Generated Code
The following is matlab code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction() % This is the "main function". In Matlab, things work best if you rename this function to match the filename. [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel(); end function [algebraicVariableCount] = getAlgebraicVariableCount() % Used later when setting a global variable with the number of algebraic variables. % Note: This is not the "main method". algebraicVariableCount =7; end % There are a total of 3 entries in each of the rate and state variable arrays. % There are a total of 16 entries in the constant variable array. % function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel() % Create ALGEBRAIC of correct size global algebraicVariableCount; algebraicVariableCount = getAlgebraicVariableCount(); % Initialise constants and state variables [INIT_STATES, CONSTANTS] = initConsts; % Set timespan to solve over tspan = [0, 10]; % Set numerical accuracy options for ODE solver options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1); % Solve model with ODE solver [VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options); % Compute algebraic variables [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS); ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI); % Plot state variables against variable of integration [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends(); figure(); plot(VOI, STATES); xlabel(LEGEND_VOI); l = legend(LEGEND_STATES); set(l,'Interpreter','none'); end function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends() LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = ''; LEGEND_VOI = strpad('time in component environment (millisecond)'); LEGEND_STATES(:,1) = strpad('V in component membrane (millivolt)'); LEGEND_CONSTANTS(:,1) = strpad('tau in component membrane (millisecond)'); LEGEND_ALGEBRAIC(:,5) = strpad('i_K in component potassium_current (picoA)'); LEGEND_ALGEBRAIC(:,7) = strpad('i_K_ATP in component ATP_sensitive_potassium_current (picoA)'); LEGEND_ALGEBRAIC(:,4) = strpad('i_Ca in component calcium_current (picoA)'); LEGEND_ALGEBRAIC(:,6) = strpad('i_s in component slow_current (picoA)'); LEGEND_CONSTANTS(:,2) = strpad('g_Ca in component calcium_current (nanoS)'); LEGEND_CONSTANTS(:,3) = strpad('V_Ca in component calcium_current (millivolt)'); LEGEND_ALGEBRAIC(:,1) = strpad('m_infinity in component calcium_current_m_gate (dimensionless)'); LEGEND_CONSTANTS(:,4) = strpad('V_m in component calcium_current_m_gate (millivolt)'); LEGEND_CONSTANTS(:,5) = strpad('theta_m in component calcium_current_m_gate (millivolt)'); LEGEND_CONSTANTS(:,6) = strpad('V_K in component potassium_current (millivolt)'); LEGEND_CONSTANTS(:,7) = strpad('g_K in component potassium_current (nanoS)'); LEGEND_STATES(:,2) = strpad('n in component potassium_current_n_gate (dimensionless)'); LEGEND_ALGEBRAIC(:,2) = strpad('n_infinity in component potassium_current_n_gate (dimensionless)'); LEGEND_CONSTANTS(:,8) = strpad('V_n in component potassium_current_n_gate (millivolt)'); LEGEND_CONSTANTS(:,9) = strpad('theta_n in component potassium_current_n_gate (millivolt)'); LEGEND_CONSTANTS(:,10) = strpad('lambda in component potassium_current_n_gate (dimensionless)'); LEGEND_CONSTANTS(:,11) = strpad('g_s in component slow_current (nanoS)'); LEGEND_STATES(:,3) = strpad('s in component slow_current_s_gate (dimensionless)'); LEGEND_ALGEBRAIC(:,3) = strpad('s_infinity in component slow_current_s_gate (dimensionless)'); LEGEND_CONSTANTS(:,12) = strpad('V_s in component slow_current_s_gate (millivolt)'); LEGEND_CONSTANTS(:,13) = strpad('theta_s in component