Generated Code

The following is matlab code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction()
    % This is the "main function".  In Matlab, things work best if you rename this function to match the filename.
   [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel();
end

function [algebraicVariableCount] = getAlgebraicVariableCount() 
    % Used later when setting a global variable with the number of algebraic variables.
    % Note: This is not the "main method".  
    algebraicVariableCount =12;
end
% There are a total of 4 entries in each of the rate and state variable arrays.
% There are a total of 5 entries in the constant variable array.
%

function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel()
    % Create ALGEBRAIC of correct size
    global algebraicVariableCount;  algebraicVariableCount = getAlgebraicVariableCount();
    % Initialise constants and state variables
    [INIT_STATES, CONSTANTS] = initConsts;

    % Set timespan to solve over 
    tspan = [0, 10];

    % Set numerical accuracy options for ODE solver
    options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1);

    % Solve model with ODE solver
    [VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options);

    % Compute algebraic variables
    [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS);
    ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI);

    % Plot state variables against variable of integration
    [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends();
    figure();
    plot(VOI, STATES);
    xlabel(LEGEND_VOI);
    l = legend(LEGEND_STATES);
    set(l,'Interpreter','none');
end

function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends()
    LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = '';
    LEGEND_VOI = strpad('time in component environment (second)');
    LEGEND_STATES(:,1) = strpad('V in component membrane (millivolt)');
    LEGEND_CONSTANTS(:,1) = strpad('Cm in component membrane (microF)');
    LEGEND_ALGEBRAIC(:,5) = strpad('i_Na in component sodium_channel (nanoA)');
    LEGEND_ALGEBRAIC(:,11) = strpad('i_K in component potassium_channel (nanoA)');
    LEGEND_ALGEBRAIC(:,12) = strpad('i_Leak in component leakage_current (nanoA)');
    LEGEND_CONSTANTS(:,2) = strpad('g_Na_max in component sodium_channel (microS)');
    LEGEND_ALGEBRAIC(:,1) = strpad('g_Na in component sodium_channel (microS)');
    LEGEND_CONSTANTS(:,3) = strpad('E_Na in component sodium_channel (millivolt)');
    LEGEND_STATES(:,2) = strpad('m in component sodium_channel_m_gate (dimensionless)');
    LEGEND_STATES(:,3) = strpad('h in component sodium_channel_h_gate (dimensionless)');
    LEGEND_ALGEBRAIC(:,2) = strpad('alpha_m in component sodium_channel_m_gate (per_second)');
    LEGEND_ALGEBRAIC(:,6) = strpad('beta_m in component sodium_channel_m_gate (per_second)');
    LEGEND_ALGEBRAIC(:,3) = strpad('alpha_h in component sodium_channel_h_gate (per_second)');
    LEGEND_ALGEBRAIC(:,7) = strpad('beta_h in component sodium_channel_h_gate (per_second)');
    LEGEND_ALGEBRAIC(:,9) = strpad('g_K1 in component potassium_channel (microS)');
    LEGEND_ALGEBRAIC(:,10) = strpad('g_K2 in component potassium_channel (microS)');
    LEGEND_STATES(:,4) = strpad('n in component potassium_channel_n_gate (dimensionless)');
    LEGEND_ALGEBRAIC(:,4) = strpad('alpha_n in component potassium_channel_n_gate (per_second)');
    LEGEND_ALGEBRAIC(:,8) = strpad('beta_n in component potassium_channel_n_gate (per_second)');
    LEGEND_CONSTANTS(:,4) = strpad('g_L in component leakage_current (microS)');
    LEGEND_CONSTANTS(:,5) = strpad('E_L in component leakage_current (millivolt)');
    LEGEND_RATES(:,1) = strpad('d/dt V in component membrane (millivolt)');
    LEGEND_RATES(:,2) = strpad('d/dt m in component sodium_channel_m_gate (dimensionless)');
    LEGEND_RATES(:,3) = strpad('d/dt h in component sodium_channel_h_gate (dimensionless)');
    LEGEND_RATES(:,4) = strpad('d/dt n in component potassium_channel_n_gate (dimensionless)');
    LEGEND_STATES  = LEGEND_STATES';
    LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC';
    LEGEND_RATES = LEGEND_RATES';
    LEGEND_CONSTANTS = LEGEND_CONSTANTS';
end

function [STATES, CONSTANTS] = initConsts()
    VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = [];
    STATES(:,1) = -87;
    CONSTANTS(:,1) = 12;
    CONSTANTS(:,2) = 400000;
    CONSTANTS(:,3) = 40;
    STATES(:,2) = 0.01;
    STATES(:,3) = 0.8;
    STATES(:,4) = 0.01;
    CONSTANTS(:,4) = 75;
    CONSTANTS(:,5) = -60;
    if (isempty(STATES)), warning('Initial values for states not set');, end
end

