- Author:
- WeiweiAi <wai484@aucklanduni.ac.nz>
- Date:
- 2022-06-13 12:35:09+12:00
- Desc:
- Update the documentation
- Permanent Source URI:
- http://models.cellml.org/workspace/83f/rawfile/309a2cd1708eb79e1e9f8b928b41c9d36bcb94fc/Simulation/originalData/Fig4.dig
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE engauge>
<Document VersionNumber="12.1" AxesPointsRequired="0">
<Image Width="746" Height="677"><![CDATA[AAAAAYlQTkcNChoKAAAADUlIRFIAAALqAAACpQgCAAAAEgteSAAAAAlwSFlzAAAOxAAADsQBlSsOGwAAIABJREFUeJzs3WdAFFf7P/yzy9KWrihYASmCGgsRGxYUDYKx11hu7FFjDIkmscYSe8NoNLElP40lGkskWLCxKFLELggBAQVEwUJfts/zYp7/3HMvu8sCC8vC9/Nq9sycM9fusHAx58w5HIqiSAM1Z86cQ4cOrVmzZvXq1dVuRCQSnTx58siRI1FRUYSQtm3bzp07d9KkSa6urrqLFAAAAKqAq+8AasvVq1dPnDhRw0aio6MHDBgwc+ZMOnchhGRlZa1cudLHx2fDhg1yubzGYQIAAECV8fQdQK149OjR9OnThUJhTRq5f//+8OHDCwsLK+4qKChYuXJlSUnJ5s2ba3IKAAAAqIYGePclKipqxIgRr1+/rkkjMpnsyy+/pHMXPp+/cOHC69evR0ZG7ty5083NjT5m27ZtcXFxOogYAAAAqqKhpS/79+8PCgrKzs6uYTv//PNPbGwsIaRp06YXL17cs2ePv7+/n5/f119/HR8f7+/vTwhRKBQ7d+7UQdAAAABQFQ0nfbl79+7w4cPnzZsnFAq5XG7r1q1r0tqxY8fojRUrVvj5+bF3NWnS5LfffrOzsyOEXLlyJScnpyYnAgAAgKpqIOlLeHj4gAEDwsPDCSF2dnZHjx6dN29etVsrKiqKiYkhhFhbW3/22WcVD2jbtu3o0aMJISUlJZGRkdU+EQAAAFRDA0lfcnJyRCIRIWTcuHExMTFTpkxRKBTVbi0pKSkvL48Q4u3t7ejoqPKYfv360Rt3796t9okAAACgGhrIk0eWlpb+/v5LliwZOnQoXVKT9CUzM5OeDsfT01PdMe7u7kZGRnK5PCMjo9onAgAAgGpoIOnL6NGjp06dqqvW3rx5Q2+0atVK3THNmzc3MTEpLy/PycmRSCQmJia6OjsAAABo1kA6jywsLHTY2tu3b+kNW1tbdcc0bdrU2NiYEFJcXCyVSnV4dgAAANCsgaQvuiUWi+kNDVkRj8fjcDiEEIlE0oAXXgAAAKiHkL6oQOclhBANeQmzq7S0FKsHAAAA1CWkLyowqQmTx1TE7LK0tDQyMqqLsAAAAIAQgvRFJabPqKysTN0xMpmMznLMzMy4XHyMAAAAdaeBPHmkW8yI3YKCAnXHvH//nh6x26RJk0ofOxIKhXv27MnKyqrJfRqpVDpt2rQ+ffpUuwUAAICGAemLCszz0swT1BXl5+dLJBJCSPPmzXk8TR+jRCL54YcfduzYUfPAhg8fXvNGAAAADB16PVRwc3Oj+4PS09PVHZOZmUmP2G3Xrp3m1sRicURERM2j4nK56KUCAAAgSF9Ucnd3b968OSHk3r17+fn5Ko+5c+cOvdGlSxfNrfF4PBcXF91GCAAA0Jih80gFW1tbX1/fs2fPvn///ujRo0uWLFE64PXr13///TchxNTUdMCAAZpbMzc337lzJ5fLffHiheZuJiVGRkZFRUVpaWk1WQABAACg4UH6otrEiRPPnj1LCPnxxx89PT0//fRTZte7d++mTZtGD4sZNGiQu7t7pa25ubmdOHFCIpFoeBK7Ig6Hc+fOnTFjxtCrUQIAAACtUacvf/311759+wgh7dq1+/XXX+lFAGhBQUGdO3d+8uRJcXHx2LFjp0+fPnbsWBMTk3v37u3bty8zM5MQwuFwvvvuOy3Pxefz+Xx+VSO0trauahUAAIAGr1GnL5mZmQKBgBCSnZ2t1EFjYWGxa9euTz/9VCgUSiSSAwcOHDhwQKn6ihUr/Pz8ajVCrKYEAABQUYMduks/1czeqKqBAweGhYV99NFHFXfZ2Nhs3rx53bp11Y+vWjAIBgAAgDTguy9z5swZMmQIIcTZ2VndMZMnT+7RowchxNLSkt1zxPD3979z587ly5dv3LiRmppKCLG1tfX39w8ICNBmyIvOYW1IAAAAQggHfxHrM4FAEBgYSA/d5XK5YWFhw4YN03dQAAAAetZgO48AAACgoUL6AgAAAAYG6QsAAAAYGKQvAAAAYGCQvgAAAICBQfoCAAAABgbpCwAAABgYpC8AAABgYJC+AAAAgIFB+gIAAAAGBukLAAAAGBikLwAAAGBgkL4AAACAgUH6AgAAAAYG6QsAAAAYGKQvAAAAYGCQvgAAAICBQfoCAAAABgbpCwAAABgYpC8AAABgYJC+AAAAgIFB+gIAAAAGBukLAAAAGBikLwAAAGBgkL4AAACAgUH6AgAAAAYG6QsAAAAYGKQvAAAAYGCQvgAAAICBQfoCAAAABgbpCwAAABgYpC8AAABgYJC+AAAAgIFB+gIAAAAGhqfvAAAAapFEIsnMzHz9+jX9slWrVi4uLjwefvUBGDZ8hwFA//bt2/fXX38RQgIDA7/77jsNR4pEokWLFqWlpVEUJZVKv/rqqwkTJqg8MjY29siRI7GxsZmZmSUlJXShjY2Ni4vL0KFD586d6+LiUrHW5cuXt27dSggZP378ggULqvQuSkpKLl++fOPGjdTUVEKInZ1d//79P/nkkw4dOmiumJSUdOnSpejo6OLiYkKIj4+Pv7//oEGDjI2NqxRAbWAuDW3atGkzZ86stFZsbOzy5cuZlwsWLBg/fnytxAeNFgX1WGRkpJmZGX2luFxueHi4viMCqBVMojBlyhQNh5WXl48ePZr59TV//vzS0tKKh2VlZU2YMIHL1dQ53rRp03379lWs++uvv9IHLFiwoEpv4dq1a15eXhVPxOfzly1bJhaLVdYSiUTLli3j8/kVKw4YMODhw4dViqE2KOVw3bt3VygUldb66quv2LW2bNlSB6FCo4K7LwCgf6ampkobFYlEosmTJ58/f55+uWbNmtWrV1c8LDo6etKkSa9evWJKXF1dW7duzeFwJBLJ8+fP8/PzCSHv379fsGBBfn6+UiPMDQ8NkVR07dq1UaNGCYXCiruEQuGmTZtevXr1+++/K2VUCoVi4cKFhw4dUtlmVFTUp59+euPGjfbt22sfic4pfQ6PHz9+8uRJly5dNFQRiUSXL19ml9SH20jQwGDoLgAYAKXcZevWrSpzl6dPn44aNYrOXYyMjGbMmBEbG5uQkCAQCCIjI+/cuXPv3r0DBw60bt2aPn7NmjUnT56sYWwfPnz4/PPP6dzF0dFx6dKlN2/ejIyM/OOPP4YMGUIfc/To0WPHjilVvHDhApO7dO/e/dChQ5GRkWFhYdOmTTMyMiKEvHr1asWKFTUMT1ccHBxMTEykUunFixc1HxkTE5OamsrhcGxsbOomNmiM9H37BzRB5xE0El9//TX9cz5z5syKe9l9Rlwud8+ePSobKSsr69GjB32YlZXVmTNn1J0uMzOTGY/i6Oj45s0bZtfhw4fp8q+//lrL4Jm8pGXLlklJSexdCoVi0aJF9N7u3btLpVJml1Qq7d27N70rODi4vLxcqU36u29kZBQfH69lJLWBuTTBwcFt27YlhPj6+mquEhISQghxc3MLCAig6+7cubNuooXGA3dfAKBeKykpmThxIn3fxcTEZP/+/QsXLlR55KFDh+7evUsI4XK5R48eHTt2rLo2nZ2dDx06ROcHb968Udd9o6W4uDh6Y+HChUqjdDkczrp16xwcHAghSUlJubm5zK6EhITY2FhCiIuLy969e5l/VGhTpkyZN28eIUQul7NHzuqRh4dHv379CCEJCQnJycnqDhOJRPTtmcDAQPqNA9QGpC/1mqmpKYfD0XcUAHpTXFw8duzYsLAwQoiJicmRI0dmz56t8kiRSHTgwAF6e/LkyaNGjdLccu/evSdOnEhvCwQCuVxe7SBLS0vpDU9Pz4p7bWxs3NzcCCEymaywsJApFwgE9MbEiRMtLCwqVpwzZw497uT69etahvf27VuBQCAQCOgHxUUi0fHjxydOnDhw4MCAgIAdO3aw8ydCSGxs7FdffTVw4MCBAwcuWrSICUklPp8/YsQIQohEIvnnn3/UHRYTE5OWlkYIGT58OH59Qe3B0N16IT09XSqVKn3VjY2N09PTFQqFvqIC0K/i4uJx48Zdu3aNEMLn848fP64hKYmPj09KSiKEcDicuXPnatP+woULXV1de/To0b59e82PKWnm6OhIbyQlJbEfjKIVFxdnZmYSQszMzNh3I+7fv09v9OnTR2Wz7du39/DwePr06b///vvixQtXV9dKI7l58+akSZMIIX/88cegQYMmTpwYHR3N7L169equXbv+/PNPX19fsVgcEhJy4MAB5jeMQCDYs2fPnDlz9uzZo3LYcnl5eUBAgIWFRVlZ2eXLl9U9305nNi4uLv369WN64gB0DumLnslksnPnzn3//felpaVK6Qv9oIRYLNZXbAB6xM5drKysTp48OWzYMA3Hx8TE0Bvu7u49e/bU5hTdu3fv3r17zUMdMWLE5s2bCSG//PLLmDFjlPqP1q9fT9/zGDRoUPPmzelCmUz28uVLQoiZmZm6B4uMjIzat2//9OnT8vLyjIwMbdIXejo+Dofz8uXL0aNH011pbDk5OdOnT4+JiVmzZg3ziDjbwYMH3dzcVKYmUqnUxsZmwIABly5dio+PT0tLc3d3VzqmvLyc6TkyMzOryT0tAM2QvujZy5cvly1b9uLFC30HAlAvUBRFCCkpKWFyFzs7u3Pnzvn5+Wmu+OTJE3qja9euJiYmtRzm/+jdu3dISMiuXbtyc3MHDx48a9asQYMGcTicV69e/fnnn+Hh4YSQ5s2bb9y4kfkXRSwW0/07fD6fuXlTEZPu5OTkVCmkbdu2FRUVtWzZcubMmf7+/oSQU6dOHTx4UC6XP3/+fOzYsbdv3+bz+TNmzBgxYoSJiUlUVFRoaGhRUREh5ODBg4sWLVIai0P+36UZPnz4pUuX6DSFHqLLRqc1hBC6m4muAlAbkL7omUQiKSgo0HcUAPUFn88vKiqaMGECnbsQQjgcjq2tbaUV6dlcCCEq59KtbTt37nR3d9+zZ09KSsr69evXr1/P7DI3Nw8MDFy7di37rkxpaSmdK9jZ2WmYE6Vp06b0Bj0br5YoiioqKurYsWNYWFi7du3oQj8/P1NT059++okQcvv2bVtb2/PnzzNJoZ+fX/fu3UeOHCmXyzMyMp49e+bt7a2y8SFDhtD9R//880/F9IWe7sXJyYke5AtQezB0V89atmwZHBys7ygA6oucnJwxY8ZcvXqVKfnw4cOsWbOY4bEqKRQKppu1WbNmtRuiKhwOx93dXWWaxeFwPvroI/qRY4ZIJKLvTFhYWGgYdsOszSSRSKoaz44dO5jchRYcHMykSt9++63SDa1hw4Z169aNEKJQKN69e6euZVdX1759+xJCYmJi0tPT2buYIb2BgYEq5xEG0CHcfdEzGxubdevWde7cubS0lJ6oimFkZJScnLxv3z6pVKqv8ADq2IULF+iNTp06zZkzZ9myZUKh8MGDB99+++0vv/yiTQs1GYRbPRKJZOHChQcPHqRfuri4ODk5EUIKCwufPn0qFArXrl178uTJU6dOde3alT6G6UXS3L3C7C0rK6tSSC4uLgMGDKhYSN/cMjY2DgwMrFirVatW9+7dI5V9hsOHD4+IiBCJRFeuXPniiy+Y8vj4ePqB6uHDh1cpWoBqQPqif1ZWVjNmzFC5KyEh4cCBA0hfoLHx8vI6e/ash4dHcXHxqlWrCCG//vqrr6/v1KlTVR7P5XKZh2XoTpm69OOPP9K5i52d3Y4dO0aMGEF3+sjl8gcPHqxdu/bixYupqanjx4+PiYmhbw4xeYnmR4uZvSqfrNbA3d294uAVJinh8/nOzs4Va2m5EPfQoUOZ/iN2+kLfenFycqqYOQHoHDqP6rWysjKMfYPGpmvXrpcuXfLw8CCEfPfdd4MHD6bLv/zyS/rRaJWYYSJv3rypgyAZL1682LVrFyHE1NT05MmTM2bMYCIxMjLy8fE5d+4cvXTA8+fPmRtIlpaWdDJRVlamYXIEmUxGb1TMRTRTme6wf5ko3eutEqb/KDo6muk/kkgk9CDlwMDAqiZbANWA9AUA6pHOnTuHhYUx9wZMTEz27t1LjykpLCzUMAiGTncIIampqVqeSy6X//vvv1Xtl1Fy6dIlOqQxY8Ywc+SzmZiYrFmzhk4Xzp49S2ckZmZm1tbWhJCCggIN41rev39PbzRp0qRKUVU6X1wN/y+iu4fKysqYEdboOYI6hvQFAOqR3r17t2nThl3i4eGxfft2ejs+Pn7p0qUqKzJzvdy7dy8rK0ubc+Xl5fXr18/Hx2fs2LGJiYnVC5i5/aDhWRtvb296NExGRgb9hJSpqWmrVq0IIUKhkHlmqiJmF/MEdT1B9x+R/9dhRNBzBHUO6QsA1CMqR3rNmjXrs88+o7d//fVXlTPW9+3bt2XLloSQkpISZmFqza5fv/727dvk5ORz585Ve8AvMzObubm5umOMjIwsLS0JIQqFgr7XwuPx6GnoxGJxRkaGyloKhYLOjczNzZWeIdI7pv8oKiqKnpMGPUdQx5C+AIABCA0Npf+Ey+XyuXPn0tPws9nZ2TET9u/Zs4e9upBKYrF4z5499HZAQIDSVLnaYx6WVnqKmK2srIwekcPj8Zgnijt16kQIoSiKPa8/W0ZGBt0d4+zsrHRHqj5g+o9u376dnJyMniOoY0hfAMAAODg4/Prrr/Q9kjdv3sydO7fikJF58+bRyUF6evrs2bNFIpGGBpcuXUo/JEwIYT8+U1XM9G7nz59Xt8THiRMn6G6gDh06MAN7Bw4cSG8cO3ZM5ax0v//+O/0W/Pz86ngeYW0w/UdXrlyh18RGzxHUJaQvAGAYhgwZsnjxYnr7+vXrP/zwg9IBnTp1+uabb+jts2fPjhgx4tGjRxXbyc3NnT17Nv24ECFk9OjRNbln0L9/f3pKuqSkpC+//LLiY9sCgWDFihX09oQJE5hHfnx8fOgVl168eDF79uySkhJ2raNHj+7YsYPeHj9+fLXDqz2urq70cJ+wsLDff/+doOcI6hbmfQEAg7FmzZpbt27Fx8cTQrZt2+br66uUeaxaterBgweXLl0ihFy7ds3X13fIkCGDBw+me2ry8/Nv3LgRHh5Or6FICPH09Ny7d29NQrK1tV27di09ddPBgwcFAsGYMWP8/f2NjY3fvn178eLFv/76SygUEkK6des2a9YspiKPx1u0aNF//vMfQshff/2VnJz8xRdfeHp6FhcX//nnn3/++Sf9cNCnn35a6XpP+hIUFHTlypXCwkK6qw49R1CXkL4AgMHg8/n79u0bMGBAaWmpQqH44osvfHx82EsempiY/PnnnzNmzDh79iwhRCgUXrhwgZnJV0mvXr2OHDnSokWLGkY1ffr05OTkrVu3EkLS0tK2bNmyZcsWpWOcnZ2PHj1KPyzNmDJlSlhY2JkzZwghiYmJ8+fPV6rl5OT0008/VfoUtL4MHTrUzMyM7uFCzxHUMXQeAYD+MaNG1A0fYXh7e2/evJnezs7Onjx5stLELVZWVqdOndq/f3/Hjh3VNdKyZcuVK1devXqVmS2GwTz6VGkkbFu2bNm/f7/SwkY0Lpc7fvz4mzdv0neAlHYdPXr0q6++Ujkr3YABAy5dulSlZ46Yae5UjvuhKIr+rNTNh8nUYh6nIqzPoeJgI3d39x49etDbAQEBFXuOmAYxdTjoHAeTutZnAoEgMDCQ/hXA5XLDwsKGDRum76AAdC89PT07O5sQ0qJFi/bt22s+WC6Xx8TE0H9ipVJpnz59VA65KC8vT0hIiI+Pf/jw4evXr+nCbt269ezZs1+/fvRT1hW9efMmJSWFENKmTRv62Wbt5efnX79+XSAQpKWlEUL4fD7de+Xj46O54pMnT65cuRIVFUV3M3Xt2tXf3z8gIEDDYtQqvX37lp6YuFmzZhWzN5lMFhcXJ5PJeDxer169Ki4RkJSU9PbtW0JIly5d7Ozs6ELm0jg7O1dcaiAjI4OeZad9+/YV72MxDbq5ubVu3bpK7wVAM6Qv9RrSFwAAgIrQeQQAAAAGBukLAAAAGBikLwAAAGBgkL4AAACAgUH6AgAAAAYG6QsAAAAYGKQvAAAAYGCQvgAAAICBQfoCAAAABgbpCwAAABgYpC8AAABgYJC+AAAAgIFB+gIAAAAGBukLAAAAGBikLwAAAGBgePoOABq18vLyhw8fUhTF4XCUdlEURVHURx99ZGNjwy4vKyt79OgRIURlFUJIly5dLC0tlXa9e/cuJSWFw+FUrKVQKIyNjb29vY2Njdnlb968SUtL43K5KquYmpp6e3sbGRkp7crIyHj16lXFcrqWtbV1586dlcrT0tLevHmjsopcLm/SpEnHjh0r7nr69GlRURGXq+I/ELlc3rJlS1dXV6Xyx48fl5SUqKvSpk0bZ2dnpXKZTPbgwQOJRFKxFn2B2rdv36xZM3a5RCJ58OCBXC5Xd007dOjQpEkTpV3FxcVPnz4l6i+rt7e3ubk5u7ygoCApKUnlNaUoisvlent7m5qaKu3Kzc1NT09Xd4HMzc29vb2VGszKynr58qW6KpaWll27dq24KyUl5e3bt+ouq729vZeXl1L5s2fP3r9/r65K8+bN27dvX3HXw4cPy8rK1F1WZ2fnNm