Location: 12 L Platform 1 model codes @ d39d197151fc / USMC / DM_USM.py

Author:
aram148 <42922407+aram148@users.noreply.github.com>
Date:
2022-07-22 15:40:16+12:00
Desc:
Added type up of muscle model
Permanent Source URI:
http://models.cellml.org/workspace/6b0/rawfile/d39d197151fcd8e3935a13c0c200987bbb41cd15/USMC/DM_USM.py

import numpy as np
import scipy as sp
import math
import matplotlib.pyplot as plt
from numpy import loadtxt
import opencor as oc


simulation = oc.open_simulation(r"C:\Users\aram148\Desktop\Platform1\EP3\USMC\Vm_stim_experiment.cellml")
# data = simulation.data()
# data.set_starting_point(0)
# data.set_ending_point(120)
# dt = (120-0)/10000
# data.set_point_interval(dt)
# simulation.run()
# results=simulation.results()
# k11 = results.algebraic()['outputs/K_1'].values() 
# k1 = np.random.random((len(k11)-1,1))
# k1 = loadtxt('k1.csv', delimiter=',')
def DM_funcs_USM(t,k1,R):
# def DM_funcs_USM(t,R):

    
    # k1 = 5.166796617067728e-05
    # k2 = 1.2387
    # g1 = 0.0756
    # gp1 = 0.0709
    # fp1 = 0.2838
    
    # k1 = 0.9;
    k2 = 0.1399
    fp1 = 14.4496
    gp1 = 3.6124
    g1 = 0.1340
    
    r = R
    gam = 0
    
    # print(r[0])
    # Mean for cdf
    p1 = r[1]/r[0]
    p2 = r[4]/r[3]
    
    # Std dev for cdf
    q1 = np.sqrt((r[2]/r[0])-(r[1]/r[0])**2)
    
    q2 = np.sqrt((r[5]/r[3])-(r[4]/r[3])**2)
    
    # r, phi and I for M1_lambda
    r0 = -p1/q1
    r1 = (1-p1)/q1
    
    phi0 = 0.5*(1+math.erf((r0-p1)/(q1*np.sqrt(2))))
    phi1 = 0.5*(1+math.erf((r1-p1)/(q1*np.sqrt(2))))
    
    I0 = -(np.exp(-((-p1/q1)**2)/2))/(np.sqrt(2*np.pi))
    I1 = -(np.exp(-((((1-p1)/q1))**2)/2))/(np.sqrt(2*np.pi));
    
    # r, phi and I for M2_lambda
    r20 = -p2/q2
    r21 = (1-p2)/q2
    
    phi20 = 0.5*(1+math.erf((r20-p2)/(q2*np.sqrt(2))))
    phi21 = 0.5*(1+math.erf((r21-p2)/(q2*np.sqrt(2))))
    
    I20 = -(np.exp(-((-p2/q2)**2)/2))/(np.sqrt(2*np.pi))
    I21 = -(np.exp(-((((1-p2)/q2))**2)/2))/(np.sqrt(2*np.pi))
    
    # Functions for the RHS of M1 PDE
    J0 = phi0
    J10 = ((p1*phi0) + (q1*I0))
    J11 = (p1*phi1) + (q1*I1)
    J20=((p1**(2))*phi0)+((2*p1*q1)*I0)+((q1**(2))*(phi0+(r0*I0)))
    J21=((p1**(2))*phi1)+((2*p1*q1)*I1)+((q1**(2))*(phi1+(r1*I1)))
    J30=(p1**(3)*phi0)+((3*p1**(2)*q1)*I0)+((3*p1*q1**(2))*((phi0)+(r0*I0)))+((q1**(3)*(2+r0**(2))*I0))
    J31=(p1**(3)*phi1)+((3*p1**(2)*q1)*I1)+((3*p1*q1**(2))*(phi1+(r1*I1)))+(q1**(3)*(2+(r1**(2)))*I1)
    
    #Functions defined for the RHS of the second PDE M2_lambda
    K0 = phi20
    K01 = phi21
    K10 = (p2*phi20) + (q2*I20)
    K11 = (p2*phi21) +( q2*I21)
    K20=((p2**(2))*phi20) + ((2*p2*q2)*I20) + ((q2**(2))*(phi20 + (r20*I20)))
    K21=((p2**(2))*phi21) + ((2*p2*q2)*I21) + ((q2**(2))*(phi21 + (r21*I21)))
    K30=(p2**(3)*phi20) + ((3*p2**(2)*q2)*I20) + ((3*p2*q2**(2))*((phi20) + (r20*I20))) + ((q2**(3)*(2+r20**(2))*I20))
    K31=(p2**(3)*phi21) + ((3*p2**(2)*q2)*I21) + ((3*p2*q2**(2))*(phi21 + (r21*I21))) + (q2**(3)*(2+(r21**(2)))*I21)
    
    # Components for the matrix F that will represent each moment,
    # M1_lambda and M2_lambda
  
    A0 = ((fp1*(1-r[6]))/2)-(fp1*(J11-J10)*r[0])
    A1 = ((fp1*(1-r[6]))/3)-(fp1*(J21-J20)*r[0])
    A2 = ((fp1*(1-r[6]))/4)-(fp1*(J31-J30)*r[0])
    
    B0=(3*(fp1+gp1)*J0)+gp1*(J11-J10)+(4*gp1)*(p1-J11)
    B1=(3*(fp1+gp1)*J10)+gp1*(J21-J20)+(4*gp1)*((p1**(2)+q1**(2))-J21)
    B2=(3*(fp1+gp1)*J20)+gp1*(J31-J30)+(4*gp1)*((p1**(3)+3*p1*q1**(2))-J31)
    
