Generated Code

The following is python code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

# Size of variable arrays:
sizeAlgebraic = 21
sizeStates = 20
sizeConstants = 50
from math import *
from numpy import *

def createLegends():
    legend_states = [""] * sizeStates
    legend_rates = [""] * sizeStates
    legend_algebraic = [""] * sizeAlgebraic
    legend_voi = ""
    legend_constants = [""] * sizeConstants
    legend_voi = "time in component environment (second)"
    legend_algebraic[5] = "LRG in component beta_adrenergic_receptor_module (micromolar)"
    legend_algebraic[7] = "RG in component beta_adrenergic_receptor_module (micromolar)"
    legend_algebraic[0] = "LR in component beta_adrenergic_receptor_module (micromolar)"
    legend_states[0] = "beta1_AR in component beta_adrenergic_receptor_module (micromolar)"
    legend_states[1] = "Gs in component beta_adrenergic_receptor_module (micromolar)"
    legend_states[2] = "beta1_ARact in component beta_adrenergic_receptor_module (micromolar)"
    legend_states[3] = "beta1_AR_S464 in component beta_adrenergic_receptor_module (micromolar)"
    legend_states[4] = "beta1_AR_S301 in component beta_adrenergic_receptor_module (micromolar)"
    legend_states[5] = "L in component beta_adrenergic_receptor_module (micromolar)"
    legend_constants[0] = "Ltotmax in component beta_adrenergic_receptor_module (micromolar)"
    legend_constants[1] = "KL in component beta_adrenergic_receptor_module (micromolar)"
    legend_constants[2] = "KR in component beta_adrenergic_receptor_module (micromolar)"
    legend_constants[3] = "KC in component beta_adrenergic_receptor_module (micromolar)"
    legend_constants[4] = "Gstot in component beta_adrenergic_receptor_module (micromolar)"
    legend_constants[5] = "k_betaARK_plus in component beta_adrenergic_receptor_module (first_order_rate_constant)"
    legend_constants[6] = "k_betaARK_minus in component beta_adrenergic_receptor_module (first_order_rate_constant)"
    legend_constants[7] = "k_PKA_plus in component beta_adrenergic_receptor_module (second_order_rate_constant)"
    legend_constants[8] = "k_PKA_minus in component beta_adrenergic_receptor_module (first_order_rate_constant)"
    legend_states[6] = "Gs_beta_gamma in component Gs_activation_module (micromolar)"
    legend_algebraic[9] = "PKACI in component PKA_activation_module (micromolar)"
    legend_states[7] = "Gs_alpha_GTPtot in component Gs_activation_module (micromolar)"
    legend_states[8] = "Gs_alpha_GDP in component Gs_activation_module (micromolar)"
    legend_constants[9] = "k_gact in component Gs_activation_module (first_order_rate_constant)"
    legend_constants[10] = "k_hyd in component Gs_activation_module (first_order_rate_constant)"
    legend_constants[11] = "k_reassoc in component Gs_activation_module (second_order_rate_constant)"
    legend_states[9] = "cAMPtot in component cyclic_AMP_metabolism_module (micromolar)"
    legend_states[10] = "AC in component cyclic_AMP_metabolism_module (micromolar)"
    legend_states[11] = "Gs_alpha_GTP in component cyclic_AMP_metabolism_module (micromolar)"
    legend_algebraic[2] = "Gs_alpha_GTP_AC in component cyclic_AMP_metabolism_module (micromolar)"
    legend_states[12] = "PDE in component cyclic_AMP_metabolism_module (micromolar)"
    legend_constants[12] = "ACtot in component cyclic_AMP_metabolism_module (micromolar)"
    legend_constants[13] = "ATP in component cyclic_AMP_metabolism_module (micromolar)"
    legend_constants[14] = "PDEtot in component cyclic_AMP_metabolism_module (micromolar)"
    legend_algebraic[1] = "PDEinhib in component cyclic_AMP_metabolism_module (micromolar)"
    legend_constants[15] = "IBMXtot in component cyclic_AMP_metabolism_module (micromolar)"
    legend_states[13] = "IBMX in component cyclic_AMP_metabolism_module (micromolar)"
    legend_constants[16] = "fsktot in component cyclic_AMP_metabolism_module (micromolar)"
    legend_states[14] = "fsk in component cyclic_AMP_metabolism_module (micromolar)"
    legend_algebraic[6] = "fsk_AC in component cyclic_AMP_metabolism_module (micromolar)"
    legend_constants[17] = "kAC_basal in component cyclic_AMP_metabolism_module (first_order_rate_constant)"
    legend_constants[18] = "kAC_fsk in component cyclic_AMP_metabolism_module (first_order_rate_constant)"
    legend_constants[19] = "k_PDE in component cyclic_AMP_metabolism_module (first_order_rate_constant)"
    legend_constants[20] = "kAC_Gs_alpha in component cyclic_AMP_metabolism_module (first_order_rate_constant)"
    legend_constants[21] = "Km_basal in component cyclic_AMP_metabolism_module (micromolar)"
    legend_constants[22] = "Km_PDE in component cyclic_AMP_metabolism_module (micromolar)"
    legend_constants[23] = "Km_fsk in component cyclic_AMP_metabolism_module (micromolar)"
    legend_constants[24] = "K_fsk in component cyclic_AMP_metabolism_module (micromolar)"
    legend_constants[25] = "Km_Gs_alpha_GTP in component cyclic_AMP_metabolism_module (micromolar)"
    legend_constants[26] = "K_Gs_alpha in component cyclic_AMP_metabolism_module (micromolar)"
    legend_constants[27] = "K_IBMX in component cyclic_AMP_metabolism_module (micromolar)"
    legend_algebraic[10] = "cAMP in component PKA_activation_module (micromolar)"
    legend_algebraic[11] = "PKACII in component PKA_activation_module (micromolar)"
    legend_algebraic[12] = "PKAtemp in component PKA_activation_module (micromolar)"
    legend_algebraic[13] = "ARCI in component PKA_activation_module (micromolar)"
    legend_algebraic[14] = "A2RCI in component PKA_activation_module (micromolar)"
    legend_algebraic[15] = "A2RI in component PKA_activation_module (micromolar)"
    legend_algebraic[16] = "A2RCII in component PKA_activation_module (micromolar)"
    legend_algebraic[17] = "A2RII in component PKA_activation_module (micromolar)"
    legend_algebraic[18] = "ARCII in component PKA_activation_module (micromolar)"
    legend_constants[28] = "Ki_pki in component PKA_activation_module (micromolar)"
    legend_constants[29] = "PKAItot in component PKA_activation_module (micromolar)"
    legend_constants[30] = "PKAIItot in component PKA_activation_module (micromolar)"
    legend_constants[31] = "PKItot in component PKA_activation_module (micromolar)"
    legend_constants[32] = "KA in component PKA_activation_module (micromolar)"
    legend_constants[33] = "KB in component PKA_activation_module (micromolar)"
    legend_constants[34] = "KD in component PKA_activation_module (micromolar)"
    legend_constants[35] = "KPKI in component PKA_activation_module (micromolar)"
    legend_algebraic[19] = "PKI in component PKA_activation_module (micromolar)"
    legend_algebraic[3] = "fracPLBp in component phospholamban_regulation_module (dimensionless)"
    legend_algebraic[20] = "fracPLB in component phospholamban_regulation_module (dimensionless)"
    legend_constants[36] = "fracPLBo in component phospholamban_regulation_module (dimensionless)"
    legend_states[15] = "PLBp in component phospholamban_regulation_module (micromolar)"
    legend_algebraic[8] = "PLB in component phospholamban_regulation_module (micromolar)"
    legend_states[16] = "Inhib1ptot in component phospholamban_regulation_module (micromolar)"
    legend_states[17] = "Inhib1 in component phospholamban_regulation_module (micromolar)"
    legend_states[18] = "Inhib1p in component phospholamban_regulation_module (micromolar)"
    legend_algebraic[4] = "PP1_Inhib1p in component phospholamban_regulation_module (micromolar)"
    legend_states[19] = "PP1 in component phospholamban_regulation_module (micromolar)"
    legend_constants[37] = "PP1tot in component phospholamban_regulation_module (micromolar)"
    legend_constants[38] = "PLBtot in component phospholamban_regulation_module (micromolar)"
    legend_constants[39] = "Inhib1tot in component phospholamban_regulation_module (micromolar)"
    legend_constants[40] = "epsilon in component phospholamban_regulation_module (dimensionless)"
    legend_constants[41] = "kPKA_PLB in component phospholamban_regulation_module (first_order_rate_constant)"
    legend_constants[42] = "KmPKA_PLB in component phospholamban_regulation_module (micromolar)"
    legend_constants[43] = "kPKA_Inhib1 in component phospholamban_regulation_module (first_order_rate_constant)"
    legend_constants[44] = "kPP1_PLB in component phospholamban_regulation_module (first_order_rate_constant)"
    legend_constants[45] = "KmPP1_PLB in component phospholamban_regulation_module (micromolar)"
    legend_constants[46] = "KmPKA_Inhib1 in component phospholamban_regulation_module (micromolar)"
    legend_constants[47] = "VmaxPP2A_Inhib1 in component phospholamban_regulation_module (flux)"
    legend_constants[48] = "KmPP2A_Inhib1 in component phospholamban_regulation_module (micromolar)"
    legend_constants[49] = "KInhib1 in component phospholamban_regulation_module (micromolar)"
    legend_rates[5] = "d/dt L in component beta_adrenergic_receptor_module (micromolar)"
    legend_rates[1] = "d/dt Gs in component beta_adrenergic_receptor_module (micromolar)"
    legend_rates[0] = "d/dt beta1_AR in component beta_adrenergic_receptor_module (micromolar)"
    legend_rates[2] = "d/dt beta1_ARact in component beta_adrenergic_receptor_module (micromolar)"
    legend_rates[3] = "d/dt beta1_AR_S464 in component beta_adrenergic_receptor_module (micromolar)"
    legend_rates[4] = "d/dt beta1_AR_S301 in component beta_adrenergic_receptor_module (micromolar)"
    legend_rates[7] = "d/dt Gs_alpha_GTPtot in component Gs_activation_module (micromolar)"
    legend_rates[6] = "d/dt Gs_beta_gamma in component Gs_activation_module (micromolar)"
    legend_rates[8] = "d/dt Gs_alpha_GDP in component Gs_activation_module (micromolar)"
    legend_rates[11] = "d/dt Gs_alpha_GTP in component cyclic_AMP_metabolism_module (micromolar)"
    legend_rates[14] = "d/dt fsk in component cyclic_AMP_metabolism_module (micromolar)"
    legend_rates[10] = "d/dt AC in component cyclic_AMP_metabolism_module (micromolar)"
    legend_rates[12] = "d/dt PDE in component cyclic_AMP_metabolism_module (micromolar)"
    legend_rates[13] = "d/dt IBMX in component cyclic_AMP_metabolism_module (micromolar)"
    legend_rates[9] = "d/dt cAMPtot in component cyclic_AMP_metabolism_module (micromolar)"
    legend_rates[19] = "d/dt PP1 in component phospholamban_regulation_module (micromolar)"
    legend_rates[18] = "d/dt Inhib1p in component phospholamban_regulation_module (micromolar)"
    legend_rates[15] = "d/dt PLBp in component phospholamban_regulation_module (micromolar)"
    legend_rates[16] = "d/dt Inhib1ptot in component phospholamban_regulation_module (micromolar)"
    legend_rates[17] = "d/dt Inhib1 in component phospholamban_regulation_module (micromolar)"
    return (legend_states, legend_algebraic, legend_voi, legend_constants)

def initConsts():
    constants = [0.0] * sizeConstants; states = [0.0] * sizeStates;
    states[0] = 0.0001
    states[1] = 3.182
    states[2] = 0.01205
    states[3] = 0
    states[4] = 1.154e-3
    states[5] = 0.988
    constants[0] = 1
    constants[1] = 0.285
    constants[2] = 0.062
    constants[3] = 33
    constants[4] = 3.83
    constants[5] = 1.1e-3
    constants[6] = 2.2e-3
    constants[7] = 3.6e-3
    constants[8] = 2.2e-3
    states[6] = 0.02569
    states[7] = 0.02505
    states[8] = 6.44e-4
    constants[9] = 16
    constants[10] = 0.8
    constants[11] = 1.21e3
    states[9] = 0.8453
    states[10] = 0.04706295
    states[11] = 0.02241295
    states[12] = 0.0389
    constants[12] = 49.7e-3
    constants[13] = 5e3
    constants[14] = 38.9e-3
    constants[15] = 0
    states[13] = 0
    constants[16] = 0
    states[14] = 0
    constants[17] = 0.2
    constants[18] = 7.3
    constants[19] = 5
    constants[20] = 8.5
    constants[21] = 1.03e3
    constants[22] = 1.3
    constants[23] = 860
    constants[24] = 44
    constants[25] = 0.4
    constants[26] = 0.4
    constants[27] = 30
    constants[28] = 0.2e-3
    constants[29] = 0.59
    constants[30] = 0.025
    constants[31] = 0.18
    constants[32] = 9.14e-3
    constants[33] = 1.64e-3
    constants[34] = 4.375e-3
    constants[35] = 2e-4
    constants[36] = 0.9613
    states[15] = 4.105
    states[16] = 0.0526
    states[17] = 0.2474
    states[18] = 6.27339e-5
    states[19] = 0.8374627
    constants[37] = 0.89
    constants[38] = 106
    constants[39] = 0.3
    constants[40] = 10
    constants[41] = 54
    constants[42] = 21
    constants[43] = 60
    constants[44] = 8.5
    constants[45] = 7
    constants[46] = 1
    constants[47] = 14
    constants[48] = 1
    constants[49] = 1e-3
    return (states, constants)

def computeRates(voi, states, constants):
    rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic
    rates[8] = constants[10]*states[7]-constants[11]*states[8]*states[6]
    algebraic[2] = (states[11]*states[10])/constants[26]
    rates[11] = states[7]-(algebraic[2]+states[11])
    rates[10] = constants[12]-(algebraic[2]+states[10])
    algebraic[1] = (states[12]*states[13])/constants[27]
    rates[12] = constants[14]-(algebraic[1]+states[12])
    rates[13] = constants[15]-(algebraic[1]+states[13])
    algebraic[4] = (states[19]*states[18])/constants[49]
    rates[19] = constants[37]-(algebraic[4]+states[19])
    rates[18] = states[16]-(algebraic[4]+states[18])
    algebraic[5] = (states[5]*states[0]*states[1])/(constants[1]*constants[2])
    algebraic[0] = (states[5]*states[0])/constants[1]
    rates[5] = constants[0]-(algebraic[0]+algebraic[5]+states[5])
    rates[3] = constants[5]*(algebraic[0]+algebraic[5])-constants[6]*states[3]
    algebraic[6] = (states[14]*states[10])/constants[24]
    rates[14] = constants[16]-(algebraic[6]+states[14])
    rates[9] = ((constants[17]*states[10]*constants[13])/(constants[21]+constants[13])+(constants[20]*algebraic[2]*constants[13])/(constants[25]+constants[13])+(constants[18]*algebraic[6]*constants[13])/(constants[23]+constants[13]))-(constants[19]*states[12]*states[9])/(constants[22]+states[9])
    algebraic[7] = (states[0]*states[1])/constants[3]
    rates[1] = constants[4]-(algebraic[7]+algebraic[5]+states[1])
    rates[0] = states[2]-(algebraic[0]+algebraic[5]+algebraic[7]+states[0])
    rates[7] = constants[9]*(algebraic[7]+algebraic[5])-constants[10]*states[7]
    rates[6] = constants[9]*(algebraic[7]+algebraic[5])-constants[11]*states[8]*states[6]
    rootfind_0(voi, constants, rates, states, algebraic)
    rates[2] = (constants[6]*states[3]-constants[5]*(algebraic[0]+algebraic[5]))+(constants[8]*states[4]-constants[7]*algebraic[9]*states[2])
    rates[4] = constants[7]*algebraic[9]*states[2]-constants[8]*states[4]
    algebraic[8] = constants[38]-states[15]
    rates[15] = (constants[41]*algebraic[9]*algebraic[8])/(constants[42]+algebraic[8])-(constants[44]*states[19]*states[15])/(constants[45]+states[15])
    rates[16] = (constants[43]*algebraic[9]*states[16])/(constants[46]+states[16])-(constants[47]*states[17])/(constants[48]+states[17])
    rates[17] = (constants[47]*states[17])/(constants[48]+states[17])-(constants[43]*algebraic[9]*states[16])/(constants[46]+states[16])
    return(rates)

def computeAlgebraic(constants, states, voi):
    algebraic = array([[0.0] * len(voi)] * sizeAlgebraic)
    states = array(states)
    voi = array(voi)
    algebraic[2] = (states[11]*states[10])/constants[26]
    algebraic[1] = (states[12]*states[13])/constants[27]
    algebraic[4] = (states[19]*states[18])/constants[49]
    algebraic[5] = (states[5]*states[0]*states[1])/(constants[1]*constants[2])
    algebraic[0] = (states[5]*states[0])/constants[1]
    algebraic[6] = (states[14]*states[10])/constants[24]
    algebraic[7] = (states[0]*states[1])/constants[3]
    algebraic[8] = constants[38]-states[15]
    algebraic[3] = states[15]/constants[38]
    algebraic[20] = algebraic[8]/constants[38]
    return algebraic

initialGuess0 = None
def rootfind_0(voi, constants, rates, states, algebraic):
    """Calculate values of algebraic variables for DAE"""
    from scipy.optimize import fsolve
    global initialGuess0
    if initialGuess0 is None: initialGuess0 = ones(11)*0.1
    if not iterable(voi):
        soln = fsolve(residualSN_0, initialGuess0, args=(algebraic, voi, constants, rates, states), xtol=1E-6)
        initialGuess0 = soln
        algebraic[9] = soln[0]
        algebraic[10] = soln[1]
        algebraic[11] = soln[2]
        algebraic[12] = soln[3]
        algebraic[13] = soln[4]
        algebraic[14] = soln[5]
        algebraic[15] = soln[6]
        algebraic[16] = soln[7]
        algebraic[17] = soln[8]
        algebraic[18] = soln[9]
        algebraic[19] = soln[10]
    else:
        for (i,t) in enumerate(voi):
            soln = fsolve(residualSN_0, initialGuess0, args=(algebraic[:,i], voi[i], constants, rates[:i], states[:,i]), xtol=1E-6)
            initialGuess0 = soln
            algebraic[9][i] = soln[0]
            algebraic[10][i] = soln[1]
            algebraic[11][i] = soln[2]
            algebraic[12][i] = soln[3]
            algebraic[13][i] = soln[4]
            algebraic[14][i] = soln[5]
            algebraic[15][i] = soln[6]
            algebraic[16][i] = soln[7]
            algebraic[17][i] = soln[8]
            algebraic[18][i] = soln[9]
            algebraic[19][i] = soln[10]

def residualSN_0(algebraicCandidate, algebraic, voi, constants, rates, states):
    resid = array([0.0] * 11)
    algebraic[9] = algebraicCandidate[0]
    algebraic[10] = algebraicCandidate[1]
    algebraic[11] = algebraicCandidate[2]
    algebraic[12] = algebraicCandidate[3]
    algebraic[13] = algebraicCandidate[4]
    algebraic[14] = algebraicCandidate[5]
    algebraic[15] = algebraicCandidate[6]
    algebraic[16] = algebraicCandidate[7]
    algebraic[17] = algebraicCandidate[8]
    algebraic[18] = algebraicCandidate[9]
    algebraic[19] = algebraicCandidate[10]
    resid[0] = (algebraic[19]-(constants[31]*constants[28])/(constants[28]+algebraic[9]+algebraic[11]))
    resid[1] = (algebraic[14]-(algebraic[9]/constants[34])*algebraic[9]*(1.00000+algebraic[19]/constants[28]))
    resid[2] = (algebraic[15]-algebraic[9]*(1.00000+algebraic[19]/constants[28]))
    resid[3] = (algebraic[16]-(algebraic[11]/constants[34])*algebraic[11]*(1.00000+algebraic[19]/constants[28]))
    resid[4] = (algebraic[17]-algebraic[11]*(1.00000+algebraic[19]/constants[28]))
    resid[5] = (algebraic[13]-(constants[32]/algebraic[10])*algebraic[14])
    resid[6] = (algebraic[18]-(constants[32]/algebraic[10])*algebraic[16])
    resid[7] = (algebraic[10]-((states[9]-(algebraic[13]+2.00000*algebraic[14]+2.00000*algebraic[15]))-(algebraic[18]+2.00000*algebraic[16]+2.00000*algebraic[17])))
    resid[8] = (algebraic[12]-((constants[32]*constants[33])/constants[34]+(constants[32]*algebraic[10])/constants[34]+(algebraic[10]*algebraic[10])/constants[34]))
    resid[9] = (algebraic[9]-(2.00000*constants[29]*algebraic[10]*algebraic[10]-algebraic[9]*(1.00000+algebraic[19]/constants[28])*(algebraic[12]*algebraic[9]+algebraic[10]*algebraic[10])))
    resid[10] = (algebraic[11]-(2.00000*constants[30]*algebraic[10]*algebraic[10]-algebraic[11]*(1.00000+algebraic[19]/constants[28])*(algebraic[12]*algebraic[11]+algebraic[10]*algebraic[10])))
    return resid

def solve_model():
    """Solve model with ODE solver"""
    from scipy.integrate import ode
    # Initialise constants and state variables
    (init_states, constants) = initConsts()

    # Set timespan to solve over
    voi = linspace(0, 10, 500)

    # Construct ODE object to solve
    r = ode(computeRates)
    r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1)
    r.set_initial_value(init_states, voi[0])
    r.set_f_params(constants)

    # Solve model
    states = array([[0.0] * len(voi)] * sizeStates)
    states[:,0] = init_states
    for (i,t) in enumerate(voi[1:]):
        if r.successful():
            r.integrate(t)
            states[:,i+1] = r.y
        else:
            break

    # Compute algebraic variables
    algebraic = computeAlgebraic(constants, states, voi)
    return (voi, states, algebraic)

def plot_model(voi, states, algebraic):
    """Plot variables against variable of integration"""
    import pylab
    (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends()
    pylab.figure(1)
    pylab.plot(voi,vstack((states,algebraic)).T)
    pylab.xlabel(legend_voi)
    pylab.legend(legend_states + legend_algebraic, loc='best')
    pylab.show()

if __name__ == "__main__":
    (voi, states, algebraic) = solve_model()
    plot_model(voi, states, algebraic)