3aKMX88OHD8vJydVXc3NxatGihVC4SiR48eFClr6pQKHz48CFRf007d+5sZWWltOv9+/fJycnqLquRkZG3t7eJiQm7PC8vLzU1Vd1X1cTExNvbm8dT/mOXmZmZk5Ojw6+qnZ1dp06dKu5KTEwsKChQV6tFixZubm5K5U+ePCkuLlZ3gVq3bu3i4qJUrvmrqlAoPDw8HBwc2OWVflW9vLyaNm2qtKukpOTJkydE/WXt1q0bn8+vGLnuUVCPRUZGmpmZ0VeKy+WGh4frOyJdKioqWrVqlaVG8+fPz8vLY6q8f/9+yZIlmqssXrz4/fv37BO9fPnys88+s7CwUFfFxsYmNDRUKBQyVTIyMkaNGqWhir29/S+//CISidgnevjwYa9evfh8vsoqFhYWLi4u586dk8vlTJW4uDhvb28NVTw8PC5fvqxQKJgqcrn8woUL7dq1Uxcen8/v0aPH/fv3mSoymezUqVNt2rTRUKVfv35Pnz5lv53y8vLdu3fb2dmp+xAsLCwmTJjw4sULpkppaemWLVusra01VAkODn716hX7RPn5+QsXLlRXhbZy5crCwkKmSm5u7qxZszRcICsrq/Xr15eUlLBPlJqaGhQUpK6WhYWFg4PD4cOHJRIJUyUpKWnQoEEaLlDr1q1PnDghlUrZJ7p9+/ZHH32krhafz+/QocONGzeY4xUKxdWrVz09PTVcoK5du8bExLDPIpVKjx492qJFCw21hgwZkpyczFQRi8UHDhxo1qyZus/NwsJi+PDhz58/Z5+ouLh47dq1VlZWGmrNnTv3zZs3TJWCgoKlS5eqO54WEhLy7t079omys7OnTp2q4bJaW1tv27aN/VXNzMwcN26chipNmjT5+eeflb6qjx8/9vX11XBZnZyczpw5I5PJmCp37979+OOPNVRxc3MLDw9nf7vlcnl4eLibm5uGC9S9e/e7d+8yVWQy2ZkzZ5ycnDRU8fX1ffz4MfvtlJeX7927t0mTJuo+BAsLi3HjxmVmZjJVysrKtm3bpvmrOnXq1OzsbPaJ3r17FxISoq4KbenSpQUFBVTtQ/pSrzXs9CUyMlLlfyRKTp06xVQJDw/XJilX+qB++umnSqs0adLk0aNHTJUNGzZUWqVly5YpKSnsEwUHB1da6+OPP2Z/t8eMGVNplb59+7J/XxcWFvr4+FRaa+rUqUyV/Pz8jz76qNIq8+fPZ7+dJ0+e2NvbV1pr586dTJW7d+9aVrj1VdGBAwfYJzpz5kylVbhcLvvv/f/93/9VWsXMzEzp7/2KFSsqreXs7Mz+Lb9o0aJKq3h5eb1+/ZqpolAogoKCKq01ePBgJukRi8V+fn6VVhkxYgT77eTk5Hh4eFRa65tvvmGqPH/+XOlmjEqrV69mn+j27dtK9yZVOn78OFMlIiKi0uMJIX///Tf7RPv27au0io2NDTs137p1a6VVHBwcnj17xj7R7NmzK63VtWtXdnY1ceLESqv07t2bnTGXlJT07t270loTJ05kqrx7907lzTwls2fPZr+dpKQkpTsrKm3dupWpcv/+faW7ZSrt27ePfaK///670iqEkIiICKr2YewL6I1MJpPL5ZUeJpVK2VW0bJn9UiKRVFpFLBazg6lGFbpEm1oURdWkCkVRWtZithUKhUgkqlIVQohcLtemFvuzkslk2nx07Gta8aVKCoWCfVm1qSKRSJR+ErT83NiXVcsqCoWiGidiLitFUVr+yLFfavmTwG5ZoVBUtQohRCaTafOB1/yrqs1ZlD5tLd9Ozb+q1fgGaXkidsvV+HYTQuRyeVUvq0wm06aK0hWp3mWtLXWQIkG1Ney7L3l5eXPnzqV7rLmqcDic0aNHs/8VzsnJmTp1qrrj6SpTpkzJyclhnygxMXHQoEH0Z6iyCo/HW7p0Kbtv4uHDh3369NFQxcTEZM2aNUp9Ezdu3KBHJ6isRQhp0qTJr7/+yu5ouHjxIt2Nra6Kg4PDkSNH2HekpVLpgQMH6D5pdbU8PDyuXbvGVBGLxbt377axsVH30RFCOnbseOvWLfbbKSwsXLZsmbGxsYZafn5+7C6n9+/ff/3110ZGRhqu6dChQ//991/2iV68eDFu3DgNVTgczqxZs9h9E2lpacOGDdNQxcjI6Msvv1Tqm7h792737t01XFYzM7ONGzeWlZUxVaKjo+kxEOqqWFlZ7dy5U6lv4ty5c/RNDnWfW6tWrf7880+mT1ChUBw7dszR0VFDFScnp7CwMPZZysvLt23bZmFhoeECdenSJTY2lqlSWlr6448/mpqaaqjSs2dP9u0NiqLy8/Pnz5/P1fhVHTFiRHp6OlMlNzc3ODiYvnbqqkyaNCkrK4t9ouTk5CFDhmj+qi5ZsoR9//Lx48f9+vXTUMXY2HjVqlXFxcVK23bCAAAgAElEQVTsEwkEAnrskboPwdbWdu/evexuxCtXrtDjydRVadas2W+//abUeXT48GF6cJi6Wq6urleuXGGqSCSSn3/+2dbWVkMVLy8vgUDAfjt0R7zmr2q/fv3YXU4fPnxYsmQJj8fTUEWp55GiqKysrEmTJmn+qk6fPj03N5eqfRyKlV02ABRFpaamvn79mhBiaWnp5eVlYWFR8zZTUlLy8vIIIXw+393d3c7OTgexakEgEAQGBtK5OZfLDQsLGzZsWN2cum58+PDh+vXrlPrxgP3792/ZsiW7PD8/PzIykqgZOEZR1KBBg5o3b660KyMjIz4+nqt+cF9AQIDSj8q///57//59+i9xxSrm5uYBAQFMcsm4e/fu8+fPK44TJITIZLJmzZrRv53Z7ty58/LlS3VVHB0d6dxLybVr196+fauulqura8+ePdmFFEVFRESoG0Iok8nat2//8ccfK5ULhcKIiAixWMxVMx7Qx8dHaeBhSUlJRESEuvGACoXC19e3bdu2Srtev34dFRWlbsAmIWTw4MFKowizs7Ojo6NVXlOKooyMjIYMGVLx9nhSUtLjx49Vfm70ONyAgACljpJHjx49e/ZMZRW5XG5raxsQEFDx87l161ZOTo66C9SyZcuKvUWRkZGvX79WV6Vt27Z9+/atGMCVK1eKi4vVXdZOnTopDUEVi8URERFCoVDlNZXL5d26das4rLiwsPDatWsKhULdZe3fv3+rVq3Y5e/evbtx4wZR/1UdOHBgxS6PzMzMuLg4dV9VY2PjgIAApQ7K1NTU+/fvq6tiZmYWEBCgNO6bEHLv3r3U1FR1l7Vp06affPKJUnlsbGxmZqa6C+Tg4ODv719x1/Xr1/Pz89XVcnFxqdjBFBER8eHDB3XX1MPDg87C2crLyyMiIkQikbqv6scff6zU1VhaWhoRESGVStVV6dWrV8Uxwnl5eZGRkRq+qv7+/tp0Otdcw0lfKIo6fvx4aGhoWlpaSUkJXejp6RkYGLhkyRKlP4Fakslkhw4dOnToUEpKSllZGV3o6uo6aNCglStXVvwVrHMNPn0BAACohgby4LRMJps9e/aRI0eUylNSUlJSUv7+++/Tp09XTFc1EwqFM2bMOH36tFJ5enp6enp6WFjY8ePHVebaAAAAUKsaSPqyYcMGJnextrbu2rUrl8vNzs5OT08nhGRmZv7nP/+Ji4uztrbWvs2QkBAmd2nevLmXlxeHwykoKHj8+DEhJC8vb9KkSXFxcRVn1wAAAIBa1RCePHrx4sWOHTvo7UmTJiUkJERFRUVGRiYkJISGhtLzViUnJx86dEj7NhMSEpjjFy9enJCQIBAI6DYvXrzo5ORECHn37t2mTZt0/W4AAACgEg0hfTl06BA92GXYsGEnTpxgRifZ2dmFhIT8/PPP9Et6Niot27x69So9KmjkyJHbt29nhrkYGxsHBQUdPXqUHtwXHh5eXFys27cDAAAAmhl8+iKXyy9fvkwI4XK5y5YtqzgWetasWfQjGM+ePYuPj9ey2efPn9MbKqcq6tevHz0yv6CgIDs7u9rBAwAAQDUYfPqSmZn57NkzQoibm5vKqUg5HM7IkSPp7du3b2vZLLNUisrpd+jpB+htbSajBAAAAB0y+PQlJSWFfq64a9euSut4MZhpDxITE7Vstlu3bvTG2bNnK+6Njo6ml5dr06aNNjNwAwAAgA4ZfPqSk5NDb1ScXYfRpk0bOrPJysrSZpZ6QsiECRPoR4ouXLjw7bffMmeRyWQ3btyYPXs2PZXyokWLKs6GBAAAALXK4B+czs/Ppzc0TPPXtGlTExMTiUSSl5cnkUi0STjs7OxOnDgRHByckpKyffv2Y8eOtW/fnsPhFBYW0vMum5iYzJkz54svvtDZOwEAAADtGHz6UlRURG9oWDzTysqKnn1ZIpEoraymQY8ePW7evPn555//888/b968efPmDbPLzs5u69at2qxZCgAAADpn8J1HzKIHKleUUDqmtLRUy84jQkhCQkJwcDC9ZoeSgoKCLVu27Ny5s4rBAgAAgA4Y/N2XWlqzKT4+PjAwsKCggBDSuXPnadOm0WsO5ObmhoWFnTt37vnz54sXL87Ly9uyZUttBECr+Bw4