Generated Code
The following is c_ida code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
/* There are a total of 12 entries in the algebraic variable array. There are a total of 4 entries in each of the rate and state variable arrays. There are a total of 5 entries in the constant variable array. */ /* * VOI is time in component environment (second). * STATES[0] is V in component membrane (millivolt). * CONSTANTS[0] is Cm in component membrane (microF). * ALGEBRAIC[1] is i_Na in component sodium_channel (nanoA). * ALGEBRAIC[11] is i_K in component potassium_channel (nanoA). * ALGEBRAIC[10] is i_Leak in component leakage_current (nanoA). * CONSTANTS[1] is g_Na_max in component sodium_channel (microS). * ALGEBRAIC[0] is g_Na in component sodium_channel (microS). * CONSTANTS[2] is E_Na in component sodium_channel (millivolt). * STATES[1] is m in component sodium_channel_m_gate (dimensionless). * STATES[2] is h in component sodium_channel_h_gate (dimensionless). * ALGEBRAIC[2] is alpha_m in component sodium_channel_m_gate (per_second). * ALGEBRAIC[3] is beta_m in component sodium_channel_m_gate (per_second). * ALGEBRAIC[4] is alpha_h in component sodium_channel_h_gate (per_second). * ALGEBRAIC[5] is beta_h in component sodium_channel_h_gate (per_second). * ALGEBRAIC[6] is g_K1 in component potassium_channel (microS). * ALGEBRAIC[7] is g_K2 in component potassium_channel (microS). * STATES[3] is n in component potassium_channel_n_gate (dimensionless). * ALGEBRAIC[8] is alpha_n in component potassium_channel_n_gate (per_second). * ALGEBRAIC[9] is beta_n in component potassium_channel_n_gate (per_second). * CONSTANTS[3] is g_L in component leakage_current (microS). * CONSTANTS[4] is E_L in component leakage_current (millivolt). * RATES[0] is d/dt V in component membrane (millivolt). * RATES[1] is d/dt m in component sodium_channel_m_gate (dimensionless). * RATES[2] is d/dt h in component sodium_channel_h_gate (dimensionless). * RATES[3] is d/dt n in component potassium_channel_n_gate (dimensionless). * There are a total of 0 condition variables. */ void initConsts(double* CONSTANTS, double* RATES, double *STATES) { STATES[0] = -87; CONSTANTS[0] = 12; CONSTANTS[1] = 400000; CONSTANTS[2] = 40; STATES[1] = 0.01; STATES[2] = 0.8; STATES[3] = 0.01; CONSTANTS[3] = 75; CONSTANTS[4] = -60; RATES[0] = 0.1001; RATES[1] = 0.1001; RATES[2] = 0.1001; RATES[3] = 0.1001; } void computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { resid[0] = RATES[0] - - (ALGEBRAIC[1]+ALGEBRAIC[11]+ALGEBRAIC[10])/CONSTANTS[0]; resid[1] = RATES[1] - ALGEBRAIC[2]*(1.00000 - STATES[1]) - ALGEBRAIC[3]*STATES[1]; resid[2] = RATES[2] - ALGEBRAIC[4]*(1.00000 - STATES[2]) - ALGEBRAIC[5]*STATES[2]; resid[3] = RATES[3] - ALGEBRAIC[8]*(1.00000 - STATES[3]) - ALGEBRAIC[9]*STATES[3]; } void computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { } void computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[0] = pow(STATES[1], 3.00000)*STATES[2]*CONSTANTS[1]; ALGEBRAIC[1] = (ALGEBRAIC[0]+140.000)*(STATES[0] - CONSTANTS[2]); ALGEBRAIC[2] = ( 100.000*(- STATES[0] - 48.0000))/(exp((- STATES[0] - 48.0000)/15.0000) - 1.00000); ALGEBRAIC[3] = ( 120.000*(STATES[0]+8.00000))/(exp((STATES[0]+8.00000)/5.00000) - 1.00000); ALGEBRAIC[4] = 170.000*exp((- STATES[0] - 90.0000)/20.0000); ALGEBRAIC[5] = 1000.00/(1.00000+exp((- STATES[0] - 42.0000)/10.0000)); ALGEBRAIC[8] = ( 0.100000*(- STATES[0] - 50.0000))/(exp((- STATES[0] - 50.0000)/10.0000) - 1.00000); ALGEBRAIC[9] = 2.00000*exp((- STATES[0] - 90.0000)/80.0000); ALGEBRAIC[10] = CONSTANTS[3]*(STATES[0] - CONSTANTS[4]); ALGEBRAIC[6] = 1200.00*exp((- STATES[0] - 90.0000)/50.0000)+ 15.0000*exp((STATES[0]+90.0000)/60.0000); ALGEBRAIC[7] = 1200.00*pow(STATES[3], 4.00000); ALGEBRAIC[11] = (ALGEBRAIC[6]+ALGEBRAIC[7])*(STATES[0]+100.000); } void getStateInformation(double* SI) { SI[0] = 1.0; SI[1] = 1.0; SI[2] = 1.0; SI[3] = 1.0; } void computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { }