Generated Code

The following is matlab code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction()
    % This is the "main function".  In Matlab, things work best if you rename this function to match the filename.
   [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel();
end

function [algebraicVariableCount] = getAlgebraicVariableCount() 
    % Used later when setting a global variable with the number of algebraic variables.
    % Note: This is not the "main method".  
    algebraicVariableCount =7;
end
% There are a total of 3 entries in each of the rate and state variable arrays.
% There are a total of 17 entries in the constant variable array.
%

function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel()
    % Create ALGEBRAIC of correct size
    global algebraicVariableCount;  algebraicVariableCount = getAlgebraicVariableCount();
    % Initialise constants and state variables
    [INIT_STATES, CONSTANTS] = initConsts;

    % Set timespan to solve over 
    tspan = [0, 10];

    % Set numerical accuracy options for ODE solver
    options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1);

    % Solve model with ODE solver
    [VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options);

    % Compute algebraic variables
    [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS);
    ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI);

    % Plot state variables against variable of integration
    [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends();
    figure();
    plot(VOI, STATES);
    xlabel(LEGEND_VOI);
    l = legend(LEGEND_STATES);
    set(l,'Interpreter','none');
end

function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends()
    LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = '';
    LEGEND_VOI = strpad('time in component environment (second)');
    LEGEND_ALGEBRAIC(:,1) = strpad('Ca_Pr in component total_calcium (micromolar)');
    LEGEND_CONSTANTS(:,1) = strpad('Ca_tot in component total_calcium (micromolar)');
    LEGEND_CONSTANTS(:,2) = strpad('rho_ER in component ER_calcium (dimensionless)');
    LEGEND_CONSTANTS(:,3) = strpad('beta_ER in component ER_calcium (dimensionless)');
    LEGEND_CONSTANTS(:,4) = strpad('rho_m in component mitochondrial_calcium (dimensionless)');
    LEGEND_CONSTANTS(:,5) = strpad('beta_m in component mitochondrial_calcium (dimensionless)');
    LEGEND_STATES(:,1) = strpad('Ca_cyt in component cytosolic_calcium (micromolar)');
    LEGEND_STATES(:,2) = strpad('Ca_ER in component ER_calcium (micromolar)');
    LEGEND_STATES(:,3) = strpad('Ca_m in component mitochondrial_calcium (micromolar)');
    LEGEND_ALGEBRAIC(:,2) = strpad('Pr in component total_protein (micromolar)');
    LEGEND_CONSTANTS(:,6) = strpad('Pr_tot in component total_protein (micromolar)');
    LEGEND_CONSTANTS(:,7) = strpad('k_plus in component cytosolic_calcium (second_order_rate_constant)');
    LEGEND_CONSTANTS(:,8) = strpad('k_minus in component cytosolic_calcium (first_order_rate_constant)');
    LEGEND_ALGEBRAIC(:,4) = strpad('J_ch in component Ca_efflux_from_the_ER (flux)');
    LEGEND_ALGEBRAIC(:,5) = strpad('J_leak in component Ca_leak_flux_from_the_ER (flux)');
    LEGEND_ALGEBRAIC(:,3) = strpad('J_pump in component ATP_dependent_Ca_uptake_into_the_ER (flux)');
    LEGEND_ALGEBRAIC(:,7) = strpad('J_out in component mitochondrial_Ca_release (flux)');
    LEGEND_ALGEBRAIC(:,6) = strpad('J_in in component mitochondrial_Ca_uptake (flux)');
    LEGEND_CONSTANTS(:,9) = strpad('k_pump in component ATP_dependent_Ca_uptake_into_the_ER (first_order_rate_constant)');
    LEGEND_CONSTANTS(:,10) = strpad('k_ch in component Ca_efflux_from_the_ER (first_order_rate_constant)');
    LEGEND_CONSTANTS(:,11) = strpad('K1 in component Ca_efflux_from_the_ER (micromolar)');
    LEGEND_CONSTANTS(:,12) = strpad('k_leak in component Ca_leak_flux_from_the_ER (first_order_rate_constant)');
    LEGEND_CONSTANTS(:,13) = strpad('k_in in component mitochondrial_Ca_uptake (flux)');
    LEGEND_CONSTANTS(:,14) = strpad('K2 in component mitochondrial_Ca_uptake (micromolar)');
    LEGEND_CONSTANTS(:,15) = strpad('k_out in component mitochondrial_Ca_release (first_order_rate_constant)');
    LEGEND_CONSTANTS(:,16) = strpad('k_m in component mitochondrial_Ca_release (first_order_rate_constant)');
    LEGEND_CONSTANTS(:,17) = strpad('K3 in component mitochondrial_Ca_release (micromolar)');
    LEGEND_RATES(:,1) = strpad('d/dt Ca_cyt in component cytosolic_calcium (micromolar)');
    LEGEND_RATES(:,2) = strpad('d/dt Ca_ER in component ER_calcium (micromolar)');
    LEGEND_RATES(:,3) = strpad('d/dt Ca_m in component mitochondrial_calcium (micromolar)');
    LEGEND_STATES  = LEGEND_STATES';
    LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC';
    LEGEND_RATES = LEGEND_RATES';
    LEGEND_CONSTANTS = LEGEND_CONSTANTS';
end

