Generated Code
The following is python code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
# Size of variable arrays: sizeAlgebraic = 18 sizeStates = 9 sizeConstants = 49 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component Environment (second)" legend_constants[0] = "Eta_b in component Parameters (mmHg_sec)" legend_constants[1] = "Rho_b in component Parameters (gram_per_cubic_meter)" legend_constants[2] = "E_p in component Parameters (mmHg)" legend_constants[3] = "r_p in component Parameters (meter)" legend_constants[4] = "l_p in component Parameters (meter)" legend_constants[5] = "h_p in component Parameters (meter)" legend_constants[6] = "r_a0 in component Parameters (meter)" legend_constants[7] = "h_a0 in component Parameters (meter)" legend_constants[8] = "sigma_ae0 in component Parameters (mmHg)" legend_constants[9] = "K_a_sigma in component Parameters (dimensionless)" legend_constants[10] = "sigma_ac in component Parameters (mmHg)" legend_constants[11] = "T_a_max0 in component Parameters (mmHg_m)" legend_constants[12] = "r_am in component Parameters (meter)" legend_constants[13] = "r_at in component Parameters (meter)" legend_constants[14] = "n_am in component Parameters (dimensionless)" legend_constants[15] = "Eta_a in component Parameters (mmHg_sec)" legend_constants[16] = "Q_bl in component Parameters (cubic_m_per_sec)" legend_constants[17] = "P_ic in component Parameters (mmHg)" legend_constants[18] = "R_v in component Parameters (mmHg_sec_per_cubic_m)" legend_constants[19] = "C_v in component Parameters (cubic_m_per_mmHg)" legend_constants[20] = "P_ai in component Parameters (mmHg)" legend_constants[21] = "T_myo0 in component Parameters (mmHg_m)" legend_constants[22] = "T_myo_s in component Parameters (mmHg_m)" legend_constants[23] = "Tau_myo in component Parameters (second)" legend_constants[24] = "Tau_shear in component Parameters (second)" legend_constants[25] = "G_myo in component Parameters (dimensionless)" legend_constants[26] = "G_shear in component Parameters (dimensionless)" legend_constants[27] = "G_neuro in component Parameters (dimensionless)" legend_constants[28] = "G_meta in component Parameters (dimensionless)" legend_constants[29] = "x_ini in component Parameters (dimensionless)" legend_constants[30] = "Tau_neuro in component Parameters (second)" legend_constants[31] = "Tau_meta in component Parameters (second)" legend_constants[32] = "conc_CO2_a in component Parameters (mol_per_m3)" legend_constants[33] = "M_CO2_0 in component Parameters (mol_per_sec)" legend_constants[34] = "alpha_tv in component Parameters (dimensionless)" legend_constants[35] = "beta_tv in component Parameters (mol_per_m3)" legend_constants[36] = "vol_PVC in component Parameters (cubic_m)" legend_constants[37] = "K_shear in component Parameters (second)" legend_constants[38] = "K_Ra in component Parameters (mmHg_sec_m)" legend_constants[39] = "conc_CO2_t_sp in component Parameters (mol_per_m3)" legend_constants[40] = "f_Q in component Parameters (dimensionless)" legend_constants[41] = "n_QM in component Parameters (dimensionless)" legend_constants[42] = "K_Va in component Parameters (meter)" legend_constants[43] = "P_vo in component Parameters (mmHg)" legend_states[0] = "Q_Lp in component PCA (cubic_m_per_sec)" legend_states[1] = "P_p in component PCA (mmHg)" legend_constants[46] = "C_p in component PCA_Components (cubic_m_per_mmHg)" legend_constants[47] = "L_p in component PCA_Components (mmHg_sec2_per_m3)" legend_constants[48] = "R_p in component PCA_Components (mmHg_sec_per_cubic_m)" legend_algebraic[0] = "R_a in component AC_Components (mmHg_sec_per_cubic_m)" legend_algebraic[11] = "P_a in component Arteriolar_Circulation (mmHg)" legend_algebraic[2] = "C_a in component AC_Components (cubic_m_per_mmHg)" legend_algebraic[13] = "Q_a in component AC_Flow (cubic_m_per_sec)" legend_states[2] = "P_v in component Venous_Circulation (mmHg)" legend_states[3] = "r_a in component