Generated Code

The following is c_ida code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

/*
   There are a total of 73 entries in the algebraic variable array.
   There are a total of 19 entries in each of the rate and state variable arrays.
   There are a total of 53 entries in the constant variable array.
 */
/*
 * VOI is time in component environment (millisecond).
 * STATES[0] is V in component membrane (millivolt).
 * CONSTANTS[0] is R in component membrane (joule_per_mole_kelvin).
 * CONSTANTS[1] is T in component membrane (kelvin).
 * CONSTANTS[2] is F in component membrane (coulomb_per_millimole).
 * CONSTANTS[3] is Cm in component membrane (picoF).
 * CONSTANTS[4] is V_c in component membrane (micrometre3).
 * ALGEBRAIC[8] is i_K1 in component inward_rectifier_potassium_current (picoA_per_picoF).
 * ALGEBRAIC[50] is i_to in component transient_outward_current (picoA_per_picoF).
 * ALGEBRAIC[9] is i_Kr in component rapid_time_dependent_potassium_current (picoA_per_picoF).
 * ALGEBRAIC[18] is i_Ks in component slow_time_dependent_potassium_current (picoA_per_picoF).
 * ALGEBRAIC[37] is i_CaL in component L_type_Ca_current (picoA_per_picoF).
 * ALGEBRAIC[55] is i_NaK in component sodium_potassium_pump_current (picoA_per_picoF).
 * ALGEBRAIC[23] is i_Na in component fast_sodium_current (picoA_per_picoF).
 * ALGEBRAIC[36] is i_b_Na in component sodium_background_current (picoA_per_picoF).
 * ALGEBRAIC[56] is i_NaCa in component sodium_calcium_exchanger_current (picoA_per_picoF).
 * ALGEBRAIC[49] is i_b_Ca in component calcium_background_current (picoA_per_picoF).
 * ALGEBRAIC[58] is i_p_K in component potassium_pump_current (picoA_per_picoF).
 * ALGEBRAIC[57] is i_p_Ca in component calcium_pump_current (picoA_per_picoF).
 * ALGEBRAIC[0] is i_Stim in component membrane (picoA_per_picoF).
 * CONSTANTS[5] is stim_start in component membrane (millisecond).
 * CONSTANTS[6] is stim_period in component membrane (millisecond).
 * CONSTANTS[7] is stim_duration in component membrane (millisecond).
 * CONSTANTS[8] is stim_amplitude in component membrane (picoA_per_picoF).
 * ALGEBRAIC[1] is E_Na in component reversal_potentials (millivolt).
 * ALGEBRAIC[2] is E_K in component reversal_potentials (millivolt).
 * ALGEBRAIC[3] is E_Ks in component reversal_potentials (millivolt).
 * ALGEBRAIC[4] is E_Ca in component reversal_potentials (millivolt).
 * CONSTANTS[9] is P_kna in component reversal_potentials (dimensionless).
 * CONSTANTS[10] is K_o in component potassium_dynamics (millimolar).
 * CONSTANTS[11] is Na_o in component sodium_dynamics (millimolar).
 * STATES[1] is K_i in component potassium_dynamics (millimolar).
 * STATES[2] is Na_i in component sodium_dynamics (millimolar).
 * CONSTANTS[12] is Ca_o in component calcium_dynamics (millimolar).
 * STATES[3] is Ca_i in component calcium_dynamics (millimolar).
 * CONSTANTS[13] is g_K1 in component inward_rectifier_potassium_current (nanoS_per_picoF).
 * ALGEBRAIC[7] is xK1_inf in component inward_rectifier_potassium_current (dimensionless).
 * ALGEBRAIC[5] is alpha_K1 in component inward_rectifier_potassium_current (dimensionless).
 * ALGEBRAIC[6] is beta_K1 in component inward_rectifier_potassium_current (dimensionless).
 * CONSTANTS[14] is g_Kr in component rapid_time_dependent_potassium_current (nanoS_per_picoF).
 * STATES[4] is Xr1 in component rapid_time_dependent_potassium_current_Xr1_gate (dimensionless).
 * STATES[5] is Xr2 in component rapid_time_dependent_potassium_current_Xr2_gate (dimensionless).
 * ALGEBRAIC[10] is xr1_inf in component rapid_time_dependent_potassium_current_Xr1_gate (dimensionless).
 * ALGEBRAIC[11] is alpha_xr1 in component rapid_time_dependent_potassium_current_Xr1_gate (dimensionless).
 * ALGEBRAIC[12] is beta_xr1 in component rapid_time_dependent_potassium_current_Xr1_gate (dimensionless).
 * ALGEBRAIC[13] is tau_xr1 in component rapid_time_dependent_potassium_current_Xr1_gate (millisecond).
 * ALGEBRAIC[14] is xr2_inf in component rapid_time_dependent_potassium_current_Xr2_gate (dimensionless).
 * ALGEBRAIC[15] is alpha_xr2 in component rapid_time_dependent_potassium_current_Xr2_gate (dimensionless).
 * ALGEBRAIC[16] is beta_xr2 in component rapid_time_dependent_potassium_current_Xr2_gate (dimensionless).
 * ALGEBRAIC[17] is tau_xr2 in component rapid_time_dependent_potassium_current_Xr2_gate (millisecond).
 * CONSTANTS[15] is g_Ks in component slow_time_dependent_potassium_current (nanoS_per_picoF).
 * STATES[6] is Xs in component slow_time_dependent_potassium_current_Xs_gate (dimensionless).
 * ALGEBRAIC[19] is xs_inf in component slow_time_dependent_potassium_current_Xs_gate (dimensionless).
 * ALGEBRAIC[20] is alpha_xs in component slow_time_dependent_potassium_current_Xs_gate (dimensionless).
 * ALGEBRAIC[21] is beta_xs in component slow_time_dependent_potassium_current_Xs_gate (dimensionless).
 * ALGEBRAIC[22] is tau_xs in component slow_time_dependent_potassium_current_Xs_gate (millisecond).
 * CONSTANTS[16] is g_Na in component fast_sodium_current (nanoS_per_picoF).
 * STATES[7] is m in component fast_sodium_current_m_gate (dimensionless).
 * STATES[8] is h in component fast_sodium_current_h_gate (dimensionless).
 * STATES[9] is j in component fast_sodium_current_j_gate (dimensionless).
 * ALGEBRAIC[24] is m_inf in component fast_sodium_current_m_gate (dimensionless).
 * ALGEBRAIC[25] is alpha_m in component fast_sodium_current_m_gate (dimensionless).
 * ALGEBRAIC[26] is beta_m in component fast_sodium_current_m_gate (dimensionless).
 * ALGEBRAIC[27] is tau_m in component fast_sodium_current_m_gate (millisecond).
 * ALGEBRAIC[28] is h_inf in component fast_sodium_current_h_gate (dimensionless).
 * ALGEBRAIC[29] is alpha_h in component fast_sodium_current_h_gate (per_millisecond).
 * ALGEBRAIC[30] is beta_h in component fast_sodium_current_h_gate (per_millisecond).
 * ALGEBRAIC[31] is tau_h in component fast_sodium_current_h_gate (millisecond).
 * ALGEBRAIC[32] is j_inf in component fast_sodium_current_j_gate (dimensionless).
 * ALGEBRAIC[33] is alpha_j in component fast_sodium_current_j_gate (per_millisecond).
 * ALGEBRAIC[34] is beta_j in component fast_sodium_current_j_gate (per_millisecond).
 * ALGEBRAIC[35] is tau_j in component fast_sodium_current_j_gate (millisecond).
 * CONSTANTS[17] is g_bna in component sodium_background_current (nanoS_per_picoF).
 * CONSTANTS[18] is g_CaL in component L_type_Ca_current (litre_per_farad_second).
 * STATES[10] is Ca_ss in component calcium_dynamics (millimolar).
 * STATES[11] is d in component L_type_Ca_current_d_gate (dimensionless).
 * STATES[12] is f in component L_type_Ca_current_f_gate (dimensionless).
 * STATES[13] is f2 in component L_type_Ca_current_f2_gate (dimensionless).
 * STATES[14] is fCass in component L_type_Ca_current_fCass_gate (dimensionless).
 * ALGEBRAIC[38] is d_inf in component L_type_Ca_current_d_gate (dimensionless).
 * ALGEBRAIC[39] is alpha_d in component L_type_Ca_current_d_gate (dimensionless).
 * ALGEBRAIC[40] is beta_d in component L_type_Ca_current_d_gate (dimensionless).
 * ALGEBRAIC[41] is gamma_d in component L_type_Ca_current_d_gate (millisecond).
 * ALGEBRAIC[42] is tau_d in component L_type_Ca_current_d_gate (millisecond).
 * ALGEBRAIC[43] is f_inf in component L_type_Ca_current_f_gate (dimensionless).
 * ALGEBRAIC[44] is tau_f in component L_type_Ca_current_f_gate (millisecond).
 * ALGEBRAIC[45] is f2_inf in component L_type_Ca_current_f2_gate (dimensionless).
 * ALGEBRAIC[46] is tau_f2 in component L_type_Ca_current_f2_gate (millisecond).
 * ALGEBRAIC[47] is fCass_inf in component L_type_Ca_current_fCass_gate (dimensionless).
