Generated Code
The following is c code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
/* There are a total of 98 entries in the algebraic variable array. There are a total of 35 entries in each of the rate and state variable arrays. There are a total of 103 entries in the constant variable array. */ /* * STATES[0] is Ca_jsr in component Ca_dynamics (mM). * STATES[1] is Ca_sub in component Ca_dynamics (mM). * CONSTANTS[0] is EC50_SR in component Ca_SR_release (mM). * CONSTANTS[1] is HSR in component Ca_SR_release (dimensionless). * STATES[2] is I in component Ca_SR_release (dimensionless). * CONSTANTS[2] is MaxSR in component Ca_SR_release (dimensionless). * CONSTANTS[3] is MinSR in component Ca_SR_release (dimensionless). * STATES[3] is O in component Ca_SR_release (dimensionless). * STATES[4] is R in component Ca_SR_release (dimensionless). * STATES[5] is RI in component Ca_SR_release (dimensionless). * ALGEBRAIC[1] is j_SRCarel in component Ca_SR_release (mol_per_m3_per_s). * ALGEBRAIC[0] is kCaSR in component Ca_SR_release (dimensionless). * CONSTANTS[4] is kiCa in component Ca_SR_release (m3_per_s_per_mol). * ALGEBRAIC[5] is kiSRCa in component Ca_SR_release (m3_per_s_per_mol). * CONSTANTS[5] is kim in component Ca_SR_release (hertz). * CONSTANTS[6] is koCa in component Ca_SR_release (m6_per_s_per_mol2). * ALGEBRAIC[9] is koSRCa in component Ca_SR_release (m6_per_s_per_mol2). * CONSTANTS[7] is kom in component Ca_SR_release (hertz). * CONSTANTS[8] is ks in component Ca_SR_release (hertz). * VOI is time in component environment (second). * CONSTANTS[9] is CM_tot in component Ca_buffering (mM). * CONSTANTS[10] is CQ_tot in component Ca_buffering (mM). * STATES[6] is Cai in component Ca_dynamics (mM). * CONSTANTS[11] is Mgi in component Ca_buffering (mM). * CONSTANTS[12] is TC_tot in component Ca_buffering (mM). * CONSTANTS[13] is TMC_tot in component Ca_buffering (mM). * ALGEBRAIC[6] is delta_fCMi in component Ca_buffering (hertz). * ALGEBRAIC[10] is delta_fCMs in component Ca_buffering (hertz). * ALGEBRAIC[11] is delta_fCQ in component Ca_buffering (hertz). * ALGEBRAIC[12] is delta_fTC in component Ca_buffering (hertz). * ALGEBRAIC[13] is delta_fTMC in component Ca_buffering (hertz). * ALGEBRAIC[2] is delta_fTMM in component Ca_buffering (hertz). * STATES[7] is fCMi in component Ca_buffering (dimensionless). * STATES[8] is fCMs in component Ca_buffering (dimensionless). * STATES[9] is fCQ in component Ca_buffering (dimensionless). * STATES[10] is fTC in component Ca_buffering (dimensionless). * STATES[11] is fTMC in component Ca_buffering (dimensionless). * STATES[12] is fTMM in component Ca_buffering (dimensionless). * CONSTANTS[14] is kb_CM in component Ca_buffering (hertz). * CONSTANTS[15] is kb_CQ in component Ca_buffering (hertz). * CONSTANTS[16] is kb_TC in component Ca_buffering (hertz). * CONSTANTS[17] is kb_TMC in component Ca_buffering (hertz). * CONSTANTS[18] is kb_TMM in component Ca_buffering (hertz). * CONSTANTS[19] is kf_CM in component Ca_buffering (m3_per_s_per_mol). * CONSTANTS[20] is kf_CQ in component Ca_buffering (m3_per_s_per_mol). * CONSTANTS[21] is kf_TC in component Ca_buffering (m3_per_s_per_mol). * CONSTANTS[22] is kf_TMC in component Ca_buffering (m3_per_s_per_mol). * CONSTANTS[23] is kf_TMM in component Ca_buffering (m3_per_s_per_mol). * STATES[13] is Ca_nsr in component Ca_dynamics (mM). * CONSTANTS[24] is F in component Membrane (C_per_mol). * CONSTANTS[91] is V_i in component Cell_parameters (uL). * CONSTANTS[88] is V_jsr in component Cell_parameters (uL). * CONSTANTS[89] is V_nsr in component Cell_parameters (uL). * CONSTANTS[90] is V_sub in component Cell_parameters (uL). * ALGEBRAIC[64] is i_CaT in component i_CaT (nA). * ALGEBRAIC[90] is i_NaCa in component i_NaCa (nA). * ALGEBRAIC[20] is i_siCa in component i_CaL (nA). * ALGEBRAIC[14] is j_Ca_dif in component Ca_intracellular_fluxes (mol_per_m3_per_s). * ALGEBRAIC[15] is j_tr in component Ca_intracellular_fluxes (mol_per_m3_per_s). * ALGEBRAIC[17] is j_up in component Ca_intracellular_fluxes (mol_per_m3_per_s). * CONSTANTS[25] is ACh in component Rate_modulation_experiments (mM). * CONSTANTS[26] is Iso_1_uM in component Rate_modulation_experiments (dimensionless). * CONSTANTS[27] is K_up in component Ca_intracellular_fluxes (mM). * CONSTANTS[87] is P_up in component Ca_intracellular_fluxes (mol_per_m3_per_s). * CONSTANTS[28] is P_up_basal in component Ca_intracellular_fluxes (mol_per_m3_per_s). * CONSTANTS[82] is b_up in component Ca_intracellular_fluxes (dimensionless). * CONSTANTS[29] is slope_up in component Ca_intracellular_fluxes (mM). * CONSTANTS[30] is tau_dif_Ca in component Ca_intracellular_fluxes (second). * CONSTANTS[31] is tau_tr in component Ca_intracellular_fluxes (second). * CONSTANTS[32] is L_cell in component Cell_parameters (um). * CONSTANTS[33] is L_sub in component Cell_parameters (um). * CONSTANTS[34] is R_cell in component Cell_parameters (um). * CONSTANTS[83] is V_cell in component Cell_parameters (uL). * CONSTANTS[35] is V_i_part in component Cell_parameters (dimensionless). * CONSTANTS[36] is V_jsr_part in component Cell_parameters (dimensionless). * CONSTANTS[37] is V_nsr_part in component Cell_parameters (dimensionless). * CONSTANTS[38] is Cao in component Ionic_values (mM). * ALGEBRAIC[16] is E_K in component Ionic_values (mV). * ALGEBRAIC[18] is E_Na in component Ionic_values (mV). * STATES[14] is Ki in component Ki_concentration (mM). * CONSTANTS[39] is Ko in component Ionic_values (mM). * STATES[15] is Nai in component Nai_concentration (mM). * CONSTANTS[40] is Nao in component Ionic_values (mM). * CONSTANTS[92] is RTONF in component Membrane (mV). * ALGEBRAIC[69] is i_Kr in component i_Kr (nA). * ALGEBRAIC[71] is i_Ks in component i_Ks (nA). * ALGEBRAIC[72] is i_Kur in component i_Kur (nA). * ALGEBRAIC[91] is i_NaK in component i_NaK (nA). * ALGEBRAIC[92] is i_SK in component i_SK (nA). * ALGEBRAIC[93] is i_fK in component i_f (nA). * ALGEBRAIC[36] is i_siK in component i_CaL (nA). * ALGEBRAIC[96] is i_to in component i_to (nA). * CONSTANTS[41] is C in component Membrane (uF). * CONSTANTS[42] is R in component Membrane (mJ_per_mol_per_K). * CONSTANTS[43] is T in component Membrane (kelvin). * ALGEBRAIC[19] is V in component Membrane (mV). * STATES[16] is V_ode in component Membrane (mV). * ALGEBRAIC[59] is i_CaL in component i_CaL (nA). * ALGEBRAIC[67] is i_KACh in component i_KACh (nA). * ALGEBRAIC[76] is i_Na in component i_Na (nA). * ALGEBRAIC[95] is i_f in component i_f (nA). * ALGEBRAIC[97] is i_tot in component Membrane (nA). * ALGEBRAIC[94] is i_fNa in component i_f (nA). * ALGEBRAIC[53] is i_siNa in component i_CaL (nA). * CONSTANTS[93] is ACh_block in component i_CaL (dimensionless). * CONSTANTS[94] is Iso_increase in component i_CaL (dimensionless). * CONSTANTS[44] is P_CaL in component i_CaL (m3_A_per_mol_times_1e_minus_9). * STATES[17] is dL in component i_CaL_dL_gate (dimensionless). * STATES[18] is fCa in component i_CaL_fCa_gate (dimensionless). * STATES[19] is fL in component i_CaL_fL_gate (dimensionless). * CONSTANTS[95] is Iso_shift_dL in component i_CaL_dL_gate (mV). * CONSTANTS[96] is Iso_slope_dL in component i_CaL_dL_gate (dimensionless). * CONSTANTS[97] is V_dL in component i_CaL_dL_gate (mV). * ALGEBRAIC[21] is adVm in component i_CaL_dL_gate (mV). * ALGEBRAIC[37] is alpha_dL in component i_CaL_dL_gate (hertz). * ALGEBRAIC[54] is bdVm in component i_CaL_dL_gate (mV). * ALGEBRAIC[60] is beta_dL in component i_CaL_dL_gate (hertz). * ALGEBRAIC[65] is dL_infinity in component i_CaL_dL_gate (dimensionless). * CONSTANTS[45] is k_dL in component i_CaL_dL_gate (mV). * ALGEBRAIC[68] is tau_dL in component i_CaL_dL_gate (second). * CONSTANTS[46] is Km_fCa in component i_CaL_fCa_gate (mM). * CONSTANTS[47] is alpha_fCa in component i_CaL_fCa_gate (hertz). * ALGEBRAIC[3] is fCa_infinity in component i_CaL_fCa_gate (dimensionless). * ALGEBRAIC[7] is tau_fCa in component i_CaL_fCa_gate (second). * ALGEBRAIC[22] is fL_infinity in component i_CaL_fL_gate (dimensionless). * CONSTANTS[48] is k_fL in component i_CaL_fL_gate (mV). * CONSTANTS[49] is shift_fL in component i_CaL_fL_gate (mV). * ALGEBRAIC[38] is tau_fL in component i_CaL_fL_gate (second). * CONSTANTS[50] is P_CaT in component i_CaT (m3_A_per_mol_times_1e_minus_9). * STATES[20] is dT in component i_CaT_dT_gate (dimensionless). * STATES[21] is fT in component i_CaT_fT_gate (dimensionless). * ALGEBRAIC[23] is dT_infinity in component i_CaT_dT_gate (dimensionless). * ALGEBRAIC[39] is tau_dT in component i_CaT_dT_gate (second). * ALGEBRAIC[24] is fT_infinity in component i_CaT_fT_gate (dimensionless). * CONSTANTS[51] is offset_fT in component i_CaT_fT_gate (second). * ALGEBRAIC[40] is tau_fT in component i_CaT_fT_gate (second). * CONSTANTS[52] is ACh_on in component i_KACh (dimensionless). * STATES[22] is a in component i_KACh_a_gate (dimensionless). * CONSTANTS[53] is g_KACh in component i_KACh (uS). * ALGEBRAIC[41] is a_infinity in component i_KACh_a_gate (dimensionless). * CONSTANTS[98] is alpha_a in component i_KACh_a_gate (hertz). * ALGEBRAIC[25] is beta_a in component i_KACh_a_gate (hertz). * ALGEBRAIC[55] is tau_a in component i_KACh_a_gate (second). * CONSTANTS[84] is g_Kr in component i_Kr (uS). * STATES[23] is paF in component i_Kr_pa_gate (dimensionless). * STATES[24] is paS in component i_Kr_pa_gate (dimensionless). * STATES[25] is piy in component i_Kr_pi_gate (dimensionless). * ALGEBRAIC[26] is pa_infinity in component i_Kr_pa_gate (dimensionless). * ALGEBRAIC[42] is tau_paF in component i_Kr_pa_gate (second). * ALGEBRAIC[43] is tau_paS in component i_Kr_pa_gate (second). * ALGEBRAIC[27] is pi_infinity in component i_Kr_pi_gate (dimensionless). * ALGEBRAIC[44] is tau_pi in component i_Kr_pi_gate (second). * ALGEBRAIC[70] is E_Ks in component i_Ks (mV). * CONSTANTS[85] is g_Ks in component i_Ks (uS). * CONSTANTS[54] is g_Ks_ in component i_Ks (uS). * STATES[26] is n in component i_Ks_n_gate (dimensionless). * CONSTANTS[99] is Iso_shift in component i_Ks_n_gate (mV). * ALGEBRAIC[28] is alpha_n in component i_Ks_n_gate (hertz). * ALGEBRAIC[45] is beta_n in component i_Ks_n_gate (hertz). * ALGEBRAIC[56] is n_infinity in component i_Ks_n_gate (dimensionless). * ALGEBRAIC[61] is tau_n in component i_Ks_n_gate (second). * CONSTANTS[55] is g_Kur in component i_Kur (uS). * STATES[27] is r_Kur in component i_Kur_rKur_gate (dimensionless). * STATES[28] is s_Kur in component i_Kur_sKur_gate (dimensionless). * ALGEBRAIC[29] is r_Kur_infinity in component i_Kur_rKur_gate (dimensionless). * ALGEBRAIC[46] is tau_r_Kur in component i_Kur_rKur_gate (second). * ALGEBRAIC[30] is s_Kur_infinity in component i_Kur_sKur_gate (dimensionless). * ALGEBRAIC[47] is tau_s_Kur in component i_Kur_sKur_gate (second). * ALGEBRAIC[73] is E_mh in component i_Na (mV). * CONSTANTS[56] is g_Na in component i_Na (uS). * CONSTANTS[57] is g_Na_L in component i_Na (uS). * STATES[29] is h in component i_Na_h_gate (dimensionless). * ALGEBRAIC[74] is i_Na_ in component i_Na (nA). * ALGEBRAIC[75] is i_Na_L in component i_Na (nA). * STATES[30] is m in component i_Na_m_gate (dimensionless). * CONSTANTS[58] is K1ni in component i_NaCa (mM). * CONSTANTS[59] is K1no in component i_NaCa (mM). * CONSTANTS[60] is K2ni in component i_NaCa (mM). * CONSTANTS[61] is K2no in component i_NaCa (mM). * CONSTANTS[62] is K3ni in component i_NaCa (mM). * CONSTANTS[63] is K3no in component i_NaCa (mM). * CONSTANTS[64] is K_NaCa in component i_NaCa (nA). * CONSTANTS[65] is Kci in component i_NaCa (mM). * CONSTANTS[66] is Kcni in component i_NaCa (mM). * CONSTANTS[67] is Kco in component i_NaCa (mM). * CONSTANTS[68] is Qci in component i_NaCa (dimensionless). * CONSTANTS[69] is Qco in component i_NaCa (dimensionless). * CONSTANTS[70] is Qn in component i_NaCa (dimensionless). * ALGEBRAIC[77] is di in component i_NaCa (dimensionless). * ALGEBRAIC[78] is do in component i_NaCa (dimensionless). * ALGEBRAIC[79] is k12 in component i_NaCa (dimensionless). * ALGEBRAIC[80] is k14 in component i_NaCa (dimensionless). * ALGEBRAIC[81] is k21 in component i_NaCa (dimensionless). * ALGEBRAIC[82] is k23 in component i_NaCa (dimensionless). * ALGEBRAIC[83] is k32 in component i_NaCa (dimensionless). * CONSTANTS[100] is k34 in component i_NaCa (dimensionless). * ALGEBRAIC[84] is k41 in component i_NaCa (dimensionless). * ALGEBRAIC[85] is k43 in component i_NaCa (dimensionless). * ALGEBRAIC[86] is x1 in component i_NaCa (dimensionless). * ALGEBRAIC[87] is x2 in component i_NaCa (dimensionless). * ALGEBRAIC[88] is x3 in component i_NaCa (dimensionless). * ALGEBRAIC[89] is x4 in component i_NaCa (dimensionless). * CONSTANTS[86] is Iso_increase in component i_NaK (dimensionless). * CONSTANTS[71] is Km_Kp in component i_NaK (mM). * CONSTANTS[72] is Km_Nap in component i_NaK (mM). * CONSTANTS[73] is i_NaK_max in component i_NaK (nA). * ALGEBRAIC[31] is alpha_h in component i_Na_h_gate (hertz). * ALGEBRAIC[48] is beta_h in component i_Na_h_gate (hertz). * ALGEBRAIC[57] is h_infinity in component i_Na_h_gate (dimensionless). * ALGEBRAIC[62] is tau_h in component i_Na_h_gate (second). * ALGEBRAIC[32] is E0_m in component i_Na_m_gate (mV). * ALGEBRAIC[49] is alpha_m in component i_Na_m_gate (hertz). * ALGEBRAIC[58] is beta_m in component i_Na_m_gate (hertz). * CONSTANTS[74] is delta_m in component i_Na_m_gate (mV). * ALGEBRAIC[63] is m_infinity in component i_Na_m_gate (dimensionless). * ALGEBRAIC[66] is tau_m in component i_Na_m_gate (second). * CONSTANTS[75] is g_SK in component i_SK (uS). * STATES[31] is x in component i_SK_x_gate (dimensionless). * CONSTANTS[76] is EC50_SK in component i_SK_x_gate (mM). * CONSTANTS[77] is n_SK in component i_SK_x_gate (dimensionless). * ALGEBRAIC[4] is tau_x in component i_SK_x_gate (second). * ALGEBRAIC[8] is x_infinity in component i_SK_x_gate (dimensionless). * CONSTANTS[78] is g_f_K in component i_f (uS). * CONSTANTS[79] is g_f_Na in component i_f (uS). * STATES[32] is y in component i_f_y_gate (dimensionless). * CONSTANTS[101] is ACh_shift in component i_f_y_gate (mV). * CONSTANTS[102] is Iso_shift in component i_f_y_gate (mV). * ALGEBRAIC[33] is tau_y in component i_f_y_gate (second). * ALGEBRAIC[50] is y_infinity in component i_f_y_gate (dimensionless). * CONSTANTS[80] is y_shift in component i_f_y_gate (mV). * CONSTANTS[81] is g_to in component i_to (uS). * STATES[33] is q in component i_to_q_gate (dimensionless). * STATES[34] is r in component i_to_r_gate (dimensionless). * ALGEBRAIC[34] is q_infinity in component i_to_q_gate (dimensionless). * ALGEBRAIC[51] is tau_q in component i_to_q_gate (second). * ALGEBRAIC[35] is r_infinity in component i_to_r_gate (dimensionless). * ALGEBRAIC[52] is tau_r in component i_to_r_gate (second). * RATES[2] is d/dt I in component Ca_SR_release (dimensionless). * RATES[3] is d/dt O in component Ca_SR_release (dimensionless). * RATES[4] is d/dt R in component Ca_SR_release (dimensionless). * RATES[5] is d/dt RI in component Ca_SR_release (dimensionless). * RATES[7] is d/dt fCMi in component Ca_buffering (dimensionless). * RATES[8] is d/dt fCMs in component Ca_buffering (dimensionless). * RATES[9] is d/dt fCQ in component Ca_buffering (dimensionless). * RATES[10] is d/dt fTC in component Ca_buffering (dimensionless). * RATES[11] is d/dt fTMC in component Ca_buffering (dimensionless). * RATES[12] is d/dt fTMM in component Ca_buffering (dimensionless). * RATES[0] is d/dt Ca_jsr in component Ca_dynamics (mM). * RATES[13] is d/dt Ca_nsr in component Ca_dynamics (mM). * RATES[1] is d/dt Ca_sub in component Ca_dynamics (mM). * RATES[6] is d/dt Cai in component Ca_dynamics (mM). * RATES[14] is d/dt Ki in component Ki_concentration (mM). * RATES[16] is d/dt V_ode in component Membrane (mV). * RATES[15] is d/dt Nai in component Nai_concentration (mM). * RATES[17] is d/dt dL in component i_CaL_dL_gate (dimensionless). * RATES[18] is d/dt fCa in component i_CaL_fCa_gate (dimensionless). * RATES[19] is d/dt fL in component i_CaL_fL_gate (dimensionless). * RATES[20] is d/dt dT in component i_CaT_dT_gate (dimensionless). * RATES[21] is d/dt fT in component i_CaT_fT_gate (dimensionless). * RATES[22] is d/dt a in component i_KACh_a_gate (dimensionless). * RATES[23] is d/dt paF in component i_Kr_pa_gate (dimensionless). * RATES[24] is d/dt paS in component i_Kr_pa_gate (dimensionless). * RATES[25] is d/dt piy in component i_Kr_pi_gate (dimensionless). * RATES[26] is d/dt n in component i_Ks_n_gate (dimensionless). * RATES[27] is d/dt r_Kur in component i_Kur_rKur_gate (dimensionless). * RATES[28] is d/dt s_Kur in component i_Kur_sKur_gate (dimensionless). * RATES[29] is d/dt h in component i_Na_h_gate (dimensionless). * RATES[30] is d/dt m in component i_Na_m_gate (dimensionless). * RATES[31] is d/dt x in component i_SK_x_gate (dimensionless). * RATES[32] is d/dt y in component i_f_y_gate (dimensionless). * RATES[33] is d/dt q in component i_to_q_gate (dimensionless). * RATES[34] is d/dt r in component i_to_r_gate (dimensionless). */ void initConsts(double* CONSTANTS, double* RATES, double *STATES) { STATES[0] = 0.5869378; STATES[1] = 8.59587700000000057e-05; CONSTANTS[0] = 0.45; CONSTANTS[1] = 2.5; STATES[2] = 1.88065699999999987e-09; CONSTANTS[2] = 15.0; CONSTANTS[3] = 1.0; STATES[3] = 1.75000900000000001e-08; STATES[4] = 0.9004965; STATES[5] = 9.67726599999999965e-02; CONSTANTS[4] = 500.0; CONSTANTS[5] = 5.0; CONSTANTS[6] = 10000.0; CONSTANTS[7] = 660.0; CONSTANTS[8] = 