Generated Code
The following is python code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
# Size of variable arrays: sizeAlgebraic = 16 sizeStates = 8 sizeConstants = 37 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "Time in component Environmental (second)" legend_constants[0] = "S in component Parameters (hertz)" legend_constants[1] = "Zeta in component Parameters (dimensionless)" legend_constants[2] = "R0 in component Parameters (mm)" legend_constants[3] = "Cwall in component Parameters (mm_per_mmHg)" legend_constants[4] = "Kne in component Parameters (mmHg_per_mm)" legend_constants[5] = "K1 in component Parameters (mmHg_per_mm)" legend_constants[6] = "K2 in component Parameters (mmHg_per_mm)" legend_constants[7] = "K3 in component Parameters (mmHg_per_mm)" legend_constants[8] = "Bwall in component Parameters (mmHg_s_per_sq_mm)" legend_constants[9] = "B1 in component Parameters (mmHg_s_per_mm)" legend_constants[10] = "B2 in component Parameters (mmHg_s_per_mm)" legend_constants[11] = "B3 in component Parameters (mmHg_s_per_mm)" legend_constants[12] = "Tsmax in component Parameters (AU)" legend_constants[13] = "Tpmax in component Parameters (AU)" legend_constants[14] = "Tsmin in component Parameters (AU)" legend_constants[15] = "Tpmin in component Parameters (AU)" legend_constants[16] = "Gcns in component Parameters (dimensionless)" legend_constants[17] = "Gs in component Parameters (per_Hertz)" legend_constants[18] = "Gp in component Parameters (per_Hertz)" legend_constants[19] = "tau_nor in component Parameters (second)" legend_constants[20] = "tau_ach in component Parameters (second)" legend_constants[21] = "tau_HR_nor in component Parameters (second)" legend_constants[22] = "tau_HR_ach in component Parameters (second)" legend_constants[23] = "HRo in component Parameters (Beats_per_min)" legend_constants[24] = "HRmax in component Parameters (Beats_per_min)" legend_constants[25] = "HRmin in component Parameters (Beats_per_min)" legend_constants[26] = "Beta in component Parameters (dimensionless)" legend_constants[27] = "delta_th in component Parameters (dimensionless)" legend_constants[28] = "q_nor in component Parameters (per_s)" legend_constants[29] = "q_ach in component Parameters (per_s)" legend_constants[30] = "K_nor in component Parameters (AU)" legend_constants[31] = "K_ach in component Parameters (AU)" legend_constants[32] = "Gamma in component Parameters (dimensionless)" legend_algebraic[10] = "alpha_cns in component Nervous_System (hertz)" legend_algebraic[8] = "n in component Nervous_System (hertz)" legend_algebraic[6] = "Delta in component Coupling_Dynamics (dimensionless)" legend_constants[33] = "alpha_s0 in component Nervous_System (hertz)" legend_constants[34] = "alpha_p0 in component Nervous_System (hertz)" legend_states[0] = "A in component Aortic_Wall (mm_sq)" legend_algebraic[0] = "P in component Aortic_Wall (mmHg)" legend_algebraic[1] = "R in component Aortic_Wall (mm)" legend_states[1] = "Eps_1 in component Coupling_Dynamics (dimensionless)" legend_states[2] = "Eps_2 in component Coupling_Dynamics (dimensionless)" legend_states[3] = "Eps_3 in component Coupling_Dynamics (dimensionless)" legend_algebraic[4] = "Eps_wall in component Coupling_Dynamics (dimensionless)" legend_algebraic[12] = "Ts in component PNS_tones (AU)" legend_algebraic[13] = "Tp in component PNS_tones (AU)" legend_states[4] = "c_nor in component Norepinephrine (AU)" legend_states[5] = "C_ach in component Acetylcholine (AU)" legend_algebraic[2] = "delta_HR_ss in component Heart_Response_Nor (Beats_per_min)" legend_constants[35] = "delta_HR_smax in component Heart_Response_Nor (Beats_per_min)" legend_states[6] = "delta_HR_s in component Heart_Response_Nor (Beats_per_min)" legend_algebraic[3] = "delta_HR_ps in component HR_ach (Beats_per_min)" legend_constants[36] = "delta_HR_pmax in component HR_ach (Beats_per_min)" legend_algebraic[5] = "delta_HR_pfast in component HR_ach (Beats_per_min)" legend_states[7] = "delta_HR_pslow in component HR_ach (Beats_per_min)" legend_algebraic[7] = "delta_HR_p in component HR_ach (Beats_per_min)" legend_algebraic[14] = "HR in component HR_Combined (Beats_per_min)" legend_algebraic[11] = "HR_p in component HR_Combined (Beats_per_min)" legend_algebraic[9] = "HR_s in component HR_Combined (Beats_per_min)" legend_algebraic[15] = "Period in component HR_Combined (Sec_per_Beat)" legend_rates[0] = "d/dt A in component Aortic_Wall (mm_sq)" legend_rates[1] = "d/dt Eps_1 in component Coupling_Dynamics (dimensionless)" legend_rates[2] = "d/dt Eps_2 in component Coupling_Dynamics (dimensionless)" legend_rates[3] = "d/dt Eps_3 in component Coupling_Dynamics (dimensionless)" legend_rates[4] = "d/dt c_nor in component Norepinephrine (AU)" legend_rates[5] = "d/dt C_ach in component Acetylcholine (AU)" legend_rates[6] = "d/dt delta_HR_s in component Heart_Response_Nor (Beats_per_min)" legend_rates[7] = "d/dt delta_HR_pslow in component HR_ach (Beats_per_min)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; constants[0] = 480 constants[1] = 1 constants[2] = 1.6 constants[3] = 0.006 constants[4] = 1 constants[5] = 1.5 constants[6] = 3.75 constants[7] = 1.05 constants[8] = 1 constants[9] = 1 constants[10] = 10 constants[11] = 206.973 constants[12] = 4.12 constants[13] = 4.994 constants[14] = 0.5 constants[15] = 1.6 constants[16] = 1 constants[17] = 0.178 constants[18] = 0.492 constants[19] = 9.1 constants[20] = 0.2 constants[21] = 2.1 constants[22] = 2.5 constants[23] = 282.648 constants[24] = 483.218 constants[25] = 226.238 constants[26] = 0.175 constants[27] = 0 constants[28] = 0.1099 constants[29] = 5 constants[30] = 1.12 constants[31] = 0.65 constants[32] = 0.75 constants[33] = 58.6 constants[34] = 76.019 states[0] = 15.20531 states[1] = 0.2042 states[2] = 0.183 states[3] = 0.161 states[4] = 1.441 states[5] = 1.0 states[6] = 0 states[7] = 0 constants[35] = constants[24]-constants[23] constants[36] = constants[23]-constants[25] return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic algebraic[0] = 100.000+10.0000*sin(5.00000*voi) rates[0] = (-(power(states[0]/ pi, 1.0/2)-constants[2])/constants[3]+algebraic[0])/constants[8] algebraic[2] = (constants[35]*(power(states[4], 2.00000)))/(power(constants[30], 2.00000)+power(states[4], 2.00000)) rates[6] = (-states[6]+algebraic[2])/constants[21] algebraic[3] = (constants[36]*(power(states[5], 2.00000)))/(power(constants[31], 2.00000)+power(states[5], 2.00000)) rates[7] = (-states[7]+(1.00000-constants[32])*algebraic[3])/constants[22] algebraic[1] = power(states[0]/ pi, 0.500000) algebraic[4] = (algebraic[1]-constants[2])/constants[2] rootfind_0(voi, constants, rates, states, algebraic) algebraic[6] = algebraic[4]-states[1] algebraic[8] = constants[0]*(algebraic[6]-constants[1]*constants[27]) algebraic[10] = constants[16]*algebraic[8] algebraic[12] = constants[14]+(constants[12]-constants[14])/(exp(constants[17]*(algebraic[10]-constants[33]))+1.00000) rates[4] = -(states[4]/constants[19])+constants[28]*algebraic[12] algebraic[13] = constants[15]+(constants[13]-constants[15])/(exp(-constants[18]*(algebraic[10]-constants[34]))+1.00000) rates[5] = -(states[5]/constants[20])+constants[29]*algebraic[13] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[0] = 100.000+10.0000*sin(5.00000*voi) algebraic[2] = (constants[35]*(power(states[4], 2.00000)))/(power(constants[30], 2.00000)+power(states[4], 2.00000)) algebraic[3] = (constants[36]*(power(states[5], 2.00000)))/(power(constants[31], 2.00000)+power(states[5], 2.00000)) algebraic[1] = power(states[0]/ pi, 0.500000) algebraic[4] = (algebraic[1]-constants[2])/constants[2] algebraic[6] = algebraic[4]-states[1] algebraic[8] = constants[0]*(algebraic[6]-constants[1]*constants[27]) algebraic[10] = constants[16]*algebraic[8] algebraic[12] = constants[14]+(constants[12]-constants[14])/(exp(constants[17]*(algebraic[10]-constants[33]))+1.00000) algebraic[13] = constants[15]+(constants[13]-constants[15])/(exp(-constants[18]*(algebraic[10]-constants[34]))+1.00000) algebraic[5] = constants[32]*algebraic[3] algebraic[7] = algebraic[5]+states[7] algebraic[9] = constants[23]+states[6] algebraic[11] = constants[23]-algebraic[7] algebraic[14] = algebraic[11]+((algebraic[9]-constants[23])*(algebraic[11]-constants[26]*constants[25]))/(constants[23]-constants[26]*constants[25]) algebraic[15] = 60.0000/algebraic[14] return algebraic initialGuess0 = None def rootfind_0(voi, constants, rates, states, algebraic): """Calculate values of algebraic variables for DAE""" from scipy.optimize import fsolve global initialGuess0 if initialGuess0 is None: initialGuess0 = ones(3)*0.1 if not iterable(voi): soln = fsolve(residualSN_0, initialGuess0, args=(algebraic, voi, constants, rates, states), xtol=1E-6) initialGuess0 = soln rates[1] = soln[0] rates[2] = soln[1] rates[3] = soln[2] else: for (i,t) in enumerate(voi): soln = fsolve(residualSN_0, initialGuess0, args=(algebraic[:,i], voi[i], constants, rates[:i], states[:,i]), xtol=1E-6) initialGuess0 = soln rates[1][i] = soln[0] rates[2][i] = soln[1] rates[3][i] = soln[2] def residualSN_0(algebraicCandidate, algebraic, voi, constants, rates, states): resid = array([0.0] * 3) rates[1] = algebraicCandidate[0] rates[2] = algebraicCandidate[1] rates[3] = algebraicCandidate[2] resid[0] = (rates[1]-((constants[4]*(algebraic[4]-states[1])-constants[5]*(states[1]-states[2]))/constants[9]+rates[2])) resid[1] = (rates[2]-((constants[5]*(states[1]-states[2])-constants[6]*(states[2]-states[3]))+constants[9]*rates[1]+constants[10]*rates[3])/(constants[9]+constants[10])) resid[2] = (rates[3]-((constants[6]*(states[2]-states[3])-constants[7]*states[3])+constants[10]*rates[2])/(constants[10]+constants[11])) return resid def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)