 * ALGEBRAIC[48] is tau_fCass in component L_type_Ca_current_fCass_gate (millisecond).
 * CONSTANTS[19] is g_bca in component calcium_background_current (nanoS_per_picoF).
 * CONSTANTS[20] is g_to in component transient_outward_current (nanoS_per_picoF).
 * STATES[15] is s in component transient_outward_current_s_gate (dimensionless).
 * STATES[16] is r in component transient_outward_current_r_gate (dimensionless).
 * ALGEBRAIC[51] is s_inf in component transient_outward_current_s_gate (dimensionless).
 * ALGEBRAIC[52] is tau_s in component transient_outward_current_s_gate (millisecond).
 * ALGEBRAIC[53] is r_inf in component transient_outward_current_r_gate (dimensionless).
 * ALGEBRAIC[54] is tau_r in component transient_outward_current_r_gate (millisecond).
 * CONSTANTS[21] is P_NaK in component sodium_potassium_pump_current (picoA_per_picoF).
 * CONSTANTS[22] is K_mk in component sodium_potassium_pump_current (millimolar).
 * CONSTANTS[23] is K_mNa in component sodium_potassium_pump_current (millimolar).
 * CONSTANTS[24] is K_NaCa in component sodium_calcium_exchanger_current (picoA_per_picoF).
 * CONSTANTS[25] is K_sat in component sodium_calcium_exchanger_current (dimensionless).
 * CONSTANTS[26] is alpha in component sodium_calcium_exchanger_current (dimensionless).
 * CONSTANTS[27] is gamma in component sodium_calcium_exchanger_current (dimensionless).
 * CONSTANTS[28] is Km_Ca in component sodium_calcium_exchanger_current (millimolar).
 * CONSTANTS[29] is Km_Nai in component sodium_calcium_exchanger_current (millimolar).
 * CONSTANTS[30] is g_pCa in component calcium_pump_current (picoA_per_picoF).
 * CONSTANTS[31] is K_pCa in component calcium_pump_current (millimolar).
 * CONSTANTS[32] is g_pK in component potassium_pump_current (nanoS_per_picoF).
 * STATES[17] is Ca_SR in component calcium_dynamics (millimolar).
 * ALGEBRAIC[70] is i_rel in component calcium_dynamics (millimolar_per_millisecond).
 * ALGEBRAIC[59] is i_up in component calcium_dynamics (millimolar_per_millisecond).
 * ALGEBRAIC[60] is i_leak in component calcium_dynamics (millimolar_per_millisecond).
 * ALGEBRAIC[61] is i_xfer in component calcium_dynamics (millimolar_per_millisecond).
 * ALGEBRAIC[69] is O in component calcium_dynamics (dimensionless).
 * STATES[18] is R_prime in component calcium_dynamics (dimensionless).
 * ALGEBRAIC[67] is k1 in component calcium_dynamics (per_millimolar2_per_millisecond).
 * ALGEBRAIC[68] is k2 in component calcium_dynamics (per_millimolar_per_millisecond).
 * CONSTANTS[33] is k1_prime in component calcium_dynamics (per_millimolar2_per_millisecond).
 * CONSTANTS[34] is k2_prime in component calcium_dynamics (per_millimolar_per_millisecond).
 * CONSTANTS[35] is k3 in component calcium_dynamics (per_millisecond).
 * CONSTANTS[36] is k4 in component calcium_dynamics (per_millisecond).
 * CONSTANTS[37] is EC in component calcium_dynamics (millimolar).
 * CONSTANTS[38] is max_sr in component calcium_dynamics (dimensionless).
 * CONSTANTS[39] is min_sr in component calcium_dynamics (dimensionless).
 * ALGEBRAIC[62] is kcasr in component calcium_dynamics (dimensionless).
 * CONSTANTS[40] is V_rel in component calcium_dynamics (per_millisecond).
 * CONSTANTS[41] is V_xfer in component calcium_dynamics (per_millisecond).
 * CONSTANTS[42] is K_up in component calcium_dynamics (millimolar).
 * CONSTANTS[43] is V_leak in component calcium_dynamics (per_millisecond).
 * CONSTANTS[44] is Vmax_up in component calcium_dynamics (millimolar_per_millisecond).
 * ALGEBRAIC[63] is ddt_Ca_i_total in component calcium_dynamics (millimolar_per_millisecond).
 * ALGEBRAIC[71] is ddt_Ca_sr_total in component calcium_dynamics (millimolar_per_millisecond).
 * ALGEBRAIC[72] is ddt_Ca_ss_total in component calcium_dynamics (millimolar_per_millisecond).
 * ALGEBRAIC[64] is f_JCa_i_free in component calcium_dynamics (dimensionless).
