Generated Code
The following is python code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
# Size of variable arrays: sizeAlgebraic = 0 sizeStates = 7 sizeConstants = 11 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (hour)" legend_states[0] = "T in component T (cell_ml)" legend_constants[0] = "k1 in component model_parameters (cell_per_ml_molecule2_hour)" legend_states[1] = "Lm in component Lm (molecule_cell)" legend_states[2] = "RT in component RT (molecule_cell)" legend_states[3] = "m in component m (cell_ml)" legend_states[4] = "LT in component LT (molecule_cell)" legend_constants[1] = "k2 in component model_parameters (molecule_ml2_per_cell3_hour)" legend_constants[2] = "k3 in component model_parameters (per_hour)" legend_constants[3] = "k4 in component model_parameters (per_hour)" legend_constants[4] = "k5 in component model_parameters (ml2_per_cell_molecule_hour)" legend_states[5] = "Rm in component Rm (molecule_cell)" legend_constants[5] = "k6 in component model_parameters (molecule_per_cell_hour)" legend_constants[6] = "k7 in component model_parameters (per_hour)" legend_constants[7] = "k8 in component model_parameters (per_molar_per_minute)" legend_states[6] = "SL in component SL (molecule_ml)" legend_constants[8] = "k10 in component model_parameters (molecule_per_cell_hour)" legend_constants[9] = "k11 in component model_parameters (per_hour)" legend_constants[10] = "k9 in component model_parameters (per_molar_per_minute)" legend_rates[0] = "d/dt T in component T (cell_ml)" legend_rates[4] = "d/dt LT in component LT (molecule_cell)" legend_rates[2] = "d/dt RT in component RT (molecule_cell)" legend_rates[3] = "d/dt m in component m (cell_ml)" legend_rates[1] = "d/dt Lm in component Lm (molecule_cell)" legend_rates[5] = "d/dt Rm in component Rm (molecule_cell)" legend_rates[6] = "d/dt SL in component SL (molecule_ml)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; states[0] = 500.0 constants[0] = 8.38E-10 states[1] = 1E3 states[2] = 1E4 states[3] = 500.0 states[4] = 0.0 constants[1] = 6E-3 constants[2] = 5.9413 constants[3] = 0.35 constants[4] = 2.52E-9 states[5] = 1E3 constants[5] = 2.244E3 constants[6] = 0.35 constants[7] = 1.92E10 states[6] = 0.0 constants[8] = 3.11E3 constants[9] = 13.9 constants[10] = 87.3E8 return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic rates[0] = -(1.00000*constants[0]*states[3]*states[0]*states[1]*states[2]) rates[4] = constants[1]*states[0]*states[3]-(constants[2]*states[4]+constants[3]*states[4]+constants[4]*states[3]*states[0]*states[4]*states[5]) rates[2] = constants[5]-(constants[6]*states[2]+1.00000*constants[7]*states[2]*states[6]) rates[3] = -(1.00000*constants[0]*states[3]*states[0]*states[4]*states[5]) rates[1] = constants[8]-(constants[2]*states[1]+constants[3]*states[1]+constants[4]*states[3]*states[0]*states[1]*states[2]) rates[5] = constants[5]-(constants[6]*states[5]+1.00000*constants[7]*states[5]*states[6]) rates[6] = constants[2]*(states[1]*states[3]+states[4]*states[0])-(constants[9]*states[6]+1.00000*constants[10]*(states[5]*states[3]+states[2]*states[0])*states[6]) return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) return algebraic def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)