	<connection>
		<map_components component_1="muscle_O2_delivery" component_2="red_cells_and_viscosity"/>
		<map_variables variable_1="HM" variable_2="HM"/>
	</connection>
	<connection>
		<map_components component_1="muscle_O2_delivery" component_2="autonomics"/>
		<map_variables variable_1="AOM" variable_2="AOM"/>
	</connection>
	<connection>
		<map_components component_1="muscle_O2_delivery" component_2="environment"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- NON-MUSCLE AUTOREGULATORY LOCAL BLOOD FLOW CONTROL INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="non_muscle_autoregulatory_local_blood_flow_control" component_2="non_muscle_O2_delivery"/>
		<map_variables variable_1="POT" variable_2="POT"/>
	</connection>
	<connection>
		<map_components component_1="non_muscle_autoregulatory_local_blood_flow_control" component_2="environment"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- NON-MUSCLE O2 DELIVERY INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="non_muscle_O2_delivery" component_2="circulatory_dynamics"/>
		<map_variables variable_1="BFN" variable_2="BFN"/>
	</connection>
	<connection>
		<map_components component_1="non_muscle_O2_delivery" component_2="red_cells_and_viscosity"/>
		<map_variables variable_1="HM" variable_2="HM"/>
	</connection>
	<connection>
		<map_components component_1="non_muscle_O2_delivery" component_2="autonomics"/>
		<map_variables variable_1="AOM" variable_2="AOM"/>
	</connection>
	<connection>
		<map_components component_1="non_muscle_O2_delivery" component_2="environment"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- PULMONARY FLUID DYNAMICS INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="pulmonary_fluid_dynamics" component_2="capillary_dynamics"/>
		<map_variables variable_1="PPC" variable_2="PPC"/>
		<map_variables variable_1="CPP" variable_2="CPP"/>
		<map_variables variable_1="PPD" variable_2="PPD"/>
		<map_variables variable_1="DFP" variable_2="DFP"/>
		<map_variables variable_1="VPF" variable_2="VPF"/>
	</connection>
	<connection>
		<map_components component_1="pulmonary_fluid_dynamics" component_2="circulatory_dynamics"/>
		<map_variables variable_1="PPA" variable_2="PPA"/>
		<map_variables variable_1="PLA" variable_2="PLA"/>
		<map_variables variable_1="RPV" variable_2="RPV"/>
		<map_variables variable_1="RPA" variable_2="RPA"/>
	</connection>
	<connection>
		<map_components component_1="pulmonary_fluid_dynamics" component_2="environment"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- PULMONARY OXYGEN UPTAKE INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="pulmonary_O2_uptake" component_2="pulmonary_fluid_dynamics"/>
		<map_variables variable_1="VPF" variable_2="VPF"/>
	</connection>
	<connection>
		<map_components component_1="pulmonary_O2_uptake" component_2="non_muscle_O2_delivery"/>
		<map_variables variable_1="DOB" variable_2="DOB"/>
		<map_variables variable_1="OVA" variable_2="OVA"/>
	</connection>
	<connection>
		<map_components component_1="pulmonary_O2_uptake" component_2="red_cells_and_viscosity"/>
		<map_variables variable_1="HM" variable_2="HM"/>
	</connection>
<!--	<connection>
		<map_components component_1="pulmonary_O2_uptake" component_2="circulatory_dynamics"/>
		<map_variables variable_1="QRO" variable_2="QRO"/>
	</connection> -->
	<connection>
		<map_components component_1="pulmonary_O2_uptake" component_2="environment"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- RED CELLS AND VISCOSITY INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="red_cells_and_viscosity" component_2="capillary_dynamics"/>
		<map_variables variable_1="VP" variable_2="VP"/>
	</connection>
	<connection>
		<map_components component_1="red_cells_and_viscosity" component_2="environment"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- STRESS RELAXATION INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="stress_relaxation" component_2="circulatory_dynamics"/>
		<map_variables variable_1="VVE" variable_2="VVE"/>
		<map_variables variable_1="VV6" variable_2="VV6"/>
		<map_variables variable_1="VV7" variable_2="VV7"/>
	</connection>
	<connection>
		<map_components component_1="stress_relaxation" component_2="environment"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- THIRST DRINKING AND SALT APPETITE INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="thirst_drinking_and_salt_appetite" component_2="antidiuretic_hormone"/>
		<map_variables variable_1="ADHC" variable_2="ADHC"/>
	</connection>
	<connection>
		<map_components component_1="thirst_drinking_and_salt_appetite" component_2="angiotensin"/>
		<map_variables variable_1="ANM" variable_2="ANM"/>
	</connection>
	<connection>
		<map_components component_1="thirst_drinking_and_salt_appetite" component_2="non_muscle_O2_delivery"/>
		<map_variables variable_1="POT" variable_2="POT"/>
	</connection>
	<connection>
		<map_components component_1="thirst_drinking_and_salt_appetite" component_2="environment"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- VOLUME RECEPTORS INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="volume_receptors" component_2="environment"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

<!-- KIDNEY INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="kidney" component_2="circulatory_dynamics"/>
		<map_variables variable_1="PA" variable_2="PA"/>
		<map_variables variable_1="RBF" variable_2="RBF"/>
	</connection>
	<connection>
		<map_components component_1="kidney" component_2="autonomics"/>
		<map_variables variable_1="AUM" variable_2="AUM"/>
	</connection>
	<connection>
		<map_components component_1="kidney" component_2="angiotensin"/>
		<map_variables variable_1="MDFLW" variable_2="MDFLW"/>
		<map_variables variable_1="ANM" variable_2="ANM"/>
	</connection>
	<connection>
		<map_components component_1="kidney" component_2="temp_myogrs_and_pamk"/>
		<map_variables variable_1="MYOGRS" variable_2="MYOGRS"/>
		<map_variables variable_1="PAMKRN" variable_2="PAMKRN"/>
	</connection>
	<connection>
		<map_components component_1="kidney" component_2="red_cells_and_viscosity"/>
		<map_variables variable_1="HM1" variable_2="HM1"/>
	</connection>
	<connection>
		<map_components component_1="kidney" component_2="capillary_dynamics"/>
		<map_variables variable_1="PPC" variable_2="PPC"/>
	</connection>
	<connection>
		<map_components component_1="kidney" component_2="electrolytes"/>
		<map_variables variable_1="VTW" variable_2="VTW"/>
		<map_variables variable_1="CNA" variable_2="CNA"/>
		<map_variables variable_1="NOD" variable_2="NOD"/>
		<map_variables variable_1="KOD" variable_2="KOD"/>
		<map_variables variable_1="VUD" variable_2="VUD"/>
		<map_variables variable_1="CKE" variable_2="CKE"/>
	</connection>
	<connection>
		<map_components component_1="kidney" component_2="antidiuretic_hormone"/>
		<map_variables variable_1="ADHMK" variable_2="ADHMK"/>
	</connection>
	<connection>
		<map_components component_1="kidney" component_2="aldosterone"/>
		<map_variables variable_1="AMNA" variable_2="AMNA"/>
		<map_variables variable_1="AMK" variable_2="AMK"/>
	</connection>
	<connection>
		<map_components component_1="kidney" component_2="atrial_natriuretic_peptide"/>
		<map_variables variable_1="ANPX" variable_2="ANPX"/>
	</connection>
	<connection>
		<map_components component_1="kidney" component_2="environment"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>


</model>