 * ALGEBRAIC[65] is f_JCa_sr_free in component calcium_dynamics (dimensionless).
 * ALGEBRAIC[66] is f_JCa_ss_free in component calcium_dynamics (dimensionless).
 * CONSTANTS[45] is Buf_c in component calcium_dynamics (millimolar).
 * CONSTANTS[46] is K_buf_c in component calcium_dynamics (millimolar).
 * CONSTANTS[47] is Buf_sr in component calcium_dynamics (millimolar).
 * CONSTANTS[48] is K_buf_sr in component calcium_dynamics (millimolar).
 * CONSTANTS[49] is Buf_ss in component calcium_dynamics (millimolar).
 * CONSTANTS[50] is K_buf_ss in component calcium_dynamics (millimolar).
 * CONSTANTS[51] is V_sr in component calcium_dynamics (micrometre3).
 * CONSTANTS[52] is V_ss in component calcium_dynamics (micrometre3).
 * RATES[0] is d/dt V in component membrane (millivolt).
 * RATES[4] is d/dt Xr1 in component rapid_time_dependent_potassium_current_Xr1_gate (dimensionless).
 * RATES[5] is d/dt Xr2 in component rapid_time_dependent_potassium_current_Xr2_gate (dimensionless).
 * RATES[6] is d/dt Xs in component slow_time_dependent_potassium_current_Xs_gate (dimensionless).
 * RATES[7] is d/dt m in component fast_sodium_current_m_gate (dimensionless).
 * RATES[8] is d/dt h in component fast_sodium_current_h_gate (dimensionless).
 * RATES[9] is d/dt j in component fast_sodium_current_j_gate (dimensionless).
 * RATES[11] is d/dt d in component L_type_Ca_current_d_gate (dimensionless).
 * RATES[12] is d/dt f in component L_type_Ca_current_f_gate (dimensionless).
 * RATES[13] is d/dt f2 in component L_type_Ca_current_f2_gate (dimensionless).
 * RATES[14] is d/dt fCass in component L_type_Ca_current_fCass_gate (dimensionless).
 * RATES[15] is d/dt s in component transient_outward_current_s_gate (dimensionless).
 * RATES[16] is d/dt r in component transient_outward_current_r_gate (dimensionless).
 * RATES[18] is d/dt R_prime in component calcium_dynamics (dimensionless).
 * RATES[3] is d/dt Ca_i in component calcium_dynamics (millimolar).
 * RATES[17] is d/dt Ca_SR in component calcium_dynamics (millimolar).
 * RATES[10] is d/dt Ca_ss in component calcium_dynamics (millimolar).
 * RATES[2] is d/dt Na_i in component sodium_dynamics (millimolar).
 * RATES[1] is d/dt K_i in component potassium_dynamics (millimolar).
 * There are a total of 6 condition variables.
 */
void
initConsts(double* CONSTANTS, double* RATES, double *STATES)
{
STATES[0] = -85.23;
CONSTANTS[0] = 8.314;
CONSTANTS[1] = 310;
CONSTANTS[2] = 96.485;
CONSTANTS[3] = 185;
CONSTANTS[4] = 16404;
CONSTANTS[5] = 10;
CONSTANTS[6] = 1000;
CONSTANTS[7] = 1;
CONSTANTS[8] = -52;
CONSTANTS[9] = 0.03;
CONSTANTS[10] = 5.4;
CONSTANTS[11] = 140;
STATES[1] = 136.89;
STATES[2] = 8.604;
CONSTANTS[12] = 2;
STATES[3] = 0.000126;
CONSTANTS[13] = 5.405;
CONSTANTS[14] = 0.153;
STATES[4] = 0.00621;
STATES[5] = 0.4712;
CONSTANTS[15] = 0.392;
STATES[6] = 0.0095;
CONSTANTS[16] = 14.838;
STATES[7] = 0.00172;
STATES[8] = 0.7444;
