Generated Code
The following is matlab code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction() % This is the "main function". In Matlab, things work best if you rename this function to match the filename. [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel(); end function [algebraicVariableCount] = getAlgebraicVariableCount() % Used later when setting a global variable with the number of algebraic variables. % Note: This is not the "main method". algebraicVariableCount =8; end % There are a total of 5 entries in each of the rate and state variable arrays. % There are a total of 22 entries in the constant variable array. % function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel() % Create ALGEBRAIC of correct size global algebraicVariableCount; algebraicVariableCount = getAlgebraicVariableCount(); % Initialise constants and state variables [INIT_STATES, CONSTANTS] = initConsts; % Set timespan to solve over tspan = [0, 10]; % Set numerical accuracy options for ODE solver options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1); % Solve model with ODE solver [VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options); % Compute algebraic variables [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS); ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI); % Plot state variables against variable of integration [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends(); figure(); plot(VOI, STATES); xlabel(LEGEND_VOI); l = legend(LEGEND_STATES); set(l,'Interpreter','none'); end function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends() LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = ''; LEGEND_VOI = strpad('time in component environment (day)'); LEGEND_STATES(:,1) = strpad('R in component R (nanomolar)'); LEGEND_CONSTANTS(:,1) = strpad('delta_R in component R (first_order_rate_constant)'); LEGEND_ALGEBRAIC(:,1) = strpad('logR in component R (dimensionless)'); LEGEND_ALGEBRAIC(:,2) = strpad('f1 in component f1 (flux)'); LEGEND_STATES(:,2) = strpad('U in component U (nanomolar)'); LEGEND_CONSTANTS(:,2) = strpad('delta_U in component U (first_order_rate_constant)'); LEGEND_ALGEBRAIC(:,3) = strpad('logU in component U (dimensionless)'); LEGEND_CONSTANTS(:,3) = strpad('alpha0 in component model_parameters (per_nanomolar_day)'); LEGEND_CONSTANTS(:,4) = strpad('alpha1 in component model_parameters (per_nanomolar_day)'); LEGEND_CONSTANTS(:,5) = strpad('d01 in component model_parameters (first_order_rate_constant)'); LEGEND_CONSTANTS(:,6) = strpad('d12 in component model_parameters (first_order_rate_constant)'); LEGEND_STATES(:,3) = strpad('B1 in component B1 (nanomolar)'); LEGEND_STATES(:,4) = strpad('B2 in component B2 (nanomolar)'); LEGEND_ALGEBRAIC(:,7) = strpad('P in component P (nanomolar)'); LEGEND_ALGEBRAIC(:,8) = strpad('f2 in component f2 (flux)'); LEGEND_CONSTANTS(:,7) = strpad('delta_b1 in component B1 (first_order_rate_constant)'); LEGEND_ALGEBRAIC(:,5) = strpad('logB1 in component B1 (dimensionless)'); LEGEND_CONSTANTS(:,8) = strpad('delta_b2 in component B2 (first_order_rate_constant)'); LEGEND_ALGEBRAIC(:,6) = strpad('logB2 in component B2 (dimensionless)'); LEGEND_CONSTANTS(:,9) = strpad('PE in component P (nanomolar)'); LEGEND_ALGEBRAIC(:,4) = strpad('q in component P (dimensionless)'); LEGEND_CONSTANTS(:,10) = strpad('G in component P (first_order_rate_constant)'); LEGEND_CONSTANTS(:,11) = strpad('ti in component P (day)'); LEGEND_CONSTANTS(:,12) = strpad('T in component P (day)'); LEGEND_CONSTANTS(:,13) = strpad('P0 in component model_parameters (nanomolar)'); LEGEND_CONSTANTS(:,14) = strpad('a in component f1 (flux)'); LEGEND_CONSTANTS(:,15) = strpad('a0 in component f1 (flux)'); LEGEND_CONSTANTS(:,16) = strpad('b in component f1 (nanomolar)'); LEGEND_CONSTANTS(:,17) = strpad('b0 in component f1 (nanomolar)'); LEGEND_STATES(:,5) = strpad('x in component x (flux)'); LEGEND_CONSTANTS(:,18) = strpad('P1 in component x (nanomolar)'); LEGEND_CONSTANTS(:,19) = strpad('s in component x (nanomolar_day2)'); LEGEND_CONSTANTS(:,20) = strpad('delta_x in component x (first_order_rate_constant)'); LEGEND_CONSTANTS(:,21) = strpad('kappa in component f2 (flux)'); LEGEND_CONSTANTS(:,22) = strpad('kappa0 in component f2 (nanomolar)'); LEGEND_RATES(:,1) = strpad('d/dt R in component R (nanomolar)'); LEGEND_RATES(:,2) = strpad('d/dt U in component U (nanomolar)'); LEGEND_RATES(:,3) = strpad('d/dt B1 in component B1 (nanomolar)'); LEGEND_RATES(:,4) = strpad('d/dt B2 in component B2 (nanomolar)'); LEGEND_RATES(:,5) = strpad('d/dt x in component x (flux)'); LEGEND_STATES = LEGEND_STATES'; LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC'; LEGEND_RATES = LEGEND_RATES'; LEGEND_CONSTANTS = LEGEND_CONSTANTS'; end function [STATES, CONSTANTS] = initConsts() VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = []; STATES(:,1) = 1.0; CONSTANTS(:,1) = 1.905; STATES(:,2) = 1.0; CONSTANTS(:,2) = 7.5; CONSTANTS(:,3) = 4.15; CONSTANTS(:,4) = 3.02; CONSTANTS(:,5) = 13.0; CONSTANTS(:,6) = 4.72E3; STATES(:,3) = 1.0; STATES(:,4) = 1.0; CONSTANTS(:,7) = 7.5; CONSTANTS(:,8) = 50.0; CONSTANTS(:,9) = 20.55; CONSTANTS(:,10) = 35.6; CONSTANTS(:,11) = 1.0; CONSTANTS(:,12) = 9.0; CONSTANTS(:,13) = 0.25; CONSTANTS(:,14) = 3.58E5; CONSTANTS(:,15) = 2.33E4; CONSTANTS(:,16) = 100.0; CONSTANTS(:,17) = 263.0; STATES(:,5) = 0.0; CONSTANTS(:,18) = 20.0; CONSTANTS(:,19) = 3.71E5; CONSTANTS(:,20) = 0.207; CONSTANTS(:,21) = 2.4E5; CONSTANTS(:,22) = 6.55E3; if (isempty(STATES)), warning('Initial values for states not set');, end end function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS) global algebraicVariableCount; statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; ALGEBRAIC = zeros(1, algebraicVariableCount); utilOnes = 1; else statesRowCount = statesSize(1); ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount); RATES = zeros(statesRowCount, statesColumnCount); utilOnes = ones(statesRowCount, 1); end RATES(:,4) = CONSTANTS(:,4).*STATES(:,3).*STATES(:,2) - ( CONSTANTS(:,6).*STATES(:,4)+ CONSTANTS(:,8).