    C0=k1
    C1=k1*p2
    C2=k1*(p2**(2)+q2**(2))
    
    D0=k2
    D1=k2*p1
    D2=k2*(p1**(2)+q1**(2))
    
    E0=(20*g1*K0)+g1*(K11-K10)+(g1)*(1-K01)
    E1=(20*g1*K10)+g1*(K21-K20)+(g1)*((p2)-K11)
    E2=(20*g1*K20)+g1*(K31-K30)+(g1)*(p2**(2)+q2**(2)-K21)
    
    V = gam*(A1-E0-B0)/(1+gam*(r[0]+r[3]))
    
    F=np.array([A0-B0*r[0]+C0*r[3]-k2*r[0], A1-B1*r[0]+C1*r[3]-k2*r[1]-V*r[0], A2-B2*r[0]+C2*r[3]-k2*r[2]-2*V*r[1], D0*r[0]-E0*r[3]-k1*r[3], D1*r[0]-E1*r[3]-k1*r[4]-V*r[3], D2*r[0]-E2*r[3]-k1*r[5]-2*V*r[4], -k1*r[6]+(1-r[6])*k2])
    # simulation.clear_results()
    return F
    
def USM_DM(trange,N,M,xrange):
    T = np.linspace(trange[0], trange[1], N)
    X0 = np.linspace(xrange[0], xrange[1], M)
    dt=(trange[1]-trange[0])/(N)

    M10=0.005
    M11=0.001
    M12=0.01
    M20=0.005
    M21=0.001
    M22=0.01
    C=1
     
    # M10=0.5140
    # M11=0.3110
    # M12= 0.2146
    # M20=0.1441
    # M21=0.0870
    # M22=0.0597
    # C=0.2222
    # M10 = 0.341238863408273
    # M11 = 0.243924139636747
    # M12 = 0.174361692884738
    # M20 = 0.0910630566362484
    # M21 = 0.0620757257099705
    # M22 = 0.0478612210259969
    # C = 0.352924011750745
 #   R = np.zeros(7)
 # Calculating the Ca2+ for the same trange
    simulation.reset(True)
    data = simulation.data()
    data.set_starting_point(trange[0])
    data.set_ending_point(trange[1])
    dt = (trange[1]-trange[0])/N
    data.set_point_interval(dt)
    simulation.run()
    results=simulation.results()
    k1 = results.algebraic()['outputs/K_1'].values()
    Cai = results.states()['outputs/Cai'].values()
    Vm = results.algebraic()['mPulse_protocol_s/V'].values()

    R = np.array([M10, M11, M12, M20, M21, M22, C])
    Rnew = np.zeros([len(T),len(R)])
    Rnew[0,:] = R
    # i = 0

    
    
    for i in range(1,len(T)):
        t = T[i-1]
        trange2 = T[i]
        F1=DM_funcs_USM(t,k1[i-1],Rnew[i-1,:])
        F2 =DM_funcs_USM(t+(dt/2),k1[i-1],Rnew[i-1,:]+(dt/2)*F1)
        F3 =DM_funcs_USM(t+(dt/2),k1[i-1],Rnew[i-1,:]+(dt/2)*F2)
        F4 =DM_funcs_USM(t+(dt),k1[i-1],Rnew[i-1,:]+(dt)*F3)
        # F1 =DM_funcs_USM(t,Rnew[i-1,:])
        # F2 =DM_funcs_USM(t+(dt/2),Rnew[i-1,:]+(dt/2)*F1)
        # F3 =DM_funcs_USM(t+(dt/2),Rnew[i-1,:]+(dt/2)*F2)
        # F4 =DM_funcs_USM(t+(dt),Rnew[i-1,:]+(dt)*F3)
        Rnew[i,:] = Rnew[i-1,:]+ (dt/6)*(F1 + (2*F2) + (2*F3) + F4)
        # print(i)
        # print(Rnew[i,0])
        # Rnew[i,:] = Rnew[i-1,:] + dt*F1
    return Rnew, Cai, Vm, k1

    # F = DM_funcs_USM(t, k1, R)
    # RR = lambda t, s:F
    # sol =solve_ivp(RR,T,R,method='RK4')
    # return sol
        
        
       
trange = [0, 20]
xrange = [-20, 20]
N = 50000
M = 1000
kappa = 5.0859
gam =np.array([0, 44.87, 141.03])
T = np.linspace(trange[0], trange[1], N)
Rnew, Cai, Vm, k1 = USM_DM(trange, N, M, xrange)
force = (Rnew[:,1]+Rnew[:,4])
stiffness = Rnew[:,0]+Rnew[:,3]
nmp = 1-Rnew[:,6]-Rnew[:,0]
phosphorylation = nmp + Rnew[:,0]

figure, axis = plt.subplots(3, 2)
axis[0,0].plot(T,force,'red')
axis[0, 0].set_title("Force")

axis[0,1].plot(T,stiffness,'blue')
axis[0, 1].set_title("stiffness")

axis[1,0].plot(T,phosphorylation,'green')
axis[1, 0].set_title("phosphorylation")

axis[1,1].plot(T,k1[1:],'yellow')
axis[1, 1].set_title("k1")

axis[2,0].plot(T,Cai[1:])
axis[2, 0].set_title("Ca_i")

axis[2,1].plot(T,Vm[1:])
axis[2,1].set_title("Vm")
axis[1,1].set_title("k1")

# plt.plot(T,force)
plt.show()