STATES[9] = 0.7045;
CONSTANTS[17] = 0.00029;
CONSTANTS[18] = 0.0398;
STATES[10] = 0.00036;
STATES[11] = 3.373e-5;
STATES[12] = 0.7888;
STATES[13] = 0.9755;
STATES[14] = 0.9953;
CONSTANTS[19] = 0.000592;
CONSTANTS[20] = 0.294;
STATES[15] = 0.999998;
STATES[16] = 2.42e-8;
CONSTANTS[21] = 2.724;
CONSTANTS[22] = 1;
CONSTANTS[23] = 40;
CONSTANTS[24] = 1000;
CONSTANTS[25] = 0.1;
CONSTANTS[26] = 2.5;
CONSTANTS[27] = 0.35;
CONSTANTS[28] = 1.38;
CONSTANTS[29] = 87.5;
CONSTANTS[30] = 0.1238;
CONSTANTS[31] = 0.0005;
CONSTANTS[32] = 0.0146;
STATES[17] = 3.64;
STATES[18] = 0.9073;
CONSTANTS[33] = 0.15;
CONSTANTS[34] = 0.045;
CONSTANTS[35] = 0.06;
CONSTANTS[36] = 0.005;
CONSTANTS[37] = 1.5;
CONSTANTS[38] = 2.5;
CONSTANTS[39] = 1;
CONSTANTS[40] = 0.102;
CONSTANTS[41] = 0.0038;
CONSTANTS[42] = 0.00025;
CONSTANTS[43] = 0.00036;
CONSTANTS[44] = 0.006375;
CONSTANTS[45] = 0.2;
CONSTANTS[46] = 0.001;
CONSTANTS[47] = 10;
CONSTANTS[48] = 0.3;
CONSTANTS[49] = 0.4;
CONSTANTS[50] = 0.00025;
CONSTANTS[51] = 1094;
CONSTANTS[52] = 54.68;
RATES[0] = 0.1001;
RATES[4] = 0.1001;
RATES[5] = 0.1001;
RATES[6] = 0.1001;
RATES[7] = 0.1001;
RATES[8] = 0.1001;
RATES[9] = 0.1001;
RATES[11] = 0.1001;
RATES[12] = 0.1001;
RATES[13] = 0.1001;
RATES[14] = 0.1001;
RATES[15] = 0.1001;
RATES[16] = 0.1001;
RATES[18] = 0.1001;
RATES[3] = 0.1001;
RATES[17] = 0.1001;
RATES[10] = 0.1001;
RATES[2] = 0.1001;
RATES[1] = 0.1001;
}
void
computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
                 double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
resid[0] = RATES[0] - - (ALGEBRAIC[8]+ALGEBRAIC[50]+ALGEBRAIC[9]+ALGEBRAIC[18]+ALGEBRAIC[37]+ALGEBRAIC[55]+ALGEBRAIC[23]+ALGEBRAIC[36]+ALGEBRAIC[56]+ALGEBRAIC[49]+ALGEBRAIC[58]+ALGEBRAIC[57]+ALGEBRAIC[0]);
resid[1] = RATES[4] - (ALGEBRAIC[10] - STATES[4])/ALGEBRAIC[13];
resid[2] = RATES[5] - (ALGEBRAIC[14] - STATES[5])/ALGEBRAIC[17];
resid[3] = RATES[6] - (ALGEBRAIC[19] - STATES[6])/ALGEBRAIC[22];
resid[4] = RATES[7] - (ALGEBRAIC[24] - STATES[7])/ALGEBRAIC[27];
resid[5] = RATES[8] - (ALGEBRAIC[28] - STATES[8])/ALGEBRAIC[31];
resid[6] = RATES[9] - (ALGEBRAIC[32] - STATES[9])/ALGEBRAIC[35];
resid[7] = RATES[11] - (ALGEBRAIC[38] - STATES[11])/ALGEBRAIC[42];
resid[8] = RATES[12] - (ALGEBRAIC[43] - STATES[12])/ALGEBRAIC[44];
resid[9] = RATES[13] - (ALGEBRAIC[45] - STATES[13])/ALGEBRAIC[46];
resid[10] = RATES[14] - (ALGEBRAIC[47] - STATES[14])/ALGEBRAIC[48];
resid[11] = RATES[15] - (ALGEBRAIC[51] - STATES[15])/ALGEBRAIC[52];
resid[12] = RATES[16] - (ALGEBRAIC[53] - STATES[16])/ALGEBRAIC[54];
resid[13] = RATES[18] -  - ALGEBRAIC[68]*STATES[10]*STATES[18]+ CONSTANTS[36]*(1.00000 - STATES[18]);
resid[14] = RATES[3] -  ALGEBRAIC[63]*ALGEBRAIC[64];
resid[15] = RATES[17] -  ALGEBRAIC[71]*ALGEBRAIC[65];
resid[16] = RATES[10] -  ALGEBRAIC[72]*ALGEBRAIC[66];
resid[17] = RATES[2] -  (- (ALGEBRAIC[23]+ALGEBRAIC[36]+ 3.00000*ALGEBRAIC[55]+ 3.00000*ALGEBRAIC[56])/( CONSTANTS[4]*CONSTANTS[2]))*CONSTANTS[3];