1.48041085099999994e+08; CONSTANTS[9] = 0.045; CONSTANTS[10] = 10.0; STATES[6] = 1.26704600000000013e-04; CONSTANTS[11] = 2.5; CONSTANTS[12] = 0.031; CONSTANTS[13] = 0.062; STATES[7] = 0.2776014; STATES[8] = 0.206602; STATES[9] = 0.1878388; STATES[10] = 0.0246504; STATES[11] = 0.329845; STATES[12] = 0.5920168; CONSTANTS[14] = 542.0; CONSTANTS[15] = 445.0; CONSTANTS[16] = 446.0; CONSTANTS[17] = 7.51; CONSTANTS[18] = 751.0; CONSTANTS[19] = 1641986.0; CONSTANTS[20] = 175.4; CONSTANTS[21] = 88800.0; CONSTANTS[22] = 227700.0; CONSTANTS[23] = 2277.0; STATES[13] = 0.669119; CONSTANTS[24] = 9.64853414999999950e+04; CONSTANTS[25] = 0.0; CONSTANTS[26] = 0.0; CONSTANTS[27] = 2.86113000000000003e-04; CONSTANTS[28] = 5.0; CONSTANTS[29] = 5e-05; CONSTANTS[30] = 5.469e-05; CONSTANTS[31] = 0.04; CONSTANTS[32] = 67.0; CONSTANTS[33] = 0.02; CONSTANTS[34] = 3.9; CONSTANTS[35] = 0.46; CONSTANTS[36] = 0.0012; CONSTANTS[37] = 0.0116; CONSTANTS[38] = 1.8; STATES[14] = 139.1382; CONSTANTS[39] = 5.4; STATES[15] = 6.084085; CONSTANTS[40] = 140.0; CONSTANTS[41] = 5.7e-05; CONSTANTS[42] = 8314.472; CONSTANTS[43] = 310.0; STATES[16] = -4.61898999999999990e-02; CONSTANTS[44] = 0.5046812; STATES[17] = 1.40229900000000008e-03; STATES[18] = 0.7820265; STATES[19] = 0.9951828; CONSTANTS[45] = 5.854; CONSTANTS[46] = 0.000338; CONSTANTS[47] = 0.0075; CONSTANTS[48] = 5.1737; CONSTANTS[49] = 0.0; CONSTANTS[50] = 0.04132; STATES[20] = 0.192108; STATES[21] = 3.74674099999999996e-02; CONSTANTS[51] = 0.0; CONSTANTS[52] = 0.0; STATES[22] = 2.81845900000000016e-03; CONSTANTS[53] = 0.00345; STATES[23] = 8.34449800000000054e-03; STATES[24] = 0.3450797; STATES[25] = 0.7369347; CONSTANTS[54] = 8.63714000000000018e-04; STATES[26] = 0.1057902; CONSTANTS[55] = 7.062e-05; STATES[27] = 9.05902400000000059e-03; STATES[28] = 0.8655135; CONSTANTS[56] = 0.0223; CONSTANTS[57] = 0.0; STATES[29] = 5.20200199999999984e-03; STATES[30] = 0.3777047; CONSTANTS[58] = 395.3; CONSTANTS[59] = 1628.0; CONSTANTS[60] = 2.289; CONSTANTS[61] = 561.4; CONSTANTS[62] = 26.44; CONSTANTS[63] = 4.663; CONSTANTS[64] = 3.343; CONSTANTS[65] = 0.0207; CONSTANTS[66] = 26.44; CONSTANTS[67] = 3.663; CONSTANTS[68] = 0.1369; CONSTANTS[69] = 0.0; CONSTANTS[70] = 0.4315; CONSTANTS[71] = 1.4; CONSTANTS[72] = 14.0; CONSTANTS[73] = 0.137171; CONSTANTS[74] = 1e-05; CONSTANTS[75] = 0.000165; STATES[31] = 6.77693899999999988e-02; CONSTANTS[76] = 0.7; CONSTANTS[77] = 2.2; CONSTANTS[78] = 0.0117; CONSTANTS[79] = 0.00696; STATES[32] = 0.0103301; CONSTANTS[80] = 0.0; CONSTANTS[81] = 1.67347999999999998e-03; STATES[33] = 0.4735559; STATES[34] = 1.24570600000000007e-02; CONSTANTS[82] = (CONSTANTS[26]>0.00000 ? - 0.250000 : CONSTANTS[25]>0.00000 ? ( 0.700000*CONSTANTS[25])/(9.00000e-05+CONSTANTS[25]) : 0.00000); CONSTANTS[83] = ( ( 1.00000e-09*3.14159)*pow(CONSTANTS[34], 2.00000))*CONSTANTS[32]; CONSTANTS[84] = 0.00498910* pow((CONSTANTS[39]/5.40000), 1.0 / 2); CONSTANTS[85] = (CONSTANTS[26]>0.00000 ? 1.20000*CONSTANTS[54] : CONSTANTS[54]); CONSTANTS[86] = (CONSTANTS[26]>0.00000 ? 1.20000 : 1.00000); CONSTANTS[87] = CONSTANTS[28]*(1.00000 - CONSTANTS[82]); CONSTANTS[88] = CONSTANTS[36]*CONSTANTS[83]; CONSTANTS[89] = CONSTANTS[37]*CONSTANTS[83]; CONSTANTS[90] = ( ( ( ( 1.00000e-09*2.00000)*3.14159)*CONSTANTS[33])*(CONSTANTS[34] - CONSTANTS[33]/2.00000))*CONSTANTS[32]; CONSTANTS[91] = CONSTANTS[35]*CONSTANTS[83] - CONSTANTS[90]; CONSTANTS[92] = ( CONSTANTS[42]*CONSTANTS[43])/CONSTANTS[24]; CONSTANTS[93] = ( 0.310000*CONSTANTS[25])/(CONSTANTS[25]+9.00000e-05); CONSTANTS[94] = (CONSTANTS[26]>0.00000 ? 1.23000 : 1.00000); CONSTANTS[95] = (CONSTANTS[26]>0.00000 ? - 8.00000 : 0.00000); CONSTANTS[96] = (CONSTANTS[26]>0.00000 ? - 27.0000 : 0.00000); CONSTANTS[97] = - 7.77130; CONSTANTS[98] = (3.59880 - 0.0256410)/(1.00000+1.21550e-06/pow( 1.00000*CONSTANTS[25], 1.69510))+0.0256410; CONSTANTS[99] = (CONSTANTS[26]>0.00000 ? - 14.0000 : 0.00000); CONSTANTS[100] = CONSTANTS[40]/(CONSTANTS[63]+CONSTANTS[40]); CONSTANTS[101] = (CONSTANTS[25]>0.00000 ? - 1.00000 - ( 9.89800*pow( 1.00000*CONSTANTS[25], 0.618000))/(pow( 1.00000*CONSTANTS[25], 0.618000)+0.00122423) : 0.00000); CONSTANTS[102] = (CONSTANTS[26]>0.00000 ? 7.50000 : 0.00000); } void computeRates(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[2] = ( CONSTANTS[23]*CONSTANTS[11])*(1.00000 - (STATES[11]+STATES[12])) - CONSTANTS[18]*STATES[12]; RATES[12] = ALGEBRAIC[2]; ALGEBRAIC[6] = ( CONSTANTS[19]*STATES[6])*(1.00000 - STATES[7]) - CONSTANTS[14]*STATES[7]; RATES[7] = ALGEBRAIC[6]; ALGEBRAIC[3] = CONSTANTS[46]/(CONSTANTS[46]+STATES[1]); ALGEBRAIC[7] = ( 0.00100000*ALGEBRAIC[3])/CONSTANTS[47]; RATES[18] = (ALGEBRAIC[3] - STATES[18])/ALGEBRAIC[7]; ALGEBRAIC[4] = 0.00100000/( 0.0470000*(( 1000.00*STATES[1])/1.00000)+1.00000/76.0000); ALGEBRAIC[8] = ( 0.810000*pow(STATES[1]/1.00000, CONSTANTS[77]))/(pow(STATES[1]/1.00000, CONSTANTS[77])+pow(CONSTANTS[76]/1.00000, CONSTANTS[77])); RATES[31] = (ALGEBRAIC[8] - STATES[31])/ALGEBRAIC[4]; ALGEBRAIC[0] = CONSTANTS[2] - (CONSTANTS[2] - CONSTANTS[3])/(1.00000+pow(CONSTANTS[0]/STATES[0], CONSTANTS[1])); ALGEBRAIC[5] = CONSTANTS[4]*ALGEBRAIC[0]; ALGEBRAIC[9] = CONSTANTS[6]/ALGEBRAIC[0]; RATES[2] = ( ( ALGEBRAIC[5]*STATES[1])*STATES[3] - CONSTANTS[5]*STATES[2]) - ( CONSTANTS[7]*STATES[2] - ( ALGEBRAIC[9]*pow(STATES[1], 2.00000))*STATES[5]); RATES[3] = ( ( ALGEBRAIC[9]*pow(STATES[1], 2.00000))*STATES[4] - CONSTANTS[7]*STATES[3]) - ( ( ALGEBRAIC[5]*STATES[1])*STATES[3] - CONSTANTS[5]*STATES[2]); RATES[4] = ( CONSTANTS[5]*STATES[5] - ( ALGEBRAIC[5]*STATES[1])*STATES[4]) - ( ( ALGEBRAIC[9]*pow(STATES[1], 2.00000))*STATES[4] - CONSTANTS[7]*STATES[3]); RATES[5] = ( CONSTANTS[7]*STATES[2] - ( ALGEBRAIC[9]*pow(STATES[1], 2.00000))*STATES[5]) - ( CONSTANTS[5]*STATES[5] - ( ALGEBRAIC[5]*STATES[1])*STATES[4]); ALGEBRAIC[10] = ( CONSTANTS[19]*STATES[1])*(1.00000 - STATES[8]) - CONSTANTS[14]*STATES[8]; RATES[8] = ALGEBRAIC[10]; ALGEBRAIC[11] = ( CONSTANTS[20]*STATES[0])*(1.00000 - STATES[9]) - CONSTANTS[15]*STATES[9]; RATES[9] = ALGEBRAIC[11]; ALGEBRAIC[12] = ( CONSTANTS[21]*STATES[6])*(1.00000 - STATES[10]) - CONSTANTS[16]*STATES[10]; RATES[10] = ALGEBRAIC[12]; ALGEBRAIC[13] = ( CONSTANTS[22]*STATES[6])*(1.00000 - (STATES[11]+STATES[12])) - CONSTANTS[17]*STATES[11]; RATES[11] = ALGEBRAIC[13]; ALGEBRAIC[1] = ( CONSTANTS[8]*STATES[3])*(STATES[0] - STATES[1]); ALGEBRAIC[15] = (STATES[13] - STATES[0])/CONSTANTS[31]; RATES[0] = ALGEBRAIC[15] - (ALGEBRAIC[1]+ CONSTANTS[10]*ALGEBRAIC[11]); ALGEBRAIC[17] = CONSTANTS[87]/(1.00000+exp((- STATES[6]+CONSTANTS[27])/CONSTANTS[29])); RATES[13] = ALGEBRAIC[17] - ( ALGEBRAIC[15]*CONSTANTS[88])/CONSTANTS[89]; ALGEBRAIC[14] = (STATES[1] - STATES[6])/CONSTANTS[30]; RATES[6] = ( 1.00000*( ALGEBRAIC[14]*CONSTANTS[90] - ALGEBRAIC[17]*CONSTANTS[89]))/CONSTANTS[91] - (( CONSTANTS[9]*ALGEBRAIC[6]+ CONSTANTS[12]*ALGEBRAIC[12])+ CONSTANTS[13]*ALGEBRAIC[13]); ALGEBRAIC[19] = STATES[16]; ALGEBRAIC[22] = 1.00000/(1.00000+exp(((ALGEBRAIC[19]+12.1847)+CONSTANTS[49])/(5.30000+CONSTANTS[48]))); ALGEBRAIC[38] = 0.00100000*(44.3000+ 230.000*exp(- pow((ALGEBRAIC[19]+36.0000)/10.0000, 2.00000))); RATES[19] = (ALGEBRAIC[22] - STATES[19])/ALGEBRAIC[38]; ALGEBRAIC[23] = 1.00000/(1.00000+exp(- (ALGEBRAIC[19]+38.3000)/5.50000)); ALGEBRAIC[39] = 0.00100000/( 1.06800*exp((ALGEBRAIC[19]+38.3000)/30.0000)+ 1.06800*exp(- (ALGEBRAIC[19]+38.3000)/30.0000)); RATES[20] = (ALGEBRAIC[23] - STATES[20])/ALGEBRAIC[39]; ALGEBRAIC[24] = 1.00000/(1.00000+exp((ALGEBRAIC[19]+58.7000)/3.80000)); ALGEBRAIC[40] = 1.00000/( 16.6700*exp(- (ALGEBRAIC[19]+75.0000)/83.3000)+ 16.6700*exp((ALGEBRAIC[19]+75.0000)/15.3800))+CONSTANTS[51]; RATES[21] = (ALGEBRAIC[24] - STATES[21])/ALGEBRAIC[40]; ALGEBRAIC[26] = 1.00000/(1.00000+exp(- (ALGEBRAIC[19]+10.0144)/7.66070)); ALGEBRAIC[42] = 1.00000/( 30.0000*exp(ALGEBRAIC[19]/10.0000)+exp(- ALGEBRAIC[19]/12.0000)); RATES[23] = (ALGEBRAIC[26] - STATES[23])/ALGEBRAIC[42]; ALGEBRAIC[43] = 0.846554/( 4.20000*exp(ALGEBRAIC[19]/17.0000)+ 0.150000*exp(- ALGEBRAIC[19]/21.6000)); RATES[24] = (ALGEBRAIC[26] - STATES[24])/ALGEBRAIC[43]; ALGEBRAIC[27] = 1.00000/(1.00000+exp((ALGEBRAIC[19]+28.6000)/17.1000)); ALGEBRAIC[44] = 1.00000/( 100.000*exp(- ALGEBRAIC[19]/54.6450)+ 656.000*exp(ALGEBRAIC[19]/106.157)); RATES[25] = (ALGEBRAIC[27] - STATES[25])/ALGEBRAIC[44]; ALGEBRAIC[29] = 1.00000/(1.00000+exp((ALGEBRAIC[19]+6.00000)/- 8.60000)); ALGEBRAIC[46] = 0.00900000/(1.00000+exp((ALGEBRAIC[19]+5.00000)/12.0000))+0.000500000; RATES[27] = (ALGEBRAIC[29] - STATES[27])/ALGEBRAIC[46]; ALGEBRAIC[30] = 1.00000/(1.00000+exp((ALGEBRAIC[19]+7.50000)/10.0000)); ALGEBRAIC[47] = 0.590000/(1.00000+exp((ALGEBRAIC[19]+60.0000)/10.0000))+3.05000; RATES[28] = (ALGEBRAIC[30] - STATES[28])/ALGEBRAIC[47]; ALGEBRAIC[33] = 1.00000/(( 0.360000*(((ALGEBRAIC[19]+148.800) - CONSTANTS[101]) - CONSTANTS[102]))/(exp( 0.0660000*(((ALGEBRAIC[19]+148.800) - CONSTANTS[101]) - CONSTANTS[102])) - 1.00000)+( 0.100000*(((ALGEBRAIC[19]+87.3000) - CONSTANTS[101]) - CONSTANTS[102]))/(1.00000 - exp( - 0.200000*(((ALGEBRAIC[19]+87.3000) - CONSTANTS[101]) - CONSTANTS[102])))) - 0.0540000; ALGEBRAIC[50] = (ALGEBRAIC[19]<- (((80.0000 - CONSTANTS[101]) - CONSTANTS[102]) - CONSTANTS[80]) ? 0.0132900+0.999210/(1.00000+exp(((((ALGEBRAIC[19]+97.1340) - CONSTANTS[101]) - CONSTANTS[102]) - CONSTANTS[80])/8.17520)) : 0.000250100*exp(- (((ALGEBRAIC[19] - CONSTANTS[101]) - CONSTANTS[102]) - CONSTANTS[80])/12.8610)); RATES[32] = (ALGEBRAIC[50] - STATES[32])/ALGEBRAIC[33]; ALGEBRAIC[34] = 1.00000/(1.00000+exp((ALGEBRAIC[19]+49.0000)/13.0000)); ALGEBRAIC[51] = ( 0.00100000*0.600000)*(65.1700/( 0.570000*exp( - 0.0800000*(ALGEBRAIC[19]+44.0000))+ 0.0650000*exp( 0.100000*(ALGEBRAIC[19]+45.9300)))+10.1000); RATES[33] = (ALGEBRAIC[34] - STATES[33])/ALGEBRAIC[51]; ALGEBRAIC[35] = 1.00000/(1.00000+exp(- (ALGEBRAIC[19] - 19.3000)/15.0000)); ALGEBRAIC[52] = ( ( 0.00100000*0.660000)*1.40000)*(15.5900/( 1.03700*exp( 0.0900000*(ALGEBRAIC[19]+30.6100))+ 0.369000*exp( - 0.120000*(ALGEBRAIC[19]+23.8400)))+2.98000); RATES[34] = (ALGEBRAIC[35] - STATES[34])/ALGEBRAIC[52]; ALGEBRAIC[25] = 10.0000*exp( 0.0133000*(ALGEBRAIC[19]+40.0000)); ALGEBRAIC[41] = CONSTANTS[98]/(CONSTANTS[98]+ALGEBRAIC[25]); ALGEBRAIC[55] = 1.00000/(CONSTANTS[98]+ALGEBRAIC[25]); RATES[22] = (ALGEBRAIC[41] - STATES[22])/ALGEBRAIC[55]; ALGEBRAIC[56] = pow((1.00000/(1.00000+exp(- ((ALGEBRAIC[19]+0.638300) - CONSTANTS[99])/10.7071))), 1.0 / 2); ALGEBRAIC[28] = 28.0000/(1.00000+exp(- ((ALGEBRAIC[19] - 40.0000) - CONSTANTS[99])/3.00000)); ALGEBRAIC[45] = 1.00000*exp(- ((ALGEBRAIC[19] - CONSTANTS[99]) - 5.00000)/25.0000); ALGEBRAIC[61] = 1.00000/(ALGEBRAIC[28]+ALGEBRAIC[45]); RATES[26] = (ALGEBRAIC[56] - STATES[26])/ALGEBRAIC[61]; ALGEBRAIC[57] = 1.00000/(1.00000+exp((ALGEBRAIC[19]+69.8040)/4.45650)); ALGEBRAIC[31] = 20.0000*exp( - 0.125000*(ALGEBRAIC[19]+75.0000)); ALGEBRAIC[48] = 2000.00/( 320.000*exp( - 0.100000*(ALGEBRAIC[19]+75.0000))+1.00000); ALGEBRAIC[62] = 1.00000/(ALGEBRAIC[31]+ALGEBRAIC[48]); RATES[29] = (ALGEBRAIC[57] - STATES[29])/ALGEBRAIC[62]; ALGEBRAIC[63] = 1.00000/(1.00000+exp(- (ALGEBRAIC[19]+42.0504)/8.31060)); ALGEBRAIC[32] = ALGEBRAIC[19]+41.0000; ALGEBRAIC[49] = (fabs(ALGEBRAIC[32])<CONSTANTS[74] ? 2000.00 : ( 200.000*ALGEBRAIC[32])/(1.00000 - exp( - 0.100000*ALGEBRAIC[32]))); ALGEBRAIC[58] = 8000.00*exp( - 0.0560000*(ALGEBRAIC[19]+66.0000)); ALGEBRAIC[66] = 1.00000/(ALGEBRAIC[49]+ALGEBRAIC[58]); RATES[30] = (ALGEBRAIC[63] - STATES[30])/ALGEBRAIC[66]; ALGEBRAIC[65] = 1.00000/(1.00000+exp(- ((ALGEBRAIC[19] - CONSTANTS[97]) - CONSTANTS[95])/( CONSTANTS[45]*(1.00000+CONSTANTS[96]/100.000)))); ALGEBRAIC[21] = (ALGEBRAIC[19]==- 41.8000 ? - 41.8000 : ALGEBRAIC[19]==0.00000 ? 