Generated Code
The following is python code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
# Size of variable arrays: sizeAlgebraic = 13 sizeStates = 3 sizeConstants = 19 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (second)" legend_constants[16] = "F in component main (dimensionless)" legend_constants[0] = "R_T in component main (dimensionless)" legend_algebraic[0] = "R_off in component main (dimensionless)" legend_states[0] = "D in component main (dimensionless)" legend_states[1] = "A_1 in component main (dimensionless)" legend_states[2] = "A_2 in component main (dimensionless)" legend_algebraic[4] = "lambda_off in component main (dimensionless)" legend_algebraic[5] = "lambda_on in component main (dimensionless)" legend_algebraic[1] = "lambda_D in component main (dimensionless)" legend_algebraic[2] = "lambda_A_1 in component main (dimensionless)" legend_algebraic[6] = "lambda_A_2 in component main (dimensionless)" legend_algebraic[3] = "lambda_A2_cyc in component main (dimensionless)" legend_constants[15] = "Ca in component main (dimensionless)" legend_constants[14] = "Ca_50 in component main (dimensionless)" legend_algebraic[11] = "k_on in component XB_RU_interaction (per_second)" legend_algebraic[12] = "k_off in component XB_RU_interaction (per_second)" legend_constants[1] = "k_0_on in component main (per_second)" legend_constants[2] = "k_0_off in component main (per_second)" legend_constants[3] = "k_Ca_on in component main (per_second)" legend_constants[4] = "k_Ca_off in component main (per_second)" legend_algebraic[9] = "f in component XB_XB_interaction (per_second)" legend_algebraic[10] = "f_prime in component XB_XB_interaction (per_second)" legend_constants[5] = "f_0 in component main (per_second)" legend_constants[6] = "f_prime_0 in component main (per_second)" legend_constants[7] = "h in component main (per_second)" legend_constants[8] = "h_prime in component main (per_second)" legend_constants[9] = "g in component main (per_second)" legend_constants[10] = "n_H in component main (dimensionless)" legend_constants[11] = "u in component main (dimensionless)" legend_constants[12] = "w in component main (dimensionless)" legend_constants[13] = "v in component main (dimensionless)" legend_constants[17] = "k_u_on in component RU_rate_constant (per_second)" legend_constants[18] = "k_u_off in component RU_rate_constant (per_second)" legend_algebraic[7] = "k_w_on in component RU_RU_interaction (per_second)" legend_algebraic[8] = "k_w_off in component RU_RU_interaction (per_second)" legend_rates[0] = "d/dt D in component main (dimensionless)" legend_rates[1] = "d/dt A_1 in component main (dimensionless)" legend_rates[2] = "d/dt A_2 in component main (dimensionless)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; constants[0] = 1 states[0] = 0 states[1] = 0 states[2] = 0 constants[1] = 0 constants[2] = 100 constants[3] = 120 constants[4] = 50 constants[5] = 50 constants[6] = 400 constants[7] = 8 constants[8] = 6 constants[9] = 4 constants[10] = 1 constants[11] = 1 constants[12] = 1 constants[13] = 1 constants[14] = constants[4]/constants[3] constants[15] = constants[14]*100.000 constants[16] = 1.00000/(1.00000+power(constants[15]/constants[14], -constants[10])) constants[17] = constants[1]+((constants[3]-constants[1])*constants[15])/(constants[14]+constants[15]) constants[18] = constants[2]+((constants[4]-constants[2])*constants[15])/(constants[14]+constants[15]) return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic rates[2] = constants[7]*states[1]-(constants[8]+constants[9])*states[2] algebraic[6] = states[2]/constants[0] algebraic[9] = constants[5]*(power(1.00000+algebraic[6]*(exp(constants[13]-1.00000)-1.00000), 2.00000)) algebraic[10] = constants[6]*(power(1.00000+algebraic[6]*(exp(-(constants[13]-1.00000))-1.00000), 2.00000)) rates[1] = (algebraic[9]*states[0]+constants[8]*states[2])-(algebraic[10]+constants[7])*states[1] algebraic[0] = constants[0]-(states[0]+states[1]+states[2]) algebraic[5] = (states[0]+states[1]+states[2])/constants[0] algebraic[7] = constants[17]*(power(1.00000+algebraic[5]*(constants[11]-1.00000), 2.00000)) algebraic[11] = algebraic[7]*(power(1.00000+algebraic[6]*(exp(constants[12]-1.00000)-1.00000), 2.00000)) algebraic[8] = constants[18]*(power(constants[11]-algebraic[5]*(constants[11]-1.00000), 2.00000)) algebraic[12] = algebraic[8]*(power(1.00000+algebraic[6]*(exp(-(constants[12]-1.00000))-1.00000), 2.00000)) rates[0] = (algebraic[11]*algebraic[0]+algebraic[10]*states[1]+constants[9]*states[2])-(algebraic[12]+algebraic[9])*states[0] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[6] = states[2]/constants[0] algebraic[9] = constants[5]*(power(1.00000+algebraic[6]*(exp(constants[13]-1.00000)-1.00000), 2.00000)) algebraic[10] = constants[6]*(power(1.00000+algebraic[6]*(exp(-(constants[13]-1.00000))-1.00000), 2.00000)) algebraic[0] = constants[0]-(states[0]+states[1]+states[2]) algebraic[5] = (states[0]+states[1]+states[2])/constants[0] algebraic[7] = constants[17]*(power(1.00000+algebraic[5]*(constants[11]-1.00000), 2.00000)) algebraic[11] = algebraic[7]*(power(1.00000+algebraic[6]*(exp(constants[12]-1.00000)-1.00000), 2.00000)) algebraic[8] = constants[18]*(power(constants[11]-algebraic[5]*(constants[11]-1.00000), 2.00000)) algebraic[12] = algebraic[8]*(power(1.00000+algebraic[6]*(exp(-(constants[12]-1.00000))-1.00000), 2.00000)) algebraic[1] = states[0]/constants[0] algebraic[2] = states[1]/constants[0] algebraic[3] = states[2]/(states[0]+states[1]+states[2]) algebraic[4] = algebraic[0]/constants[0] return algebraic def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)