function [STATES, CONSTANTS] = initConsts()
    VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = [];
    CONSTANTS(:,1) = 90.0;
    CONSTANTS(:,2) = 0.01;
    CONSTANTS(:,3) = 0.0025;
    CONSTANTS(:,4) = 0.01;
    CONSTANTS(:,5) = 0.0025;
    STATES(:,1) = 0.05;
    STATES(:,2) = 1.0;
    STATES(:,3) = 0.4;
    CONSTANTS(:,6) = 120.0;
    CONSTANTS(:,7) = 0.1;
    CONSTANTS(:,8) = 0.01;
    CONSTANTS(:,9) = 20.0;
    CONSTANTS(:,10) = 4100.0;
    CONSTANTS(:,11) = 5.0;
    CONSTANTS(:,12) = 0.05;
    CONSTANTS(:,13) = 300.0;
    CONSTANTS(:,14) = 0.8;
    CONSTANTS(:,15) = 125.0;
    CONSTANTS(:,16) = 0.00625;
    CONSTANTS(:,17) = 5.0;
    if (isempty(STATES)), warning('Initial values for states not set');, end
end

function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS)
    global algebraicVariableCount;
    statesSize = size(STATES);
    statesColumnCount = statesSize(2);
    if ( statesColumnCount == 1)
        STATES = STATES';
        ALGEBRAIC = zeros(1, algebraicVariableCount);
        utilOnes = 1;
    else
        statesRowCount = statesSize(1);
        ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount);
        RATES = zeros(statesRowCount, statesColumnCount);
        utilOnes = ones(statesRowCount, 1);
    end
    ALGEBRAIC(:,4) =  CONSTANTS(:,10).*(power(STATES(:,1), 2.00000)./(power(CONSTANTS(:,11), 2.00000)+power(STATES(:,1), 2.00000))).*(STATES(:,2) - STATES(:,1));
    ALGEBRAIC(:,5) =  CONSTANTS(:,12).*(STATES(:,2) - STATES(:,1));
    ALGEBRAIC(:,3) =  CONSTANTS(:,9).*STATES(:,1);
    RATES(:,2) =  (CONSTANTS(:,3)./CONSTANTS(:,2)).*(ALGEBRAIC(:,3) - (ALGEBRAIC(:,4)+ALGEBRAIC(:,5)));
    ALGEBRAIC(:,1) = CONSTANTS(:,1) - (STATES(:,1)+ (CONSTANTS(:,2)./CONSTANTS(:,3)).*STATES(:,2)+ (CONSTANTS(:,4)./CONSTANTS(:,5)).*STATES(:,3));
    ALGEBRAIC(:,2) = CONSTANTS(:,6) - ALGEBRAIC(:,1);
    ALGEBRAIC(:,7) =  ( CONSTANTS(:,15).*(power(STATES(:,1), 2.00000)./(power(CONSTANTS(:,17), 2.00000)+power(STATES(:,1), 2.00000)))+CONSTANTS(:,16)).*STATES(:,3);
    ALGEBRAIC(:,6) =  CONSTANTS(:,13).*(power(STATES(:,1), 8.00000)./(power(CONSTANTS(:,14), 8.00000)+power(STATES(:,1), 8.00000)));
    RATES(:,1) = (ALGEBRAIC(:,4)+ALGEBRAIC(:,5)+ALGEBRAIC(:,7)+ CONSTANTS(:,8).*ALGEBRAIC(:,1)) - (ALGEBRAIC(:,3)+ALGEBRAIC(:,6)+ CONSTANTS(:,7).*STATES(:,1).*ALGEBRAIC(:,2));
    RATES(:,3) =  (CONSTANTS(:,5)./CONSTANTS(:,4)).*(ALGEBRAIC(:,6) - ALGEBRAIC(:,7));
   RATES = RATES';
end

% Calculate algebraic variables
function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI)
    statesSize = size(STATES);
    statesColumnCount = statesSize(2);
    if ( statesColumnCount == 1)
        STATES = STATES';
        utilOnes = 1;
    else
        statesRowCount = statesSize(1);
        utilOnes = ones(statesRowCount, 1);
    end
    ALGEBRAIC(:,4) =  CONSTANTS(:,10).*(power(STATES(:,1), 2.00000)./(power(CONSTANTS(:,11), 2.00000)+power(STATES(:,1), 2.00000))).*(STATES(:,2) - STATES(:,1));
    ALGEBRAIC(:,5) =  CONSTANTS(:,12).*(STATES(:,2) - STATES(:,1));
    ALGEBRAIC(:,3) =  CONSTANTS(:,9).*STATES(:,1);
    ALGEBRAIC(:,1) = CONSTANTS(:,1) - (STATES(:,1)+ (CONSTANTS(:,2)./CONSTANTS(:,3)).*STATES(:,2)+ (CONSTANTS(:,4)./CONSTANTS(:,5)).*STATES(:,3));
    ALGEBRAIC(:,2) = CONSTANTS(:,6) - ALGEBRAIC(:,1);
    ALGEBRAIC(:,7) =  ( CONSTANTS(:,15).*(power(STATES(:,1), 2.00000)./(power(CONSTANTS(:,17), 2.00000)+power(STATES(:,1), 2.00000)))+CONSTANTS(:,16)).*STATES(:,3);
    ALGEBRAIC(:,6) =  CONSTANTS(:,13).*(power(STATES(:,1), 8.00000)./(power(CONSTANTS(:,14), 8.00000)+power(STATES(:,1), 8.00000)));
end

% Pad out or shorten strings to a set length
function strout = strpad(strin)
    req_length = 160;
    insize = size(strin,2);
    if insize > req_length
        strout = strin(1:req_length);
    else
        strout = [strin, blanks(req_length - insize)];
    end
end