0.00000 : ALGEBRAIC[19]==- 6.80000 ? - 6.80001 : ALGEBRAIC[19]); ALGEBRAIC[37] = ( - 0.0283900*(ALGEBRAIC[21]+41.8000))/(exp(- (ALGEBRAIC[21]+41.8000)/2.50000) - 1.00000) - ( 0.0849000*(ALGEBRAIC[21]+6.80000))/(exp(- (ALGEBRAIC[21]+6.80000)/4.80000) - 1.00000); ALGEBRAIC[54] = (ALGEBRAIC[19]==- 1.80000 ? - 1.80001 : ALGEBRAIC[19]); ALGEBRAIC[60] = ( 0.0114300*(ALGEBRAIC[54]+1.80000))/(exp((ALGEBRAIC[54]+1.80000)/2.50000) - 1.00000); ALGEBRAIC[68] = 0.00100000/(ALGEBRAIC[37]+ALGEBRAIC[60]); RATES[17] = (ALGEBRAIC[65] - STATES[17])/ALGEBRAIC[68]; ALGEBRAIC[64] = ( ( (( ( 2.00000*CONSTANTS[50])*ALGEBRAIC[19])/( CONSTANTS[92]*(1.00000 - exp(( ( - 1.00000*ALGEBRAIC[19])*2.00000)/CONSTANTS[92]))))*(STATES[1] - CONSTANTS[38]*exp(( - 2.00000*ALGEBRAIC[19])/CONSTANTS[92])))*STATES[20])*STATES[21]; ALGEBRAIC[77] = (1.00000+ (STATES[1]/CONSTANTS[65])*((1.00000+exp(( - CONSTANTS[68]*ALGEBRAIC[19])/CONSTANTS[92]))+STATES[15]/CONSTANTS[66]))+ (STATES[15]/CONSTANTS[58])*(1.00000+ (STATES[15]/CONSTANTS[60])*(1.00000+STATES[15]/CONSTANTS[62])); ALGEBRAIC[79] = ( (STATES[1]/CONSTANTS[65])*exp(( - CONSTANTS[68]*ALGEBRAIC[19])/CONSTANTS[92]))/ALGEBRAIC[77]; ALGEBRAIC[78] = (1.00000+ (CONSTANTS[38]/CONSTANTS[67])*(1.00000+exp(( CONSTANTS[69]*ALGEBRAIC[19])/CONSTANTS[92])))+ (CONSTANTS[40]/CONSTANTS[59])*(1.00000+ (CONSTANTS[40]/CONSTANTS[61])*(1.00000+CONSTANTS[40]/CONSTANTS[63])); ALGEBRAIC[81] = ( (CONSTANTS[38]/CONSTANTS[67])*exp(( CONSTANTS[69]*ALGEBRAIC[19])/CONSTANTS[92]))/ALGEBRAIC[78]; ALGEBRAIC[82] = ( ( (( (CONSTANTS[40]/CONSTANTS[59])*CONSTANTS[40])/CONSTANTS[61])*(1.00000+CONSTANTS[40]/CONSTANTS[63]))*exp(( - CONSTANTS[70]*ALGEBRAIC[19])/( 2.00000*CONSTANTS[92])))/ALGEBRAIC[78]; ALGEBRAIC[83] = exp(( CONSTANTS[70]*ALGEBRAIC[19])/( 2.00000*CONSTANTS[92])); ALGEBRAIC[84] = exp(( - CONSTANTS[70]*ALGEBRAIC[19])/( 2.00000*CONSTANTS[92])); ALGEBRAIC[85] = STATES[15]/(CONSTANTS[62]+STATES[15]); ALGEBRAIC[86] = ( ALGEBRAIC[84]*CONSTANTS[100])*(ALGEBRAIC[82]+ALGEBRAIC[81])+ ( ALGEBRAIC[81]*ALGEBRAIC[83])*(ALGEBRAIC[85]+ALGEBRAIC[84]); ALGEBRAIC[80] = ( ( (( (STATES[15]/CONSTANTS[58])*STATES[15])/CONSTANTS[60])*(1.00000+STATES[15]/CONSTANTS[62]))*exp(( CONSTANTS[70]*ALGEBRAIC[19])/( 2.00000*CONSTANTS[92])))/ALGEBRAIC[77]; ALGEBRAIC[87] = ( ALGEBRAIC[83]*ALGEBRAIC[85])*(ALGEBRAIC[80]+ALGEBRAIC[79])+ ( ALGEBRAIC[84]*ALGEBRAIC[79])*(CONSTANTS[100]+ALGEBRAIC[83]); ALGEBRAIC[88] = ( ALGEBRAIC[80]*ALGEBRAIC[85])*(ALGEBRAIC[82]+ALGEBRAIC[81])+ ( ALGEBRAIC[79]*ALGEBRAIC[82])*(ALGEBRAIC[85]+ALGEBRAIC[84]); ALGEBRAIC[89] = ( ALGEBRAIC[82]*CONSTANTS[100])*(ALGEBRAIC[80]+ALGEBRAIC[79])+ ( ALGEBRAIC[80]*ALGEBRAIC[81])*(CONSTANTS[100]+ALGEBRAIC[83]); ALGEBRAIC[90] = ( CONSTANTS[64]*( ALGEBRAIC[87]*ALGEBRAIC[81] - ALGEBRAIC[86]*ALGEBRAIC[79]))/(((ALGEBRAIC[86]+ALGEBRAIC[87])+ALGEBRAIC[88])+ALGEBRAIC[89]); ALGEBRAIC[20] = ( ( ( (( ( 2.00000*CONSTANTS[44])*(ALGEBRAIC[19] - 0.00000))/( CONSTANTS[92]*(1.00000 - exp(( ( - 1.00000*(ALGEBRAIC[19] - 0.00000))*2.00000)/CONSTANTS[92]))))*(STATES[1] - CONSTANTS[38]*exp(( - 2.00000*(ALGEBRAIC[19] - 0.00000))/CONSTANTS[92])))*STATES[17])*STATES[19])*STATES[18]; RATES[1] = ( ALGEBRAIC[1]*CONSTANTS[88])/CONSTANTS[90] - ((((ALGEBRAIC[20]+ALGEBRAIC[64]) - 2.00000*ALGEBRAIC[90])/( ( 2.00000*CONSTANTS[24])*CONSTANTS[90])+ALGEBRAIC[14])+ CONSTANTS[9]*ALGEBRAIC[10]); ALGEBRAIC[18] = CONSTANTS[92]*log(CONSTANTS[40]/STATES[15]); ALGEBRAIC[91] = ( ( ( CONSTANTS[86]*CONSTANTS[73])*pow(1.00000+pow(CONSTANTS[71]/CONSTANTS[39], 1.20000), - 1.00000))*pow(1.00000+pow(CONSTANTS[72]/STATES[15], 1.30000), - 1.00000))*pow(1.00000+exp(- ((ALGEBRAIC[19] - ALGEBRAIC[18])+110.000)/20.0000), - 1.00000); ALGEBRAIC[73] = CONSTANTS[92]*log((CONSTANTS[40]+ 0.120000*CONSTANTS[39])/(STATES[15]+ 0.120000*STATES[14])); ALGEBRAIC[74] = ( ( CONSTANTS[56]*pow(STATES[30], 3.00000))*STATES[29])*(ALGEBRAIC[19] - ALGEBRAIC[73]); ALGEBRAIC[75] = ( CONSTANTS[57]*pow(STATES[30], 3.00000))*(ALGEBRAIC[19] - ALGEBRAIC[73]); ALGEBRAIC[76] = ALGEBRAIC[74]+ALGEBRAIC[75]; ALGEBRAIC[94] = ( STATES[32]*CONSTANTS[79])*(ALGEBRAIC[19] - ALGEBRAIC[18]); ALGEBRAIC[53] = ( ( ( (( ( 1.85000e-05*CONSTANTS[44])*(ALGEBRAIC[19] - 0.00000))/( CONSTANTS[92]*(1.00000 - exp(( - 1.00000*(ALGEBRAIC[19] - 0.00000))/CONSTANTS[92]))))*(STATES[15] - CONSTANTS[40]*exp(( - 1.00000*(ALGEBRAIC[19] - 0.00000))/CONSTANTS[92])))*STATES[17])*STATES[19])*STATES[18]; RATES[15] = ( - 1.00000*((((ALGEBRAIC[76]+ALGEBRAIC[94])+ALGEBRAIC[53])+ 3.00000*ALGEBRAIC[91])+ 3.00000*ALGEBRAIC[90]))/( ( 1.00000*(CONSTANTS[91]+CONSTANTS[90]))*CONSTANTS[24]); ALGEBRAIC[16] = CONSTANTS[92]*log(CONSTANTS[39]/STATES[14]); ALGEBRAIC[69] = ( ( CONSTANTS[84]*(ALGEBRAIC[19] - ALGEBRAIC[16]))*( 0.900000*STATES[23]+ 0.100000*STATES[24]))*STATES[25]; ALGEBRAIC[70] = CONSTANTS[92]*log((CONSTANTS[39]+ 0.120000*CONSTANTS[40])/(STATES[14]+ 0.120000*STATES[15])); ALGEBRAIC[71] = ( CONSTANTS[85]*(ALGEBRAIC[19] - ALGEBRAIC[70]))*pow(STATES[26], 2.00000); ALGEBRAIC[72] = ( ( CONSTANTS[55]*STATES[27])*STATES[28])*(ALGEBRAIC[19] - ALGEBRAIC[16]); ALGEBRAIC[92] = ( CONSTANTS[75]*(ALGEBRAIC[19] - ALGEBRAIC[16]))*STATES[31]; ALGEBRAIC[93] = ( STATES[32]*CONSTANTS[78])*(ALGEBRAIC[19] - ALGEBRAIC[16]); ALGEBRAIC[36] = ( ( ( (( ( 0.000365000*CONSTANTS[44])*(ALGEBRAIC[19] - 0.00000))/( CONSTANTS[92]*(1.00000 - exp(( - 1.00000*(ALGEBRAIC[19] - 0.00000))/CONSTANTS[92]))))*(STATES[14] - CONSTANTS[39]*exp(( - 1.00000*(ALGEBRAIC[19] - 0.00000))/CONSTANTS[92])))*STATES[17])*STATES[19])*STATES[18]; ALGEBRAIC[96] = ( ( CONSTANTS[81]*(ALGEBRAIC[19] - ALGEBRAIC[16]))*STATES[33])*STATES[34]; RATES[14] = ( - 1.00000*(((((((ALGEBRAIC[72]+ALGEBRAIC[96])+ALGEBRAIC[69])+ALGEBRAIC[71])+ALGEBRAIC[93])+ALGEBRAIC[36])+ALGEBRAIC[92]) - 2.00000*ALGEBRAIC[91]))/( ( 1.00000*(CONSTANTS[91]+CONSTANTS[90]))*CONSTANTS[24]); ALGEBRAIC[59] = ( ( ((ALGEBRAIC[20]+ALGEBRAIC[36])+ALGEBRAIC[53])*(1.00000 - CONSTANTS[93]))*1.00000)*CONSTANTS[94]; ALGEBRAIC[67] = (CONSTANTS[25]>0.00000 ? ( ( ( CONSTANTS[52]*CONSTANTS[53])*(ALGEBRAIC[19] - ALGEBRAIC[16]))*(1.00000+exp((ALGEBRAIC[19]+20.0000)/20.0000)))*STATES[22] : 0.00000); ALGEBRAIC[95] = ALGEBRAIC[94]+ALGEBRAIC[93]; ALGEBRAIC[97] = ((((((((((ALGEBRAIC[95]+ALGEBRAIC[69])+ALGEBRAIC[71])+ALGEBRAIC[96])+ALGEBRAIC[91])+ALGEBRAIC[90])+ALGEBRAIC[76])+ALGEBRAIC[59])+ALGEBRAIC[64])+ALGEBRAIC[67])+ALGEBRAIC[72])+ALGEBRAIC[92]; RATES[16] = - ALGEBRAIC[97]/CONSTANTS[41]; } void computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[2] = ( CONSTANTS[23]*CONSTANTS[11])*(1.00000 - (STATES[11]+STATES[12])) - CONSTANTS[18]*STATES[12]; ALGEBRAIC[6] = ( CONSTANTS[19]*STATES[6])*(1.00000 - STATES[7]) - CONSTANTS[14]*STATES[7]; ALGEBRAIC[3] = CONSTANTS[46]/(CONSTANTS[46]+STATES[1]); ALGEBRAIC[7] = ( 0.00100000*ALGEBRAIC[3])/CONSTANTS[47]; ALGEBRAIC[4] = 0.00100000/( 0.0470000*(( 1000.00*STATES[1])/1.00000)+1.00000/76.0000); ALGEBRAIC[8] = ( 0.810000*pow(STATES[1]/1.00000, CONSTANTS[77]))/(pow(STATES[1]/1.00000, CONSTANTS[77])+pow(CONSTANTS[76]/1.00000, CONSTANTS[77])); ALGEBRAIC[0] = CONSTANTS[2] - (CONSTANTS[2] - CONSTANTS[3])/(1.00000+pow(CONSTANTS[0]/STATES[0], CONSTANTS[1])); ALGEBRAIC[5] = CONSTANTS[4]*ALGEBRAIC[0]; ALGEBRAIC[9] = CONSTANTS[6]/ALGEBRAIC[0]; ALGEBRAIC[10] = ( CONSTANTS[19]*STATES[1])*(1.00000 - STATES[8]) - CONSTANTS[14]*STATES[8]; ALGEBRAIC[11] = ( CONSTANTS[20]*STATES[0])*(1.00000 - STATES[9]) - CONSTANTS[15]*STATES[9]; ALGEBRAIC[12] = ( CONSTANTS[21]*STATES[6])*(1.00000 - STATES[10]) - CONSTANTS[16]*STATES[10]; ALGEBRAIC[13] = ( CONSTANTS[22]*STATES[6])*(1.00000 - (STATES[11]+STATES[12])) - CONSTANTS[17]*STATES[11]; ALGEBRAIC[1] = ( CONSTANTS[8]*STATES[3])*(STATES[0] - STATES[1]); ALGEBRAIC[15] = (STATES[13] - STATES[0])/CONSTANTS[31]; ALGEBRAIC[17] = CONSTANTS[87]/(1.00000+exp((- STATES[6]+CONSTANTS[27])/CONSTANTS[29])); ALGEBRAIC[14] = (STATES[1] - STATES[6])/CONSTANTS[30]; ALGEBRAIC[19] = STATES[16]; ALGEBRAIC[22] = 1.00000/(1.00000+exp(((ALGEBRAIC[19]+12.1847)+CONSTANTS[49])/(5.30000+CONSTANTS[48]))); ALGEBRAIC[38] = 0.00100000*(44.3000+ 230.000*exp(- pow((ALGEBRAIC[19]+36.0000)/10.0000, 2.00000))); ALGEBRAIC[23] = 1.00000/(1.00000+exp(- (ALGEBRAIC[19]+38.3000)/5.50000)); ALGEBRAIC[39] = 0.00100000/( 1.06800*exp((ALGEBRAIC[19]+38.3000)/30.0000)+ 1.06800*exp(- (ALGEBRAIC[19]+38.3000)/30.0000)); ALGEBRAIC[24] = 1.00000/(1.00000+exp((ALGEBRAIC[19]+58.7000)/3.80000)); ALGEBRAIC[40] = 1.00000/( 16.6700*exp(- (ALGEBRAIC[19]+75.0000)/83.3000)+ 16.6700*exp((ALGEBRAIC[19]+75.0000)/15.3800))+CONSTANTS[51]; ALGEBRAIC[26] = 1.00000/(1.00000+exp(- (ALGEBRAIC[19]+10.0144)/7.66070)); ALGEBRAIC[42] = 1.00000/( 30.0000*exp(ALGEBRAIC[19]/10.0000)+exp(- ALGEBRAIC[19]/12.0000)); ALGEBRAIC[43] = 0.846554/( 4.20000*exp(ALGEBRAIC[19]/17.0000)+ 0.150000*exp(- ALGEBRAIC[19]/21.6000)); ALGEBRAIC[27] = 1.00000/(1.00000+exp((ALGEBRAIC[19]+28.6000)/17.1000)); ALGEBRAIC[44] = 1.00000/( 100.000*exp(- ALGEBRAIC[19]/54.6450)+ 656.000*exp(ALGEBRAIC[19]/106.157)); ALGEBRAIC[29] = 1.00000/(1.00000+exp((ALGEBRAIC[19]+6.00000)/- 8.60000)); ALGEBRAIC[46] = 0.00900000/(1.00000+exp((ALGEBRAIC[19]+5.00000)/12.0000))+0.000500000; ALGEBRAIC[30] = 1.00000/(1.00000+exp((ALGEBRAIC[19]+7.50000)/10.0000)); ALGEBRAIC[47] = 0.590000/(1.00000+exp((ALGEBRAIC[19]+60.0000)/10.0000))+3.05000; ALGEBRAIC[33] = 1.00000/(( 0.360000*(((ALGEBRAIC[19]+148.800) - CONSTANTS[101]) - CONSTANTS[102]))/(exp( 0.0660000*(((ALGEBRAIC[19]+148.800) - CONSTANTS[101]) - CONSTANTS[102])) - 1.00000)+( 0.100000*(((ALGEBRAIC[19]+87.3000) - CONSTANTS[101]) - CONSTANTS[102]))/(1.00000 - exp( - 0.200000*(((ALGEBRAIC[19]+87.3000) - CONSTANTS[101]) - CONSTANTS[102])))) - 0.0540000; ALGEBRAIC[50] = (ALGEBRAIC[19]<- (((80.0000 - CONSTANTS[101]) - CONSTANTS[102]) - CONSTANTS[80]) ? 0.0132900+0.999210/(1.00000+exp(((((ALGEBRAIC[19]+97.1340) - CONSTANTS[101]) - CONSTANTS[102]) - CONSTANTS[80])/8.17520)) : 0.000250100*exp(- (((ALGEBRAIC[19] - CONSTANTS[101]) - CONSTANTS[102]) - CONSTANTS[80])/12.8610)); ALGEBRAIC[34] = 1.00000/(1.00000+exp((ALGEBRAIC[19]+49.0000)/13.0000)); ALGEBRAIC[51] = ( 0.00100000*0.600000)*(65.1700/( 0.570000*exp( - 0.0800000*(ALGEBRAIC[19]+44.0000))+ 0.0650000*exp( 0.100000*(ALGEBRAIC[19]+45.9300)))+10.1000); ALGEBRAIC[35] = 1.00000/(1.00000+exp(- (ALGEBRAIC[19] - 19.3000)/15.0000)); ALGEBRAIC[52] = ( ( 0.00100000*0.660000)*1.40000)*(15.5900/( 1.03700*exp( 0.0900000*(ALGEBRAIC[19]+30.6100))+ 0.369000*exp( - 0.120000*(ALGEBRAIC[19]+23.8400)))+2.98000); ALGEBRAIC[25] = 10.0000*exp( 0.0133000*(ALGEBRAIC[19]+40.0000)); ALGEBRAIC[41] = CONSTANTS[98]/(CONSTANTS[98]+ALGEBRAIC[25]); ALGEBRAIC[55] = 1.00000/(CONSTANTS[98]+ALGEBRAIC[25]); ALGEBRAIC[56] = pow((1.00000/(1.00000+exp(- ((ALGEBRAIC[19]+0.638300) - CONSTANTS[99])/10.7071))), 1.0 / 2); ALGEBRAIC[28] = 28.0000/(1.00000+exp(- ((ALGEBRAIC[19] - 40.0000) - CONSTANTS[99])/3.00000)); ALGEBRAIC[45] = 1.00000*exp(- ((ALGEBRAIC[19] - CONSTANTS[99]) - 5.00000)/25.0000); ALGEBRAIC[61] = 1.00000/(ALGEBRAIC[28]+ALGEBRAIC[45]); ALGEBRAIC[57] = 1.00000/(1.00000+exp((ALGEBRAIC[19]+69.8040)/4.45650)); ALGEBRAIC[31] = 20.0000*exp( - 0.125000*(ALGEBRAIC[19]+75.0000)); ALGEBRAIC[48] = 2000.00/( 320.000*exp( - 0.100000*(ALGEBRAIC[19]+75.0000))+1.00000); ALGEBRAIC[62] = 1.00000/(ALGEBRAIC[31]+ALGEBRAIC[48]); ALGEBRAIC[63] = 1.00000/(1.00000+exp(- (ALGEBRAIC[19]+42.0504)/8.31060)); ALGEBRAIC[32] = ALGEBRAIC[19]+41.0000; ALGEBRAIC[49] = (fabs(ALGEBRAIC[32])<CONSTANTS[74] ? 2000.00 : ( 200.000*ALGEBRAIC[32])/(1.00000 - exp( - 0.100000*ALGEBRAIC[32]))); ALGEBRAIC[58] = 8000.00*exp( - 0.0560000*(ALGEBRAIC[19]+66.0000)); ALGEBRAIC[66] = 1.00000/(ALGEBRAIC[49]+ALGEBRAIC[58]); ALGEBRAIC[65] = 1.00000/(1.00000+exp(- ((ALGEBRAIC[19] - CONSTANTS[97]) - CONSTANTS[95])/( CONSTANTS[45]*(1.00000+CONSTANTS[96]/100.000)))); ALGEBRAIC[21] = (ALGEBRAIC[19]==- 41.8000 ? - 41.8000 : ALGEBRAIC[19]==0.00000 ? 