- Author:
- WeiweiAi <wai484@aucklanduni.ac.nz>
- Date:
- 2021-11-24 17:49:12+13:00
- Desc:
- Add BG params related scripts and matrix
- Permanent Source URI:
- http://models.cellml.org/workspace/64f/rawfile/bd02dedb491faf9960ccd23496c19ccd3e339db1/sed-ml/originalFig20_sim.py
# To reproduce the data needed for Figure 20 in associated original paper,
# execute this script in the Python console in OpenCOR. This can be done
# with the following commands at the prompt in the OpenCOR Python console:
#
# In [1]: cd path/to/folder_this_file_is_in
# In [2]: run originalFig20_sim.py
import opencor as oc
import get_init
import imp
import numpy as np
imp.reload(get_init)
# The prefix of the saved output file name
prefilename = 'simFig20'
# Load the simulation file
simfile='periodic-stimulus.sedml'
simulation = oc.open_simulation(simfile)
# The data object houses all the relevant information
# and pointers to the OpenCOR internal data representations
data = simulation.data()
# Define the interval of interest for this simulation experiment
start, end, pointInterval = 0, 22, 0.0001
data.set_starting_point(start)
data.set_ending_point(end)
data.set_point_interval(pointInterval)
# Compute initial value based on T and V_b
T, V_b = 6, 0
m, n, h = get_init.init_gate(T, V_b)
iV_initial = -15
V_stim = -90
t_stim = [20, 4.7284, 5.7302, 7.7352]
suffixfile=['A', 'B', 'C', 'D',]
varName = np.array(['outputs/time', 'outputs/minus_V'])
vars = np.reshape(varName, (1, len(varName)))
rows=int(end/pointInterval+2)
r = np.zeros((rows,len(varName)))
for i, iend in enumerate(t_stim):
filename ='%s_%s.csv' % (prefilename, suffixfile[i])
# Reset states and parameters
simulation.reset(True)
# Set constant parameter values
data.states()['outputs/V'] = iV_initial
data.constants()['parameters/T'] = T
data.states()['outputs/m'] = m
data.states()['outputs/n'] = n
data.states()['outputs/h'] = h
# Run simulation from 0 to iend
data.set_starting_point(start)
data.set_ending_point(iend)
row1=int(iend/pointInterval+1)
simulation.run()
# Access simulation results
results = simulation.results()
# Grab a specific algebraic variable results
row1=len(results.voi().values())
r[0:row1,0] = results.voi().values()
r[0:row1,1] = results.algebraic()['outputs/minus_V'].values()
# Stimulate at iend and run till end
data.states()['outputs/V'] = V_stim+data.states()['outputs/V']
data.set_starting_point(iend)
data.set_ending_point(end)
simulation.run()
# Access simulation results
results = simulation.results()
# Grab a specific algebraic variable results
r[row1:,0] = results.voi().values()[0:]
r[row1:,1] = results.algebraic()['outputs/minus_V'].values()[0:]
# Save the simulation result
np.savetxt(filename, vars, fmt='%s',delimiter=",")
with open(filename, "ab") as f:
np.savetxt(f, r, delimiter=",")
f.close
# clear the results
simulation.clear_results()