# Generated Code

The following is matlab code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

```function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction()
% This is the "main function".  In Matlab, things work best if you rename this function to match the filename.
[VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel();
end

function [algebraicVariableCount] = getAlgebraicVariableCount()
% Used later when setting a global variable with the number of algebraic variables.
% Note: This is not the "main method".
algebraicVariableCount =5;
end
% There are a total of 2 entries in each of the rate and state variable arrays.
% There are a total of 7 entries in the constant variable array.
%

function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel()
% Create ALGEBRAIC of correct size
global algebraicVariableCount;  algebraicVariableCount = getAlgebraicVariableCount();
% Initialise constants and state variables
[INIT_STATES, CONSTANTS] = initConsts;

% Set timespan to solve over
tspan = [0, 10];

% Set numerical accuracy options for ODE solver
options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1);

% Solve model with ODE solver
[VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options);

% Compute algebraic variables
[RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS);
ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI);

% Plot state variables against variable of integration
[LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends();
figure();
plot(VOI, STATES);
xlabel(LEGEND_VOI);
l = legend(LEGEND_STATES);
set(l,'Interpreter','none');
end

function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends()
LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = '';
LEGEND_VOI = strpad('time in component environment (second)');
LEGEND_ALGEBRAIC(:,1) = strpad('kappa_L1 in component rate_constants (per_second)');
LEGEND_CONSTANTS(:,1) = strpad('kappa_P1 in component rate_constants (per_second)');
LEGEND_ALGEBRAIC(:,3) = strpad('kappa_L2 in component rate_constants (per_second)');
LEGEND_CONSTANTS(:,2) = strpad('kappa_P2 in component rate_constants (per_second)');
LEGEND_CONSTANTS(:,3) = strpad('kappa_L2_0 in component rate_constants (per_second)');
LEGEND_CONSTANTS(:,4) = strpad('kappa_L2_1 in component rate_constants (per_second)');
LEGEND_ALGEBRAIC(:,2) = strpad('Kd_Ca in component rate_constants (nanomolar)');
LEGEND_CONSTANTS(:,5) = strpad('n in component rate_constants (dimensionless)');
LEGEND_STATES(:,1) = strpad('Ca_i in component cytosolic_calcium (nanomolar)');
LEGEND_CONSTANTS(:,6) = strpad('Ca_o in component cytosolic_calcium (nanomolar)');
LEGEND_ALGEBRAIC(:,4) = strpad('Ca_i_ss in component cytosolic_calcium (nanomolar)');
LEGEND_CONSTANTS(:,7) = strpad('gamma in component cytosolic_calcium (dimensionless)');
LEGEND_STATES(:,2) = strpad('Ca_s in component subspace_calcium (nanomolar)');
LEGEND_ALGEBRAIC(:,5) = strpad('Ca_s_ss in component subspace_calcium (nanomolar)');
LEGEND_RATES(:,1) = strpad('d/dt Ca_i in component cytosolic_calcium (nanomolar)');
LEGEND_RATES(:,2) = strpad('d/dt Ca_s in component subspace_calcium (nanomolar)');
LEGEND_STATES  = LEGEND_STATES';
LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC';
LEGEND_RATES = LEGEND_RATES';
LEGEND_CONSTANTS = LEGEND_CONSTANTS';
end

function [STATES, CONSTANTS] = initConsts()
VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = [];
CONSTANTS(:,1) = 0.132;
CONSTANTS(:,2) = 3.78;
CONSTANTS(:,3) = 0.054;
CONSTANTS(:,4) = 2.4;
CONSTANTS(:,5) = 3;
STATES(:,1) = 75;
CONSTANTS(:,6) = 2000000.0;
CONSTANTS(:,7) = 0.24;
STATES(:,2) = 5300.0;
if (isempty(STATES)), warning('Initial values for states not set');, end
end

function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS)
global algebraicVariableCount;
statesSize = size(STATES);
statesColumnCount = statesSize(2);
if ( statesColumnCount == 1)
STATES = STATES';
ALGEBRAIC = zeros(1, algebraicVariableCount);
else
statesRowCount = statesSize(1);
ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount);
RATES = zeros(statesRowCount, statesColumnCount);
end
ALGEBRAIC(:,1) = piecewise({VOI>=0.00000&VOI<40.0000, 5.00000e-06 }, 2.00000e-05);
ALGEBRAIC(:,2) = piecewise({VOI>=0.00000&VOI<80.0000, 1.00000 }, 0.500000);
ALGEBRAIC(:,3) = CONSTANTS(:,3)+CONSTANTS(:,4)./(1.00000+ 1000.00.*ALGEBRAIC(:,2)./STATES(:,1) .^ CONSTANTS(:,5));
RATES(:,1) =   - (ALGEBRAIC(:,1)+CONSTANTS(:,1)+ CONSTANTS(:,7).*(ALGEBRAIC(:,3)+CONSTANTS(:,2))).*STATES(:,1)+ CONSTANTS(:,7).*ALGEBRAIC(:,3).*STATES(:,2)+ ALGEBRAIC(:,1).*CONSTANTS(:,6);
RATES(:,2) =  (ALGEBRAIC(:,3)+CONSTANTS(:,2)).*STATES(:,1) -  ALGEBRAIC(:,3).*STATES(:,2);
RATES = RATES';
end

% Calculate algebraic variables
function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI)
ALGEBRAIC(:,1) = piecewise({VOI>=0.00000&VOI<40.0000, 5.00000e-06 }, 2.00000e-05);
ALGEBRAIC(:,2) = piecewise({VOI>=0.00000&VOI<80.0000, 1.00000 }, 0.500000);
ALGEBRAIC(:,3) = CONSTANTS(:,3)+CONSTANTS(:,4)./(1.00000+ 1000.00.*ALGEBRAIC(:,2)./STATES(:,1) .^ CONSTANTS(:,5));
ALGEBRAIC(:,4) = CONSTANTS(:,6)./(1.00000+CONSTANTS(:,1)./ALGEBRAIC(:,1));
ALGEBRAIC(:,5) =  ALGEBRAIC(:,4).*(1.00000+CONSTANTS(:,2)./ALGEBRAIC(:,3));
end

% Compute result of a piecewise function
function x = piecewise(cases, default)
set = [0];
for i = 1:2:length(cases)
if (length(cases{i+1}) == 1)
x(cases{i} & ~set,:) = cases{i+1};
else
x(cases{i} & ~set,:) = cases{i+1}(cases{i} & ~set);
end
set = set | cases{i};
if(set), break, end
end
if (length(default) == 1)
x(~set,:) = default;
else
x(~set,:) = default(~set);
end
end

% Pad out or shorten strings to a set length
req_length = 160;
insize = size(strin,2);
if insize > req_length
strout = strin(1:req_length);
else
strout = [strin, blanks(req_length - insize)];
end
end

```
Source
Derived from workspace Friel, 1995 at changeset 77db381b5904.
This exposure was expired.
Collaboration
To begin collaborating on this work, please use your git client and issue this command: