Generated Code
The following is python code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
# Size of variable arrays: sizeAlgebraic = 2 sizeStates = 1 sizeConstants = 10 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (minute)" legend_constants[0] = "PLA in component atrial_natriuretic_peptide (mmHg)" legend_constants[1] = "PRA in component atrial_natriuretic_peptide (mmHg)" legend_constants[8] = "ANP in component total_ANP_secreted (dimensionless)" legend_constants[6] = "ANPL in component total_ANP_secreted (dimensionless)" legend_constants[7] = "ANPR2 in component total_ANP_secreted (dimensionless)" legend_constants[9] = "ANP1 in component ANP_into_circulation (dimensionless)" legend_constants[2] = "ANPKNS in component parameter_values (dimensionless)" legend_constants[3] = "ANPINF in component parameter_values (dimensionless)" legend_states[0] = "ANPC in component ANP_in_plasma (dimensionless)" legend_constants[4] = "ANPTC in component parameter_values (minute)" legend_algebraic[1] = "ANPX in component ANP_effect_on_renal_afferent_arteriolar_resistance (dimensionless)" legend_constants[5] = "ANPXUL in component parameter_values (dimensionless)" legend_algebraic[0] = "ANPX1 in component ANP_effect_on_renal_afferent_arteriolar_resistance (dimensionless)" legend_rates[0] = "d/dt ANPC in component ANP_in_plasma (dimensionless)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; constants[0] = 2 constants[1] = 0.00852183 constants[2] = 0 constants[3] = 0 states[0] = 1.0 constants[4] = 4 constants[5] = 10 constants[6] = custom_piecewise([less((constants[0]-1.00000)*1.00000 , 0.00000), 0.00000 , True, (constants[0]-1.00000)*1.00000]) constants[7] = custom_piecewise([less((constants[1]+1.00000)*2.00000 , 0.00000), 0.00000 , True, (constants[1]+1.00000)*2.00000]) constants[8] = (constants[6]+constants[7])/3.00000 constants[9] = custom_piecewise([greater(constants[2] , 0.00000), constants[2] , True, constants[8]+constants[3]]) return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic rates[0] = (constants[9]-states[0])/constants[4] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[0] = constants[5]-constants[5]/(0.555556*(1.00000+states[0])) algebraic[1] = custom_piecewise([less(algebraic[0] , -1.00000), -1.00000 , True, algebraic[0]]) return algebraic def custom_piecewise(cases): """Compute result of a piecewise function""" return select(cases[0::2],cases[1::2]) def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)