Generated Code
The following is python code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
# Size of variable arrays: sizeAlgebraic = 16 sizeStates = 6 sizeConstants = 11 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "t in component environment (ms)" legend_states[0] = "V_m in component membrane (mV)" legend_algebraic[0] = "i_Stim in component membrane (mA_per_cm2)" legend_constants[0] = "stim_amplitude in component membrane (mA_per_cm2)" legend_constants[1] = "stim_duration in component membrane (ms)" legend_algebraic[6] = "i_Naf in component fast_sodium_channel (mA_per_cm2)" legend_algebraic[12] = "i_Nap in component persistent_sodium_channel (mA_per_cm2)" legend_algebraic[13] = "i_Ks in component slow_potassium_channel (mA_per_cm2)" legend_algebraic[14] = "i_Kf in component juxtaparanodal_fast_potassium_channel (mA_per_cm2)" legend_algebraic[15] = "i_Lk in component leakage_channel (mA_per_cm2)" legend_constants[2] = "C_n in component membrane (mF_per_cm2)" legend_constants[3] = "E_Na in component membrane (mV)" legend_constants[4] = "E_K in component membrane (mV)" legend_constants[5] = "E_Lk in component membrane (mV)" legend_constants[6] = "g_Naf in component fast_sodium_channel (S_per_cm2)" legend_states[1] = "m in component fast_sodium_channel_m_gate (dimensionless)" legend_states[2] = "h in component fast_sodium_channel_h_gate (dimensionless)" legend_algebraic[1] = "alpha_m in component fast_sodium_channel_m_gate (per_ms)" legend_algebraic[7] = "beta_m in component fast_sodium_channel_m_gate (per_ms)" legend_algebraic[2] = "alpha_h in component fast_sodium_channel_h_gate (per_ms)" legend_algebraic[8] = "beta_h in component fast_sodium_channel_h_gate (per_ms)" legend_constants[7] = "g_Nap in component persistent_sodium_channel (S_per_cm2)" legend_states[3] = "p in component persistent_sodium_channel_p_gate (dimensionless)" legend_algebraic[3] = "alpha_p in component persistent_sodium_channel_p_gate (per_ms)" legend_algebraic[9] = "beta_p in component persistent_sodium_channel_p_gate (per_ms)" legend_constants[8] = "g_Ks in component slow_potassium_channel (S_per_cm2)" legend_states[4] = "s in component slow_potassium_channel_s_gate (dimensionless)" legend_algebraic[4] = "alpha_s in component slow_potassium_channel_s_gate (per_ms)" legend_algebraic[10] = "beta_s in component slow_potassium_channel_s_gate (per_ms)" legend_constants[9] = "g_Kf in component juxtaparanodal_fast_potassium_channel (S_per_cm2)" legend_states[5] = "n in component juxtaparanodal_fast_potassium_channel_n_gate (dimensionless)" legend_algebraic[5] = "alpha_n in component juxtaparanodal_fast_potassium_channel_n_gate (per_ms)" legend_algebraic[11] = "beta_n in component juxtaparanodal_fast_potassium_channel_n_gate (per_ms)" legend_constants[10] = "g_Lk in component leakage_channel (S_per_cm2)" legend_rates[0] = "d/dt V_m in component membrane (mV)" legend_rates[1] = "d/dt m in component fast_sodium_channel_m_gate (dimensionless)" legend_rates[2] = "d/dt h in component fast_sodium_channel_h_gate (dimensionless)" legend_rates[3] = "d/dt p in component persistent_sodium_channel_p_gate (dimensionless)" legend_rates[4] = "d/dt s in component slow_potassium_channel_s_gate (dimensionless)" legend_rates[5] = "d/dt n in component juxtaparanodal_fast_potassium_channel_n_gate (dimensionless)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; states[0] = -88.5901439103062 constants[0] = 0.05 constants[1] = 0.5 constants[2] = 0.002 constants[3] = 50 constants[4] = -90 constants[5] = -90 constants[6] = 3 states[1] = 0.0302964457761589 states[2] = 0.841520865130776 constants[7] = 0.01 states[3] = 0.0969864645712442 constants[8] = 0.08 states[4] = 0.00997371545602793 constants[9] = 0 states[5] = 0.000886041197111556 constants[10] = 0.007 return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic algebraic[1] = (6.57000*(states[0]+20.4000))/(1.00000-exp(-(states[0]+20.4000)/10.3000)) algebraic[7] = (-0.304000*(states[0]+25.7000))/(1.00000-exp((states[0]+25.7000)/9.16000)) rates[1] = algebraic[1]*(1.00000-states[1])-algebraic[7]*states[1] algebraic[2] = (-0.340000*(states[0]+114.000))/(1.00000-exp((states[0]+114.000)/11.0000)) algebraic[8] = 12.6000/(1.00000+exp(-(states[0]+31.8000)/13.4000)) rates[2] = algebraic[2]*(1.00000-states[2])-algebraic[8]*states[2] algebraic[3] = (0.0353000*(states[0]+27.0000))/(1.00000-exp(-(states[0]+27.0000)/10.2000)) algebraic[9] = (-0.000883000*(states[0]+34.0000))/(1.00000-exp((states[0]+34.0000)/10.0000)) rates[3] = algebraic[3]*(1.00000-states[3])-algebraic[9]*states[3] algebraic[4] = 0.300000/(1.00000+exp(-(states[0]+53.0000)/5.00000)) algebraic[10] = 0.0300000/(1.00000+exp(-(states[0]+90.0000)/1.00000)) rates[4] = algebraic[4]*(1.00000-states[4])-algebraic[10]*states[4] algebraic[5] = (0.0462000*(states[0]+83.2000))/(1.00000-exp(-(states[0]+83.2000)/1.10000)) algebraic[11] = (-0.0824000*(states[0]+66.0000))/(1.00000-exp((states[0]+66.0000)/10.5000)) rates[5] = algebraic[5]*(1.00000-states[5])-algebraic[11]*states[5] algebraic[0] = custom_piecewise([greater_equal(voi , 10.0000) & less_equal(voi , 10.0000+constants[1]), constants[0] , True, 0.00000]) algebraic[6] = constants[6]*(power(states[1], 3.00000))*states[2]*(states[0]-constants[3]) algebraic[12] = constants[7]*(power(states[3], 3.00000))*(states[0]-constants[3]) algebraic[13] = constants[8]*states[4]*(states[0]-constants[4]) algebraic[14] = constants[9]*(power(states[5], 4.00000))*(states[0]-constants[4]) algebraic[15] = constants[10]*(states[0]-constants[5]) rates[0] = -(-algebraic[0]+algebraic[6]+algebraic[12]+algebraic[13]+algebraic[14]+algebraic[15])/constants[2] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[1] = (6.57000*(states[0]+20.4000))/(1.00000-exp(-(states[0]+20.4000)/10.3000)) algebraic[7] = (-0.304000*(states[0]+25.7000))/(1.00000-exp((states[0]+25.7000)/9.16000)) algebraic[2] = (-0.340000*(states[0]+114.000))/(1.00000-exp((states[0]+114.000)/11.0000)) algebraic[8] = 12.6000/(1.00000+exp(-(states[0]+31.8000)/13.4000)) algebraic[3] = (0.0353000*(states[0]+27.0000))/(1.00000-exp(-(states[0]+27.0000)/10.2000)) algebraic[9] = (-0.000883000*(states[0]+34.0000))/(1.00000-exp((states[0]+34.0000)/10.0000)) algebraic[4] = 0.300000/(1.00000+exp(-(states[0]+53.0000)/5.00000)) algebraic[10] = 0.0300000/(1.00000+exp(-(states[0]+90.0000)/1.00000)) algebraic[5] = (0.0462000*(states[0]+83.2000))/(1.00000-exp(-(states[0]+83.2000)/1.10000)) algebraic[11] = (-0.0824000*(states[0]+66.0000))/(1.00000-exp((states[0]+66.0000)/10.5000)) algebraic[0] = custom_piecewise([greater_equal(voi , 10.0000) & less_equal(voi , 10.0000+constants[1]), constants[0] , True, 0.00000]) algebraic[6] = constants[6]*(power(states[1], 3.00000))*states[2]*(states[0]-constants[3]) algebraic[12] = constants[7]*(power(states[3], 3.00000))*(states[0]-constants[3]) algebraic[13] = constants[8]*states[4]*(states[0]-constants[4]) algebraic[14] = constants[9]*(power(states[5], 4.00000))*(states[0]-constants[4]) algebraic[15] = constants[10]*(states[0]-constants[5]) return algebraic def custom_piecewise(cases): """Compute result of a piecewise function""" return select(cases[0::2],cases[1::2]) def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)