AAAAGHz6wtx0UfmEM41JAiwtLVWu4alEIpF8+eWXdO4ybdq0AwcOsBcWnjx58j///DN16tTi4uKtW7cOGTJk8ODBNXoP6pmZmSGDAQAAUGLw6Qsz5IUZBFNRSUkJ3WdkaWmpoY+JQS8OQAjp0KHDvn372LkLbfjw4T/88MOSJUsIIXv37q00fRGLxQcOHMjKytLm7AxjY+P09HTtZwoGAABoJAw+fWEeOHr37p26Y969e0cnAfb29trMMhcTE0NvTJgwwdLSUuUxU6dOXb9+fWFhYVxcXFFRkYaBw1KpdN26dZs2baqlfi4AAIDGxuCH7jLTvWiYvD83N5dOX1q1asXlVv6WmRs5zs7O6o5p0qQJvRBSUVER3c2kjkgkCgsLQ+4CAACgKwafvri7u9PzuCQmJqob/sJMtksvVFQpZnxMaWmphsPKy8uVjlfXWuvWrbU5LwAAAGjD4DuPnJycvLy8Hjx4kJiYGB8f7+vrW/GYS5cu0Ru9evXSpk03Nzd64/bt2+ompnv27FlWVhYhpFmzZnZ2dhpa4/P527dvVygUmZmZVRr7wuVyS0pKsrOzcecGAACAzeDTFyMjo8DAwAcPHigUirVr14aHhyutfPT7779HRUURQpycnHr37q1Nm76+vjweTyaT/fPPP7dv3+7Xr5/SARRFrVixQiwWE0IGDBigbnwMo2PHjmfOnBGJRFV6jIjL5d65c2f8+PH0iQAAAIBm8J1HhJApU6bQDwddu3Zt7Nix9ALUhJD3799v27Zt/vz59N2LmTNnKuUZOTk5AoFAIBDcu3ePPRtv586dR48eTQgRCoVjxozZs2fPy5cv6V0URT19+nTy5MkXL14khPB4vAULFmgTpJWVVbNmzeyrokmTJk2aNMGD0wAAAEo4DaNj4ptvvgkNDaW3LSwsunXrxuPxXr58mZmZSRd27NgxOjra1taWXWvr1q3ff/89IcTV1TUpKcnU1JTZ9eLFi8GDB6enp9MvmzVr5unpaWRkVFJS8vTpU+Zh5nXr1q1atar23pdAIAgMDKSX1OZyuWFhYcOGDau90wEAABgEg+88oq1fv/7Vq1enT58mhJSVlUVHR7P3urm5nThxQil30czZ2fns2bMzZsx4+PAhIeTt27dv375lH2BsbLxs2bKVK1fqInwAAACoggaSvvD5/BMnTvj7+x84cCAlJaWsrIwud3d3Hzp06PLlyx0dHSvWcnFx8fPzI4S0a9eu4gPVXbp0iYyM/OWXX06dOpWamioUCunyNm3a9OrVa9GiRX379q3FtwQAAABqNJDOIwZFUSkpKXl5eYQQPp/v6elpbW1dwzblcnlqairdpomJiZubW/PmzXUQqxbQeQQAAFBRA7n7wuBwOF5eXlrO76IlIyMjnbcJAAAA1dYQnjwCAACARgXpCwAAABgYpC8AAABgYJC+AAAAgIFB+gIAAAAGBukLAAAAGBikLwAAAGBgkL4AAACAgUH6AgAAAAYG6QsAAAAYGKQvAAAAYGCQvgAAAICBQfoCAAAABgbpCwAAABgYpC8AAABgYJC+AAAAgIFB+gIAAAAGBukLAAAAGBikLwAAAGBgkL4AAACAgUH6AgAAAAYG6QsAAAAYGKQvAAAAYGCQvgAAAICBQfoCAAAABgbpCwAAABgYpC8AAABgYJC+AAAAgIFB+gIAAAAGBukLAAAAGBikLwAAAGBgkL4AAACAgUH6AgAAAAYG6QsAAAAYGKQvAAAAYGCQvgAAAICBQfoCQAghUVFRxcXF+o4CAAC0gvQFGrvbt28vW7ZsypQpmzZtUigU+g4HAAAqx9N3AAD6FBkZOWfOnPT0dELI9u3bzczMVqxYwePhewEAUK/h7gs0XgqF4tq1a3TuQgiRyWQbNmzYvHmzfqMCAIBKIX2p10xNTfUdQkN28+bNkydPskukUumlS5dKS0v1FRIAAGgDN8nrhVevXkmlUg6Hwy40MTHJzs6mKEpfUTVsYrE4Njb2xYsXSuWPHj3auHHjxo0b9REUAABoBemLnslkskuXLn3//ffFxcVGRkbsXVwut7y8XCKR6Cu2hi0qKmrXrl0Vy8vLy3Nycuo+HgAA0B7SFz3Lzs5esmRJWlqavgNpjD58+KCy/M2bN8+fP3dzc6vjeAAAQEsY+6JnIpHo7du3+o6i0SkoKIiMjFS39/r164cPH67LeAAAoEqQvuiZo6PjpEmT9B1Fo5OUlBQaGqpuL0VReHYaAKA+w+9oPbOzs9u0aVPHjh1LS0u53