function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS)
    global algebraicVariableCount;
    statesSize = size(STATES);
    statesColumnCount = statesSize(2);
    if ( statesColumnCount == 1)
        STATES = STATES';
        ALGEBRAIC = zeros(1, algebraicVariableCount);
        utilOnes = 1;
    else
        statesRowCount = statesSize(1);
        ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount);
        RATES = zeros(statesRowCount, statesColumnCount);
        utilOnes = ones(statesRowCount, 1);
    end
    ALGEBRAIC(:,2) = ( 100.000.*( - STATES(:,1) - 48.0000))./(exp(( - STATES(:,1) - 48.0000)./15.0000) - 1.00000);
    ALGEBRAIC(:,6) = ( 120.000.*(STATES(:,1)+8.00000))./(exp((STATES(:,1)+8.00000)./5.00000) - 1.00000);
    RATES(:,2) =  ALGEBRAIC(:,2).*(1.00000 - STATES(:,2)) -  ALGEBRAIC(:,6).*STATES(:,2);
    ALGEBRAIC(:,3) =  170.000.*exp(( - STATES(:,1) - 90.0000)./20.0000);
    ALGEBRAIC(:,7) = 1000.00./(1.00000+exp(( - STATES(:,1) - 42.0000)./10.0000));
    RATES(:,3) =  ALGEBRAIC(:,3).*(1.00000 - STATES(:,3)) -  ALGEBRAIC(:,7).*STATES(:,3);
    ALGEBRAIC(:,4) = ( 0.100000.*( - STATES(:,1) - 50.0000))./(exp(( - STATES(:,1) - 50.0000)./10.0000) - 1.00000);
    ALGEBRAIC(:,8) =  2.00000.*exp(( - STATES(:,1) - 90.0000)./80.0000);
    RATES(:,4) =  ALGEBRAIC(:,4).*(1.00000 - STATES(:,4)) -  ALGEBRAIC(:,8).*STATES(:,4);
    ALGEBRAIC(:,1) =  power(STATES(:,2), 3.00000).*STATES(:,3).*CONSTANTS(:,2);
    ALGEBRAIC(:,5) =  (ALGEBRAIC(:,1)+140.000).*(STATES(:,1) - CONSTANTS(:,3));
    ALGEBRAIC(:,9) =  1200.00.*exp(( - STATES(:,1) - 90.0000)./50.0000)+ 15.0000.*exp((STATES(:,1)+90.0000)./60.0000);
    ALGEBRAIC(:,10) =  1200.00.*power(STATES(:,4), 4.00000);
    ALGEBRAIC(:,11) =  (ALGEBRAIC(:,9)+ALGEBRAIC(:,10)).*(STATES(:,1)+100.000);
    ALGEBRAIC(:,12) =  CONSTANTS(:,4).*(STATES(:,1) - CONSTANTS(:,5));
    RATES(:,1) =  - (ALGEBRAIC(:,5)+ALGEBRAIC(:,11)+ALGEBRAIC(:,12))./CONSTANTS(:,1);
   RATES = RATES';
end

% Calculate algebraic variables
function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI)
    statesSize = size(STATES);
    statesColumnCount = statesSize(2);
    if ( statesColumnCount == 1)
        STATES = STATES';
        utilOnes = 1;
    else
        statesRowCount = statesSize(1);
        utilOnes = ones(statesRowCount, 1);
    end
    ALGEBRAIC(:,2) = ( 100.000.*( - STATES(:,1) - 48.0000))./(exp(( - STATES(:,1) - 48.0000)./15.0000) - 1.00000);
    ALGEBRAIC(:,6) = ( 120.000.*(STATES(:,1)+8.00000))./(exp((STATES(:,1)+8.00000)./5.00000) - 1.00000);
    ALGEBRAIC(:,3) =  170.000.*exp(( - STATES(:,1) - 90.0000)./20.0000);
    ALGEBRAIC(:,7) = 1000.00./(1.00000+exp(( - STATES(:,1) - 42.0000)./10.0000));
    ALGEBRAIC(:,4) = ( 0.100000.*( - STATES(:,1) - 50.0000))./(exp(( - STATES(:,1) - 50.0000)./10.0000) - 1.00000);
    ALGEBRAIC(:,8) =  2.00000.*exp(( - STATES(:,1) - 90.0000)./80.0000);
    ALGEBRAIC(:,1) =  power(STATES(:,2), 3.00000).*STATES(:,3).*CONSTANTS(:,2);
    ALGEBRAIC(:,5) =  (ALGEBRAIC(:,1)+140.000).*(STATES(:,1) - CONSTANTS(:,3));
    ALGEBRAIC(:,9) =  1200.00.*exp(( - STATES(:,1) - 90.0000)./50.0000)+ 15.0000.*exp((STATES(:,1)+90.0000)./60.0000);
    ALGEBRAIC(:,10) =  1200.00.*power(STATES(:,4), 4.00000);
    ALGEBRAIC(:,11) =  (ALGEBRAIC(:,9)+ALGEBRAIC(:,10)).*(STATES(:,1)+100.000);
    ALGEBRAIC(:,12) =  CONSTANTS(:,4).*(STATES(:,1) - CONSTANTS(:,5));
end

% Pad out or shorten strings to a set length
function strout = strpad(strin)
    req_length = 160;
    insize = size(strin,2);
    if insize > req_length
        strout = strin(1:req_length);
    else
        strout = [strin, blanks(req_length - insize)];
    end
end