Generated Code
The following is python code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
# Size of variable arrays: sizeAlgebraic = 2 sizeStates = 2 sizeConstants = 13 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (second)" legend_constants[0] = "v0 in component parameters (micromolar_s)" legend_constants[1] = "v1 in component parameters (micromolar_s)" legend_algebraic[0] = "v2 in component parameters (micromolar_s)" legend_algebraic[1] = "v3 in component parameters (micromolar_s)" legend_constants[2] = "beta in component parameters (dimensionless)" legend_constants[3] = "VM2 in component parameters (micromolar_s)" legend_constants[4] = "VM3 in component parameters (micromolar_s)" legend_constants[5] = "KR in component parameters (micromolar)" legend_constants[6] = "KA in component parameters (micromolar)" legend_constants[7] = "kf in component parameters (per_second)" legend_constants[8] = "k in component parameters (per_second)" legend_constants[9] = "K2 in component parameters (micromolar)" legend_constants[10] = "n in component parameters (dimensionless)" legend_constants[11] = "m in component parameters (dimensionless)" legend_constants[12] = "p in component parameters (dimensionless)" legend_states[0] = "Z in component cytosol (micromolar)" legend_states[1] = "Y in component insensitive_pool (micromolar)" legend_rates[0] = "d/dt Z in component cytosol (micromolar)" legend_rates[1] = "d/dt Y in component insensitive_pool (micromolar)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; constants[0] = 1 constants[1] = 7.3 constants[2] = 0.6 constants[3] = 65 constants[4] = 500 constants[5] = 2 constants[6] = 0.9 constants[7] = 1 constants[8] = 10 constants[9] = 1 constants[10] = 2 constants[11] = 2 constants[12] = 4 states[0] = 0.52 states[1] = 0.93 return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic algebraic[0] = (constants[3]*(power(states[0], constants[10])))/(power(constants[9], constants[10])+power(states[0], constants[10])) algebraic[1] = constants[4]*((power(states[1], constants[11]))/(power(constants[5], constants[11])+power(states[1], constants[11])))*((power(states[0], constants[12]))/(power(constants[6], constants[12])+power(states[0], constants[12]))) rates[0] = (((constants[0]+constants[1]*constants[2])-algebraic[0])+algebraic[1]+constants[7]*states[1])-constants[8]*states[0] rates[1] = (algebraic[0]-algebraic[1])-constants[7]*states[1] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[0] = (constants[3]*(power(states[0], constants[10])))/(power(constants[9], constants[10])+power(states[0], constants[10])) algebraic[1] = constants[4]*((power(states[1], constants[11]))/(power(constants[5], constants[11])+power(states[1], constants[11])))*((power(states[0], constants[12]))/(power(constants[6], constants[12])+power(states[0], constants[12]))) return algebraic def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)