slow_current_s_gate (millivolt)'); LEGEND_CONSTANTS(:,14) = strpad('tau_s in component slow_current_s_gate (millisecond)'); LEGEND_CONSTANTS(:,15) = strpad('g_K_ATP in component ATP_sensitive_potassium_current (nanoS)'); LEGEND_CONSTANTS(:,16) = strpad('p in component ATP_sensitive_potassium_current (dimensionless)'); LEGEND_RATES(:,1) = strpad('d/dt V in component membrane (millivolt)'); LEGEND_RATES(:,2) = strpad('d/dt n in component potassium_current_n_gate (dimensionless)'); LEGEND_RATES(:,3) = strpad('d/dt s in component slow_current_s_gate (dimensionless)'); LEGEND_STATES = LEGEND_STATES'; LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC'; LEGEND_RATES = LEGEND_RATES'; LEGEND_CONSTANTS = LEGEND_CONSTANTS'; end function [STATES, CONSTANTS] = initConsts() VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = []; STATES(:,1) = -64.0; CONSTANTS(:,1) = 20.0; CONSTANTS(:,2) = 3.6; CONSTANTS(:,3) = 25.0; CONSTANTS(:,4) = -20.0; CONSTANTS(:,5) = 12.0; CONSTANTS(:,6) = -75.0; CONSTANTS(:,7) = 10.0; STATES(:,2) = 0.01; CONSTANTS(:,8) = -17.0; CONSTANTS(:,9) = 5.6; CONSTANTS(:,10) = 0.9; CONSTANTS(:,11) = 4.0; STATES(:,3) = 0.01; CONSTANTS(:,12) = -22.0; CONSTANTS(:,13) = 8.0; CONSTANTS(:,14) = 20000.0; CONSTANTS(:,15) = 1.2; CONSTANTS(:,16) = 0.5; if (isempty(STATES)), warning('Initial values for states not set');, end end function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS) global algebraicVariableCount; statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; ALGEBRAIC = zeros(1, algebraicVariableCount); utilOnes = 1; else statesRowCount = statesSize(1); ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount); RATES = zeros(statesRowCount, statesColumnCount); utilOnes = ones(statesRowCount, 1); end ALGEBRAIC(:,2) = 1.00000./(1.00000+exp((CONSTANTS(:,8) - STATES(:,1))./CONSTANTS(:,9))); RATES(:,2) = ( CONSTANTS(:,10).*(ALGEBRAIC(:,2) - STATES(:,2)))./CONSTANTS(:,1); ALGEBRAIC(:,3) = 1.00000./(1.00000+exp((CONSTANTS(:,12) - STATES(:,1))./CONSTANTS(:,13))); RATES(:,3) = (ALGEBRAIC(:,3) - STATES(:,3))./CONSTANTS(:,14); ALGEBRAIC(:,5) = CONSTANTS(:,7).*STATES(:,2).*(STATES(:,1) - CONSTANTS(:,6)); ALGEBRAIC(:,7) = CONSTANTS(:,15).*CONSTANTS(:,16).*(STATES(:,1) - CONSTANTS(:,6)); ALGEBRAIC(:,1) = 1.00000./(1.00000+exp((CONSTANTS(:,4) - STATES(:,1))./CONSTANTS(:,5))); ALGEBRAIC(:,4) = CONSTANTS(:,2).*ALGEBRAIC(:,1).*(STATES(:,1) - CONSTANTS(:,3)); ALGEBRAIC(:,6) = CONSTANTS(:,11).*STATES(:,3).*(STATES(:,1) - CONSTANTS(:,6)); RATES(:,1) = - (ALGEBRAIC(:,4)+ALGEBRAIC(:,5)+ALGEBRAIC(:,7)+ALGEBRAIC(:,6))./CONSTANTS(:,1); RATES = RATES'; end % Calculate algebraic variables function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI) statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; utilOnes = 1; else statesRowCount = statesSize(1); utilOnes = ones(statesRowCount, 1); end ALGEBRAIC(:,2) = 1.00000./(1.00000+exp((CONSTANTS(:,8) - STATES(:,1))./CONSTANTS(:,9))); ALGEBRAIC(:,3) = 1.00000./(1.00000+exp((CONSTANTS(:,12) - STATES(:,1))./CONSTANTS(:,13))); ALGEBRAIC(:,5) = CONSTANTS(:,7).*STATES(:,2).*(STATES(:,1) - CONSTANTS(:,6)); ALGEBRAIC(:,7) = CONSTANTS(:,15).*CONSTANTS(:,16).*(STATES(:,1) - CONSTANTS(:,6)); ALGEBRAIC(:,1) = 1.00000./(1.00000+exp((CONSTANTS(:,4) - STATES(:,1))./CONSTANTS(:,5))); ALGEBRAIC(:,4) = CONSTANTS(:,2).*ALGEBRAIC(:,1).*(STATES(:,1) - CONSTANTS(:,3)); ALGEBRAIC(:,6) = CONSTANTS(:,11).*STATES(:,3).*(STATES(:,1) - CONSTANTS(:,6)); end % Pad out or shorten strings to a set length function strout = strpad(strin) req_length = 160; insize = size(strin,2); if insize > req_length strout = strin(1:req_length); else strout = [strin, blanks(req_length - insize)]; end end