resid[18] = RATES[1] -  (- ((ALGEBRAIC[8]+ALGEBRAIC[50]+ALGEBRAIC[9]+ALGEBRAIC[18]+ALGEBRAIC[58]+ALGEBRAIC[0]) -  2.00000*ALGEBRAIC[55])/( CONSTANTS[4]*CONSTANTS[2]))*CONSTANTS[3];
}
void
computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
}
void
computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
ALGEBRAIC[0] = (CONDVAR[0]>=0.00000&&CONDVAR[1]<=0.00000 ? CONSTANTS[8] : 0.00000);
ALGEBRAIC[2] =  (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[10]/STATES[1]);
ALGEBRAIC[5] = 0.100000/(1.00000+exp( 0.0600000*((STATES[0] - ALGEBRAIC[2]) - 200.000)));
ALGEBRAIC[6] = ( 3.00000*exp( 0.000200000*((STATES[0] - ALGEBRAIC[2])+100.000))+exp( 0.100000*((STATES[0] - ALGEBRAIC[2]) - 10.0000)))/(1.00000+exp( - 0.500000*(STATES[0] - ALGEBRAIC[2])));
ALGEBRAIC[7] = ALGEBRAIC[5]/(ALGEBRAIC[5]+ALGEBRAIC[6]);
ALGEBRAIC[8] =  CONSTANTS[13]*ALGEBRAIC[7]* pow((CONSTANTS[10]/5.40000), 1.0 / 2)*(STATES[0] - ALGEBRAIC[2]);
ALGEBRAIC[9] =  CONSTANTS[14]* pow((CONSTANTS[10]/5.40000), 1.0 / 2)*STATES[4]*STATES[5]*(STATES[0] - ALGEBRAIC[2]);
ALGEBRAIC[10] = 1.00000/(1.00000+exp((- 26.0000 - STATES[0])/7.00000));
ALGEBRAIC[11] = 450.000/(1.00000+exp((- 45.0000 - STATES[0])/10.0000));
ALGEBRAIC[12] = 6.00000/(1.00000+exp((STATES[0]+30.0000)/11.5000));
ALGEBRAIC[13] =  1.00000*ALGEBRAIC[11]*ALGEBRAIC[12];
ALGEBRAIC[14] = 1.00000/(1.00000+exp((STATES[0]+88.0000)/24.0000));
ALGEBRAIC[15] = 3.00000/(1.00000+exp((- 60.0000 - STATES[0])/20.0000));
ALGEBRAIC[16] = 1.12000/(1.00000+exp((STATES[0] - 60.0000)/20.0000));
ALGEBRAIC[17] =  1.00000*ALGEBRAIC[15]*ALGEBRAIC[16];
ALGEBRAIC[3] =  (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log((CONSTANTS[10]+ CONSTANTS[9]*CONSTANTS[11])/(STATES[1]+ CONSTANTS[9]*STATES[2]));
ALGEBRAIC[18] =  CONSTANTS[15]*pow(STATES[6], 2.00000)*(STATES[0] - ALGEBRAIC[3]);
ALGEBRAIC[19] = 1.00000/(1.00000+exp((- 5.00000 - STATES[0])/14.0000));
ALGEBRAIC[20] = 1400.00/ pow((1.00000+exp((5.00000 - STATES[0])/6.00000)), 1.0 / 2);
ALGEBRAIC[21] = 1.00000/(1.00000+exp((STATES[0] - 35.0000)/15.0000));
ALGEBRAIC[22] =  1.00000*ALGEBRAIC[20]*ALGEBRAIC[21]+80.0000;
ALGEBRAIC[1] =  (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[11]/STATES[2]);
ALGEBRAIC[23] =  CONSTANTS[16]*pow(STATES[7], 3.00000)*STATES[8]*STATES[9]*(STATES[0] - ALGEBRAIC[1]);
ALGEBRAIC[24] = 1.00000/pow(1.00000+exp((- 56.8600 - STATES[0])/9.03000), 2.00000);
ALGEBRAIC[25] = 1.00000/(1.00000+exp((- 60.0000 - STATES[0])/5.00000));
ALGEBRAIC[26] = 0.100000/(1.00000+exp((STATES[0]+35.0000)/5.00000))+0.100000/(1.00000+exp((STATES[0] - 50.0000)/200.000));
ALGEBRAIC[27] =  1.00000*ALGEBRAIC[25]*ALGEBRAIC[26];
ALGEBRAIC[28] = 1.00000/pow(1.00000+exp((STATES[0]+71.5500)/7.43000), 2.00000);
ALGEBRAIC[29] = (CONDVAR[2]<0.00000 ?  0.0570000*exp(- (STATES[0]+80.0000)/6.80000) : 0.00000);