Arteriolar_Circulation (meter)" legend_algebraic[4] = "T_ae in component AC_Tension (mmHg_m)" legend_algebraic[8] = "T_am in component AC_Tension (mmHg_m)" legend_algebraic[9] = "T_av in component AC_Tension (mmHg_m)" legend_algebraic[10] = "T_a in component AC_Tension (mmHg_m)" legend_algebraic[3] = "h_a in component AC_Tension_Variables (meter)" legend_algebraic[7] = "T_a_max in component AC_Tension_Variables (mmHg_m)" legend_algebraic[6] = "M_s in component CBF_Regulation (dimensionless)" legend_algebraic[5] = "M_s1 in component CBF_Regulation (dimensionless)" legend_states[4] = "x_myo in component Myo_Regulation (dimensionless)" legend_states[5] = "x_shear in component Shear_Regulation (dimensionless)" legend_states[6] = "x_neuro in component Neuro_Regulation (dimensionless)" legend_states[7] = "x_meta in component Meta_Regulation (dimensionless)" legend_algebraic[12] = "A_myo in component Myo_Regulation (dimensionless)" legend_algebraic[14] = "A_shear in component Shear_Regulation (dimensionless)" legend_algebraic[15] = "A_neuro in component Neuro_Regulation (dimensionless)" legend_algebraic[1] = "A_Meta in component Meta_Regulation (dimensionless)" legend_constants[44] = "G_a_Meta in component Meta_Regulation (m3_per_mol)" legend_states[8] = "conc_CO2_t in component Meta_CO2_Kinetics (mol_per_m3)" legend_algebraic[16] = "conc_CO2_v in component Meta_CO2_Kinetics (mol_per_m3)" legend_algebraic[17] = "M_CO2 in component VC_Meta_Stim (mol_per_sec)" legend_constants[45] = "unity in component VC_Meta_Stim (dimensionless)" legend_rates[1] = "d/dt P_p in component PCA (mmHg)" legend_rates[0] = "d/dt Q_Lp in component PCA (cubic_m_per_sec)" legend_rates[3] = "d/dt r_a in component Arteriolar_Circulation (meter)" legend_rates[2] = "d/dt P_v in component Venous_Circulation (mmHg)" legend_rates[4] = "d/dt x_myo in component Myo_Regulation (dimensionless)" legend_rates[5] = "d/dt x_shear in component Shear_Regulation (dimensionless)" legend_rates[6] = "d/dt x_neuro in component Neuro_Regulation (dimensionless)" legend_rates[7] = "d/dt x_meta in component Meta_Regulation (dimensionless)" legend_rates[8] = "d/dt conc_CO2_t in component Meta_CO2_Kinetics (mol_per_m3)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; constants[0] = 3E-5 constants[1] = 1.05E6 constants[2] = 12E3 constants[3] = 1.05E-3 constants[4] = 8.6E-2 constants[5] = 2.6E-4 constants[6] = 7.5E-5 constants[7] = 2.5E-5 constants[8] = 11.19 constants[9] = 4.5 constants[10] = 41.32 constants[11] = 1.50E-2 constants[12] = 1.28E-4 constants[13] = 1.74E-4 constants[14] = 1.75 constants[15] = 47.8 constants[16] = 8.8E-7 constants[17] = 10 constants[18] = 1.6E7 constants[19] = 2.5E-8 constants[20] = 96.0 constants[21] = 3.6E-3 constants[22] = 3E-3 constants[23] = 7 constants[24] = 60 constants[25] = 4 constants[26] = 0 constants[27] = -0.7 constants[28] = 0 constants[29] = 0 constants[30] = 5 constants[31] = 15 constants[32] = 20.65 constants[33] = 1.35E-7 constants[34] = 0.96 constants[35] = 8.9 constants[36] = 5.99E-6 constants[37] = 5.2E-7 constants[38] = 2.5E-9 constants[39] = 12.41 constants[40] = 1.25 constants[41] = 2.2 constants[42] = 120 constants[43] = 14 states[0] = 8.8E-7 states[1] = 91 states[2] = 21 states[3] = 7.7E-5 states[4] = 0 states[5] = 0 states[6] = 0 states[7] = 0 constants[44] = 0.59 states[8] = 12.41 constants[45] = 1 constants[46] = ((3.00000* pi*(power(constants[3], 2.00000))*(power(constants[3]/constants[5]+1.00000, 2.00000)))/(constants[2]*((2.00000*constants[3])/constants[5]+1.00000)))*constants[4] constants[47] = (constants[1]/( pi*(power(constants[3], 2.00000))))*constants[4]*7.50000e-06 constants[48] = ((8.00000*constants[0])/( pi*(power(constants[3], 4.00000))))*constants[4] return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic rates[0] = ((constants[20]-states[1])-states[0]*constants[48])/constants[47] algebraic[1] = constants[44]*(states[8]-constants[39]) rates[7] = (algebraic[1]-states[7])/constants[31] algebraic[0] = constants[38]/(power(states[3], 