Generated Code
The following is python code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
# Size of variable arrays: sizeAlgebraic = 1 sizeStates = 2 sizeConstants = 9 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (hour)" legend_states[0] = "S in component S (dimensionless)" legend_constants[0] = "rs in component kinetic_parameters (first_order_rate_constant)" legend_constants[1] = "epsilon_s in component kinetic_parameters (first_order_rate_constant)" legend_constants[2] = "alpha in component kinetic_parameters (first_order_rate_constant)" legend_constants[3] = "u in component kinetic_parameters (first_order_rate_constant)" legend_constants[4] = "beta in component kinetic_parameters (first_order_rate_constant)" legend_algebraic[0] = "phi in component phi (dimensionless)" legend_states[1] = "M in component M (dimensionless)" legend_constants[5] = "rm in component kinetic_parameters (first_order_rate_constant)" legend_constants[6] = "epsilon_m in component kinetic_parameters (first_order_rate_constant)" legend_constants[8] = "growth_rate in component phi (first_order_rate_constant)" legend_constants[7] = "a in component kinetic_parameters (first_order_rate_constant)" legend_rates[0] = "d/dt S in component S (dimensionless)" legend_rates[1] = "d/dt M in component M (dimensionless)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; states[0] = 0.5 constants[0] = 1 constants[1] = 0.99 constants[2] = 0.1 constants[3] = 0.07 constants[4] = 0.2 states[1] = 0.5 constants[5] = 1.3 constants[6] = 0.1 constants[7] = 0.5 constants[8] = (constants[0]+constants[5])*(1.00000-constants[7]/1.00000) return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic algebraic[0] = ((states[0]*constants[0])/1.00000)*(1.00000-(constants[3]/1.00000)*((1.00000-(constants[4]*constants[1])/1.00000)-(constants[2]/1.00000)*(1.00000-constants[1]/1.00000)))+((states[1]*constants[5])/1.00000)*(1.00000-(constants[3]/1.00000)*((1.00000-(constants[4]*constants[6])/1.00000)-(constants[2]/1.00000)*(1.00000-constants[6]/1.00000))) rates[0] = (constants[0]*states[0]*((1.00000-constants[3]*1.00000)+(constants[4]*constants[1]*constants[3])/1.00000)+((constants[2]*constants[3]*constants[0]*states[0])/1.00000)*(1.00000-constants[1]))-algebraic[0]*states[0]*1.00000 rates[1] = (constants[5]*states[1]*((1.00000-constants[3]/1.00000)+(constants[4]*constants[6]*constants[3])/1.00000)+((constants[2]*constants[3]*constants[5]*states[1])/1.00000)*(1.00000-constants[6]))-algebraic[0]*states[1]*1.00000 return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[0] = ((states[0]*constants[0])/1.00000)*(1.00000-(constants[3]/1.00000)*((1.00000-(constants[4]*constants[1])/1.00000)-(constants[2]/1.00000)*(1.00000-constants[1]/1.00000)))+((states[1]*constants[5])/1.00000)*(1.00000-(constants[3]/1.00000)*((1.00000-(constants[4]*constants[6])/1.00000)-(constants[2]/1.00000)*(1.00000-constants[6]/1.00000))) return algebraic def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)