ALGEBRAIC[30] = (CONDVAR[3]<0.00000 ?  2.70000*exp( 0.0790000*STATES[0])+ 310000.*exp( 0.348500*STATES[0]) : 0.770000/( 0.130000*(1.00000+exp((STATES[0]+10.6600)/- 11.1000))));
ALGEBRAIC[31] = 1.00000/(ALGEBRAIC[29]+ALGEBRAIC[30]);
ALGEBRAIC[32] = 1.00000/pow(1.00000+exp((STATES[0]+71.5500)/7.43000), 2.00000);
ALGEBRAIC[33] = (CONDVAR[4]<0.00000 ? (( ( - 25428.0*exp( 0.244400*STATES[0]) -  6.94800e-06*exp( - 0.0439100*STATES[0]))*(STATES[0]+37.7800))/1.00000)/(1.00000+exp( 0.311000*(STATES[0]+79.2300))) : 0.00000);
ALGEBRAIC[34] = (CONDVAR[5]<0.00000 ? ( 0.0242400*exp( - 0.0105200*STATES[0]))/(1.00000+exp( - 0.137800*(STATES[0]+40.1400))) : ( 0.600000*exp( 0.0570000*STATES[0]))/(1.00000+exp( - 0.100000*(STATES[0]+32.0000))));
ALGEBRAIC[35] = 1.00000/(ALGEBRAIC[33]+ALGEBRAIC[34]);
ALGEBRAIC[36] =  CONSTANTS[17]*(STATES[0] - ALGEBRAIC[1]);
ALGEBRAIC[37] = ( (( CONSTANTS[18]*STATES[11]*STATES[12]*STATES[13]*STATES[14]*4.00000*(STATES[0] - 15.0000)*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*( 0.250000*STATES[10]*exp(( 2.00000*(STATES[0] - 15.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[12]))/(exp(( 2.00000*(STATES[0] - 15.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000);
ALGEBRAIC[38] = 1.00000/(1.00000+exp((- 8.00000 - STATES[0])/7.50000));
ALGEBRAIC[39] = 1.40000/(1.00000+exp((- 35.0000 - STATES[0])/13.0000))+0.250000;
ALGEBRAIC[40] = 1.40000/(1.00000+exp((STATES[0]+5.00000)/5.00000));
ALGEBRAIC[41] = 1.00000/(1.00000+exp((50.0000 - STATES[0])/20.0000));
ALGEBRAIC[42] =  1.00000*ALGEBRAIC[39]*ALGEBRAIC[40]+ALGEBRAIC[41];
ALGEBRAIC[43] = 1.00000/(1.00000+exp((STATES[0]+20.0000)/7.00000));
ALGEBRAIC[44] =  1102.50*exp(- pow(STATES[0]+27.0000, 2.00000)/225.000)+200.000/(1.00000+exp((13.0000 - STATES[0])/10.0000))+180.000/(1.00000+exp((STATES[0]+30.0000)/10.0000))+20.0000;
ALGEBRAIC[45] = 0.670000/(1.00000+exp((STATES[0]+35.0000)/7.00000))+0.330000;
ALGEBRAIC[46] =  562.000*exp(- pow(STATES[0]+27.0000, 2.00000)/240.000)+31.0000/(1.00000+exp((25.0000 - STATES[0])/10.0000))+80.0000/(1.00000+exp((STATES[0]+30.0000)/10.0000));
ALGEBRAIC[47] = 0.600000/(1.00000+pow(STATES[10]/0.0500000, 2.00000))+0.400000;
ALGEBRAIC[48] = 80.0000/(1.00000+pow(STATES[10]/0.0500000, 2.00000))+2.00000;
ALGEBRAIC[4] =  (( 0.500000*CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[12]/STATES[3]);
ALGEBRAIC[49] =  CONSTANTS[19]*(STATES[0] - ALGEBRAIC[4]);
ALGEBRAIC[50] =  CONSTANTS[20]*STATES[16]*STATES[15]*(STATES[0] - ALGEBRAIC[2]);
ALGEBRAIC[51] = 1.00000/(1.00000+exp((STATES[0]+20.0000)/5.00000));
ALGEBRAIC[52] =  85.0000*exp(- pow(STATES[0]+45.0000, 2.00000)/320.000)+5.00000/(1.00000+exp((STATES[0] - 20.0000)/5.00000))+3.00000;
ALGEBRAIC[53] = 1.00000/(1.00000+exp((20.0000 - STATES[0])/6.00000));
ALGEBRAIC[54] =  9.50000*exp(- pow(STATES[0]+40.0000, 2.00000)/1800.00)+0.800000;
ALGEBRAIC[55] = (( (( CONSTANTS[21]*CONSTANTS[10])/(CONSTANTS[10]+CONSTANTS[22]))*STATES[2])/(STATES[2]+CONSTANTS[23]))/(1.00000+ 0.124500*exp(( - 0.100000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))+ 0.0353000*exp(( - STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])));