*STATES(:,4)); ALGEBRAIC(:,2) = CONSTANTS(:,15).*(1.00000 - STATES(:,4)./(CONSTANTS(:,16)+STATES(:,4)))+( STATES(:,5).*(1.00000 - exp( - STATES(:,5)./CONSTANTS(:,14))).*STATES(:,4))./(CONSTANTS(:,17)+STATES(:,4)); RATES(:,1) = ALGEBRAIC(:,2) - CONSTANTS(:,1).*STATES(:,1); ALGEBRAIC(:,4) = piecewise({VOI<CONSTANTS(:,11), 0.00000 , VOI<CONSTANTS(:,12)+CONSTANTS(:,11)&VOI>=CONSTANTS(:,11), 1.00000 - exp( - CONSTANTS(:,10).*(VOI - CONSTANTS(:,11))) }, exp( CONSTANTS(:,10).*CONSTANTS(:,12) - 1.00000).*exp( CONSTANTS(:,10).*(VOI - CONSTANTS(:,11)))); ALGEBRAIC(:,7) = CONSTANTS(:,13)+ CONSTANTS(:,9).*ALGEBRAIC(:,4); RATES(:,3) = ( CONSTANTS(:,3).*ALGEBRAIC(:,7).*STATES(:,2)+ CONSTANTS(:,6).*STATES(:,4)) - ( CONSTANTS(:,5).*STATES(:,3)+ CONSTANTS(:,7).*STATES(:,3)+ CONSTANTS(:,4).*STATES(:,3).*STATES(:,2)); RATES(:,5) = ( CONSTANTS(:,19).*(ALGEBRAIC(:,7) - CONSTANTS(:,13)))./(ALGEBRAIC(:,7)+CONSTANTS(:,18)) - CONSTANTS(:,20).*STATES(:,5); ALGEBRAIC(:,8) = ( CONSTANTS(:,21).*STATES(:,1))./(CONSTANTS(:,22)+STATES(:,1)); RATES(:,2) = (ALGEBRAIC(:,8)+ CONSTANTS(:,5).*STATES(:,3)+ CONSTANTS(:,6).*STATES(:,4)) - ( CONSTANTS(:,2).*STATES(:,2)+ CONSTANTS(:,3).*ALGEBRAIC(:,7).*STATES(:,2)+ CONSTANTS(:,4).*STATES(:,3).*STATES(:,2)); RATES = RATES'; end % Calculate algebraic variables function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI) statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; utilOnes = 1; else statesRowCount = statesSize(1); utilOnes = ones(statesRowCount, 1); end ALGEBRAIC(:,2) = CONSTANTS(:,15).*(1.00000 - STATES(:,4)./(CONSTANTS(:,16)+STATES(:,4)))+( STATES(:,5).*(1.00000 - exp( - STATES(:,5)./CONSTANTS(:,14))).*STATES(:,4))./(CONSTANTS(:,17)+STATES(:,4)); ALGEBRAIC(:,4) = piecewise({VOI<CONSTANTS(:,11), 0.00000 , VOI<CONSTANTS(:,12)+CONSTANTS(:,11)&VOI>=CONSTANTS(:,11), 1.00000 - exp( - CONSTANTS(:,10).*(VOI - CONSTANTS(:,11))) }, exp( CONSTANTS(:,10).*CONSTANTS(:,12) - 1.00000).*exp( CONSTANTS(:,10).*(VOI - CONSTANTS(:,11)))); ALGEBRAIC(:,7) = CONSTANTS(:,13)+ CONSTANTS(:,9).*ALGEBRAIC(:,4); ALGEBRAIC(:,8) = ( CONSTANTS(:,21).*STATES(:,1))./(CONSTANTS(:,22)+STATES(:,1)); ALGEBRAIC(:,1) = arbitrary_log(STATES(:,1), 10); ALGEBRAIC(:,3) = arbitrary_log(STATES(:,2), 10); ALGEBRAIC(:,5) = arbitrary_log(STATES(:,3), 10); ALGEBRAIC(:,6) = arbitrary_log(STATES(:,4), 10); end % Compute result of a piecewise function function x = piecewise(cases, default) set = [0]; for i = 1:2:length(cases) if (length(cases{i+1}) == 1) x(cases{i} & ~set,:) = cases{i+1}; else x(cases{i} & ~set,:) = cases{i+1}(cases{i} & ~set); end set = set | cases{i}; if(set), break, end end if (length(default) == 1) x(~set,:) = default; else x(~set,:) = default(~set); end end % Compute a logarithm to any base" + function x = arbitrary_log(a, base) x = log(a) ./ log(base); end % Pad out or shorten strings to a set length function strout = strpad(strin) req_length = 160; insize = size(strin,2); if insize > req_length strout = strin(1:req_length); else strout = [strin, blanks(req_length - insize)]; end end