4.00000)) algebraic[3] = power(power(states[3], 2.00000)+2.00000*constants[6]*constants[7]+power(constants[7], 2.00000), 1.0/2)-states[3] algebraic[4] = algebraic[3]*(constants[8]*(exp((constants[9]*(states[3]-constants[6]))/constants[6])-1.00000)-constants[10]) algebraic[5] = constants[25]*states[4]+constants[26]*states[5]+constants[27]*states[6]+constants[28]*states[7]+constants[29] algebraic[6] = (exp(2.00000*algebraic[5])-1.00000)/(exp(2.00000*algebraic[5])+1.00000) algebraic[7] = constants[11]*(1.00000+algebraic[6]) algebraic[8] = algebraic[7]*exp(-(power(fabs((states[3]-constants[12])/(constants[13]-constants[12])), constants[14]))) rates[3] = (constants[6]*((states[1]*(algebraic[0]+constants[18])*states[3]+states[2]*algebraic[0]*states[3])-(algebraic[4]+algebraic[8]+constants[17]*(states[3]+algebraic[3]))*(2.00000*algebraic[0]+constants[18])))/(constants[6]*(power(states[3], 2.00000))*constants[42]*algebraic[0]*(algebraic[0]+constants[18])+constants[15]*algebraic[3]*(2.00000*algebraic[0]+constants[18])) algebraic[9] = (constants[15]/constants[6])*rates[3]*algebraic[3] algebraic[10] = algebraic[4]+algebraic[8]+algebraic[9] algebraic[11] = (algebraic[10]+constants[17]*(states[3]+algebraic[3]))/states[3] rates[1] = (2.00000*((states[0]*algebraic[0]-2.00000*states[1])+2.00000*algebraic[11]))/(algebraic[0]*constants[46]) rates[2] = (2.00000/constants[19])*((algebraic[11]-states[2])/(algebraic[0]+constants[18])-(states[2]-constants[43])/constants[18]) algebraic[12] = (algebraic[10]-constants[21])/constants[22] rates[4] = (algebraic[12]-states[4])/constants[23] algebraic[13] = (2.00000*(algebraic[11]-states[2]))/(algebraic[0]+constants[18]) algebraic[14] = (constants[37]*algebraic[13])/(power(states[3], 3.00000))-1.00000 rates[5] = (algebraic[14]-states[5])/constants[24] algebraic[15] = custom_piecewise([greater_equal(voi , 1.00000), 1.00000 , True, 0.00000]) rates[6] = (algebraic[15]-states[6])/constants[30] algebraic[16] = constants[34]*states[8]+constants[35] algebraic[17] = constants[33]*(constants[45]+algebraic[15]*((constants[40]-constants[45])/constants[41])) rates[8] = (1.00000/constants[36])*(algebraic[17]-algebraic[13]*(algebraic[16]-constants[32])) return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[1] = constants[44]*(states[8]-constants[39]) algebraic[0] = constants[38]/(power(states[3], 4.00000)) algebraic[3] = power(power(states[3], 2.00000)+2.00000*constants[6]*constants[7]+power(constants[7], 2.00000), 1.0/2)-states[3] algebraic[4] = algebraic[3]*(constants[8]*(exp((constants[9]*(states[3]-constants[6]))/constants[6])-1.00000)-constants[10]) algebraic[5] = constants[25]*states[4]+constants[26]*states[5]+constants[27]*states[6]+constants[28]*states[7]+constants[29] algebraic[6] = (exp(2.00000*algebraic[5])-1.00000)/(exp(2.00000*algebraic[5])+1.00000) algebraic[7] = constants[11]*(1.00000+algebraic[6]) algebraic[8] = algebraic[7]*exp(-(power(fabs((states[3]-constants[12])/(constants[13]-constants[12])), constants[14]))) algebraic[9] = (constants[15]/constants[6])*rates[3]*algebraic[3] algebraic[10] = algebraic[4]+algebraic[8]+algebraic[9] algebraic[11] = (algebraic[10]+constants[17]*(states[3]+algebraic[3]))/states[3] algebraic[12] = (algebraic[10]-constants[21])/constants[22] algebraic[13] = (2.00000*(algebraic[11]-states[2]))/(algebraic[0]+constants[18]) algebraic[14] = (constants[37]*algebraic[13])/(power(states[3], 3.00000))-1.00000 algebraic[15] = custom_piecewise([greater_equal(voi , 1.00000), 1.00000 , True, 0.00000]) algebraic[16] = constants[34]*states[8]+constants[35] algebraic[17] = constants[33]*(constants[45]+algebraic[15]*((constants[40]-constants[45])/constants[41])) algebraic[2] = 1.03120/algebraic[0] return algebraic def custom_piecewise(cases): """Compute result of a piecewise function""" return select(cases[0::2],cases[1::2]) def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)