ALGEBRAIC[56] = ( CONSTANTS[24]*( exp(( CONSTANTS[27]*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(STATES[2], 3.00000)*CONSTANTS[12] -  exp(( (CONSTANTS[27] - 1.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(CONSTANTS[11], 3.00000)*STATES[3]*CONSTANTS[26]))/( (pow(CONSTANTS[29], 3.00000)+pow(CONSTANTS[11], 3.00000))*(CONSTANTS[28]+CONSTANTS[12])*(1.00000+ CONSTANTS[25]*exp(( (CONSTANTS[27] - 1.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))));
ALGEBRAIC[57] = ( CONSTANTS[30]*STATES[3])/(STATES[3]+CONSTANTS[31]);
ALGEBRAIC[58] = ( CONSTANTS[32]*(STATES[0] - ALGEBRAIC[2]))/(1.00000+exp((25.0000 - STATES[0])/5.98000));
ALGEBRAIC[59] = CONSTANTS[44]/(1.00000+pow(CONSTANTS[42], 2.00000)/pow(STATES[3], 2.00000));
ALGEBRAIC[60] =  CONSTANTS[43]*(STATES[17] - STATES[3]);
ALGEBRAIC[61] =  CONSTANTS[41]*(STATES[10] - STATES[3]);
ALGEBRAIC[63] = ( - ((ALGEBRAIC[49]+ALGEBRAIC[57]) -  2.00000*ALGEBRAIC[56])*CONSTANTS[3])/( 2.00000*CONSTANTS[4]*CONSTANTS[2])+( (ALGEBRAIC[60] - ALGEBRAIC[59])*CONSTANTS[51])/CONSTANTS[4]+ALGEBRAIC[61];
ALGEBRAIC[64] = 1.00000/(1.00000+( CONSTANTS[45]*CONSTANTS[46])/pow(STATES[3]+CONSTANTS[46], 2.00000));
ALGEBRAIC[65] = 1.00000/(1.00000+( CONSTANTS[47]*CONSTANTS[48])/pow(STATES[17]+CONSTANTS[48], 2.00000));
ALGEBRAIC[66] = 1.00000/(1.00000+( CONSTANTS[49]*CONSTANTS[50])/pow(STATES[10]+CONSTANTS[50], 2.00000));
ALGEBRAIC[62] = CONSTANTS[38] - (CONSTANTS[38] - CONSTANTS[39])/(1.00000+pow(CONSTANTS[37]/STATES[17], 2.00000));
ALGEBRAIC[68] =  CONSTANTS[34]*ALGEBRAIC[62];
ALGEBRAIC[67] = CONSTANTS[33]/ALGEBRAIC[62];
ALGEBRAIC[69] = ( ALGEBRAIC[67]*pow(STATES[10], 2.00000)*STATES[18])/(CONSTANTS[35]+ ALGEBRAIC[67]*pow(STATES[10], 2.00000));
ALGEBRAIC[70] =  CONSTANTS[40]*ALGEBRAIC[69]*(STATES[17] - STATES[10]);
ALGEBRAIC[71] = ALGEBRAIC[59] - (ALGEBRAIC[70]+ALGEBRAIC[60]);
ALGEBRAIC[72] = (( - ALGEBRAIC[37]*CONSTANTS[3])/( 2.00000*CONSTANTS[52]*CONSTANTS[2])+( ALGEBRAIC[70]*CONSTANTS[51])/CONSTANTS[52]) - ( ALGEBRAIC[61]*CONSTANTS[4])/CONSTANTS[52];
}
void
getStateInformation(double* SI)
{
SI[0] = 1.0;
SI[1] = 1.0;
SI[2] = 1.0;
SI[3] = 1.0;
SI[4] = 1.0;
SI[5] = 1.0;
SI[6] = 1.0;
SI[7] = 1.0;
SI[8] = 1.0;
SI[9] = 1.0;
SI[10] = 1.0;
SI[11] = 1.0;
SI[12] = 1.0;
SI[13] = 1.0;
SI[14] = 1.0;
SI[15] = 1.0;
SI[16] = 1.0;
SI[17] = 1.0;
SI[18] = 1.0;
}
void
computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
             double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
CONDVAR[0] = (VOI -  floor(VOI/CONSTANTS[6])*CONSTANTS[6]) - CONSTANTS[5];
CONDVAR[1] = (VOI -  floor(VOI/CONSTANTS[6])*CONSTANTS[6]) - (CONSTANTS[5]+CONSTANTS[7]);
CONDVAR[2] = STATES[0] - - 40.0000;
CONDVAR[3] = STATES[0] - - 40.0000;
CONDVAR[4] = STATES[0] - - 40.0000;
CONDVAR[5] = STATES[0] - - 40.0000;
}