0.00000 : ALGEBRAIC[19]==- 6.80000 ? - 6.80001 : ALGEBRAIC[19]); ALGEBRAIC[37] = ( - 0.0283900*(ALGEBRAIC[21]+41.8000))/(exp(- (ALGEBRAIC[21]+41.8000)/2.50000) - 1.00000) - ( 0.0849000*(ALGEBRAIC[21]+6.80000))/(exp(- (ALGEBRAIC[21]+6.80000)/4.80000) - 1.00000); ALGEBRAIC[54] = (ALGEBRAIC[19]==- 1.80000 ? - 1.80001 : ALGEBRAIC[19]); ALGEBRAIC[60] = ( 0.0114300*(ALGEBRAIC[54]+1.80000))/(exp((ALGEBRAIC[54]+1.80000)/2.50000) - 1.00000); ALGEBRAIC[68] = 0.00100000/(ALGEBRAIC[37]+ALGEBRAIC[60]); ALGEBRAIC[64] = ( ( (( ( 2.00000*CONSTANTS[50])*ALGEBRAIC[19])/( CONSTANTS[92]*(1.00000 - exp(( ( - 1.00000*ALGEBRAIC[19])*2.00000)/CONSTANTS[92]))))*(STATES[1] - CONSTANTS[38]*exp(( - 2.00000*ALGEBRAIC[19])/CONSTANTS[92])))*STATES[20])*STATES[21]; ALGEBRAIC[77] = (1.00000+ (STATES[1]/CONSTANTS[65])*((1.00000+exp(( - CONSTANTS[68]*ALGEBRAIC[19])/CONSTANTS[92]))+STATES[15]/CONSTANTS[66]))+ (STATES[15]/CONSTANTS[58])*(1.00000+ (STATES[15]/CONSTANTS[60])*(1.00000+STATES[15]/CONSTANTS[62])); ALGEBRAIC[79] = ( (STATES[1]/CONSTANTS[65])*exp(( - CONSTANTS[68]*ALGEBRAIC[19])/CONSTANTS[92]))/ALGEBRAIC[77]; ALGEBRAIC[78] = (1.00000+ (CONSTANTS[38]/CONSTANTS[67])*(1.00000+exp(( CONSTANTS[69]*ALGEBRAIC[19])/CONSTANTS[92])))+ (CONSTANTS[40]/CONSTANTS[59])*(1.00000+ (CONSTANTS[40]/CONSTANTS[61])*(1.00000+CONSTANTS[40]/CONSTANTS[63])); ALGEBRAIC[81] = ( (CONSTANTS[38]/CONSTANTS[67])*exp(( CONSTANTS[69]*ALGEBRAIC[19])/CONSTANTS[92]))/ALGEBRAIC[78]; ALGEBRAIC[82] = ( ( (( (CONSTANTS[40]/CONSTANTS[59])*CONSTANTS[40])/CONSTANTS[61])*(1.00000+CONSTANTS[40]/CONSTANTS[63]))*exp(( - CONSTANTS[70]*ALGEBRAIC[19])/( 2.00000*CONSTANTS[92])))/ALGEBRAIC[78]; ALGEBRAIC[83] = exp(( CONSTANTS[70]*ALGEBRAIC[19])/( 2.00000*CONSTANTS[92])); ALGEBRAIC[84] = exp(( - CONSTANTS[70]*ALGEBRAIC[19])/( 2.00000*CONSTANTS[92])); ALGEBRAIC[85] = STATES[15]/(CONSTANTS[62]+STATES[15]); ALGEBRAIC[86] = ( ALGEBRAIC[84]*CONSTANTS[100])*(ALGEBRAIC[82]+ALGEBRAIC[81])+ ( ALGEBRAIC[81]*ALGEBRAIC[83])*(ALGEBRAIC[85]+ALGEBRAIC[84]); ALGEBRAIC[80] = ( ( (( (STATES[15]/CONSTANTS[58])*STATES[15])/CONSTANTS[60])*(1.00000+STATES[15]/CONSTANTS[62]))*exp(( CONSTANTS[70]*ALGEBRAIC[19])/( 2.00000*CONSTANTS[92])))/ALGEBRAIC[77]; ALGEBRAIC[87] = ( ALGEBRAIC[83]*ALGEBRAIC[85])*(ALGEBRAIC[80]+ALGEBRAIC[79])+ ( ALGEBRAIC[84]*ALGEBRAIC[79])*(CONSTANTS[100]+ALGEBRAIC[83]); ALGEBRAIC[88] = ( ALGEBRAIC[80]*ALGEBRAIC[85])*(ALGEBRAIC[82]+ALGEBRAIC[81])+ ( ALGEBRAIC[79]*ALGEBRAIC[82])*(ALGEBRAIC[85]+ALGEBRAIC[84]); ALGEBRAIC[89] = ( ALGEBRAIC[82]*CONSTANTS[100])*(ALGEBRAIC[80]+ALGEBRAIC[79])+ ( ALGEBRAIC[80]*ALGEBRAIC[81])*(CONSTANTS[100]+ALGEBRAIC[83]); ALGEBRAIC[90] = ( CONSTANTS[64]*( ALGEBRAIC[87]*ALGEBRAIC[81] - ALGEBRAIC[86]*ALGEBRAIC[79]))/(((ALGEBRAIC[86]+ALGEBRAIC[87])+ALGEBRAIC[88])+ALGEBRAIC[89]); ALGEBRAIC[20] = ( ( ( (( ( 2.00000*CONSTANTS[44])*(ALGEBRAIC[19] - 0.00000))/( CONSTANTS[92]*(1.00000 - exp(( ( - 1.00000*(ALGEBRAIC[19] - 0.00000))*2.00000)/CONSTANTS[92]))))*(STATES[1] - CONSTANTS[38]*exp(( - 2.00000*(ALGEBRAIC[19] - 0.00000))/CONSTANTS[92])))*STATES[17])*STATES[19])*STATES[18]; ALGEBRAIC[18] = CONSTANTS[92]*log(CONSTANTS[40]/STATES[15]); ALGEBRAIC[91] = ( ( ( CONSTANTS[86]*CONSTANTS[73])*pow(1.00000+pow(CONSTANTS[71]/CONSTANTS[39], 1.20000), - 1.00000))*pow(1.00000+pow(CONSTANTS[72]/STATES[15], 1.30000), - 1.00000))*pow(1.00000+exp(- ((ALGEBRAIC[19] - ALGEBRAIC[18])+110.000)/20.0000), - 1.00000); ALGEBRAIC[73] = CONSTANTS[92]*log((CONSTANTS[40]+ 0.120000*CONSTANTS[39])/(STATES[15]+ 0.120000*STATES[14])); ALGEBRAIC[74] = ( ( CONSTANTS[56]*pow(STATES[30], 3.00000))*STATES[29])*(ALGEBRAIC[19] - ALGEBRAIC[73]); ALGEBRAIC[75] = ( CONSTANTS[57]*pow(STATES[30], 3.00000))*(ALGEBRAIC[19] - ALGEBRAIC[73]); ALGEBRAIC[76] = ALGEBRAIC[74]+ALGEBRAIC[75]; ALGEBRAIC[94] = ( STATES[32]*CONSTANTS[79])*(ALGEBRAIC[19] - ALGEBRAIC[18]); ALGEBRAIC[53] = ( ( ( (( ( 1.85000e-05*CONSTANTS[44])*(ALGEBRAIC[19] - 0.00000))/( CONSTANTS[92]*(1.00000 - exp(( - 1.00000*(ALGEBRAIC[19] - 0.00000))/CONSTANTS[92]))))*(STATES[15] - CONSTANTS[40]*exp(( - 1.00000*(ALGEBRAIC[19] - 0.00000))/CONSTANTS[92])))*STATES[17])*STATES[19])*STATES[18]; ALGEBRAIC[16] = CONSTANTS[92]*log(CONSTANTS[39]/STATES[14]); ALGEBRAIC[69] = ( ( CONSTANTS[84]*(ALGEBRAIC[19] - ALGEBRAIC[16]))*( 0.900000*STATES[23]+ 0.100000*STATES[24]))*STATES[25]; ALGEBRAIC[70] = CONSTANTS[92]*log((CONSTANTS[39]+ 0.120000*CONSTANTS[40])/(STATES[14]+ 0.120000*STATES[15])); ALGEBRAIC[71] = ( CONSTANTS[85]*(ALGEBRAIC[19] - ALGEBRAIC[70]))*pow(STATES[26], 2.00000); ALGEBRAIC[72] = ( ( CONSTANTS[55]*STATES[27])*STATES[28])*(ALGEBRAIC[19] - ALGEBRAIC[16]); ALGEBRAIC[92] = ( CONSTANTS[75]*(ALGEBRAIC[19] - ALGEBRAIC[16]))*STATES[31]; ALGEBRAIC[93] = ( STATES[32]*CONSTANTS[78])*(ALGEBRAIC[19] - ALGEBRAIC[16]); ALGEBRAIC[36] = ( ( ( (( ( 0.000365000*CONSTANTS[44])*(ALGEBRAIC[19] - 0.00000))/( CONSTANTS[92]*(1.00000 - exp(( - 1.00000*(ALGEBRAIC[19] - 0.00000))/CONSTANTS[92]))))*(STATES[14] - CONSTANTS[39]*exp(( - 1.00000*(ALGEBRAIC[19] - 0.00000))/CONSTANTS[92])))*STATES[17])*STATES[19])*STATES[18]; ALGEBRAIC[96] = ( ( CONSTANTS[81]*(ALGEBRAIC[19] - ALGEBRAIC[16]))*STATES[33])*STATES[34]; ALGEBRAIC[59] = ( ( ((ALGEBRAIC[20]+ALGEBRAIC[36])+ALGEBRAIC[53])*(1.00000 - CONSTANTS[93]))*1.00000)*CONSTANTS[94]; ALGEBRAIC[67] = (CONSTANTS[25]>0.00000 ? ( ( ( CONSTANTS[52]*CONSTANTS[53])*(ALGEBRAIC[19] - ALGEBRAIC[16]))*(1.00000+exp((ALGEBRAIC[19]+20.0000)/20.0000)))*STATES[22] : 0.00000); ALGEBRAIC[95] = ALGEBRAIC[94]+ALGEBRAIC[93]; ALGEBRAIC[97] = ((((((((((ALGEBRAIC[95]+ALGEBRAIC[69])+ALGEBRAIC[71])+ALGEBRAIC[96])+ALGEBRAIC[91])+ALGEBRAIC[90])+ALGEBRAIC[76])+ALGEBRAIC[59])+ALGEBRAIC[64])+ALGEBRAIC[67])+ALGEBRAIC[72])+ALGEBRAIC[92]; }