P/JJnk8Xmpq6uHDh2Uymb7Ca6i4XC57pJGFhcWkSZMiIyMzMjLokoiIiKCgoN69e+spQAAA0ATpi/7Z2touXLhQ5a67d+8ePXoU6YvOcTgcdrLI5/NnzZr18uVLJn1JSEgQCARIXwAA6id0HtVrQqEQD07XjcLCQqFQyC6xsbHRVzAAAKAZ0hcAolAojIyM7O3t2VPvfPjwQSwW6zEqAABQB+kLACkvL7eyslq3bl2LFi2Ywp07d0ZEROgxKgAAUAfpCzRG5ubm7LEvQqFQLpc7ODiwhxkVFBRg1BEAQP2E9AUaHaFQePPmTXbHUL9+/Vq1amVmZubn58d+IikmJkbd1HYAAKBHSF+g0cnMzNyyZQs7fVm8eLGLi4utre23335rZWXFlO/atev+/fv6iBEAADRB+gKNkdLqmHK5XN1hmL8OAKAeQvoCjQ6Hw1FaHZNJX2QyGXuNTKXDAACgnkD6AvBfRkZG5ubmzEuJRLJ58+aXL1/qMSQAAKgI6QvAf3Xu3HnNmjXMQ0kURd25c6ewsFC/UQEAgBKkLwD/ZWpq2r59e4VCwZSYmJjk5uaqGxwDAAB6gfQFGh0+n680qIU93sXKysrDw4N5WVBQsHTp0pycnLqLDwAAKoP0BRoXqVR669atkpISpqRz586urq7Myx49enz33XfsKsXFxSYmJnUXIgAAVAbpCzQu+fn5mzZtYg9nWbBgQa9evZiXXC5X6bHq4uLi8PBwqVRad1ECAIBGSF+g0al0Ee/u3bv7+fkxLz98+LB79+6ioqLaDQsAALSG9AUaFw2TvjA6d+48evRodgmPx1O6JQMAAHqE9AVABfbgGEIIj8fD8BcAgPoD6QuAChYWFqampsxLiUSCziMAgPoD6QuACsHBwRMnTmReJicnr1y5EqN3AQDqCaQvACrY2dlZW1szL6VSaXZ2trGxsR5DAgAABtIXANU6derUvHlz5uX79+8fPHigx3gAAICB9AUaFwsLCx6Pxy4RiUQqj5wzZ87gwYOZl48fP962bVvtBgcAANpB+gKNiEwmO3HiRG5uLlPSs2fPvn37qjy44vx1AABQTyB9gUZEKBQePHjw3bt3TMmIESN69Oih7nj2WkiEEIx9AQCoJ5C+QCPC5XLNzMzYJep6jmhKE9wJBILjx4/XSmQAAFAVSF+gUdO8gMD333/fpUsX5mV2dnZcXFztBwUAAJVA+gKgVteuXe3s7NglEomkrKxMX/EAAAAN6QuAWlKp1NnZmT3k5dixY0eOHNFjSAAAQJC+AGhgbGy8du1aJycnpkQoFGoeLgMAAHUA6QuAJo6OjsOGDWMP+L13715WVpYeQwIAAKQvAJqYmJh88803rVu3ZkpOnjx5/fp1PYYEAABIXwAqIZfLZTIZuwQTwAAA6BfSF4BKKBQKpel3MRsvAIB+8So/xKBQFJWamvr69WtCiKWlpZeXl4WFRc2bLS4uTk1NLS0tJYQ4ODh4enriD1jj0aZNm5UrV3711Vf0DwAhZOfOnR07duzWrZt+AwMAaLQaTvpCUdTx48dDQ0PT0tJKSkroQk9Pz8DAwCVLlrRs2bJ6zWZlZW3evPnGjRupqal0iYWFhaenZ0hIyJQpU5DENAYmJiY9evRgX+uHDx/m5+frMSQAgEaugXQeyWSyGTNmTJs27cGDB0zuQghJSUkJDQ3t27fvvXv3qtHsxYsXfXx8fvnlFyZ3IYSUlZXdv39/2rRpc+bMURoSAQ2VkZER+/FpIyOjV69eSaVSPYYEANCYNZD0ZcOGDcxkYtbW1v379/fz83N1daVLMjMz//Of/xQXF1epzfj4+EmTJjH/ZHfp0sXPz69Pnz5Mb9Thw4e3bNmio3cA9Vr79u03bNjAjNiVy+UrV658+vSpfqMCAGi0GkL68uLFix07dtDbkyZNSkhIiIqKioyMTEhICA0NNTU1JYQkJycfOnRI+zaFQuG8efPosQ4+Pj4CgSAhISEyMvLOnTsJCQkTJkygD9uyZUt2drau3xDUO1wu18bGht1/VFJSwuM1nL5XAADD0hDSl0OHDtEdRsOGDTtx4oSHhwddbmdnFxIS8vPPP9MvDx8+LJFItGzz9OnTjx49IoQ4OTmdO3duwIABzH/eXl5ex44d8/HxIYSUlJScOXNGt28H6qeysjL2z49MJgsLC2MG8wIAQF0y+PRFLpdfvnyZEMLlcpctW1ZxLO2sWbN69uxJCHn27Fl8fLyWzTJdUatWrWJPWUYzNjZesWKFn5+fn5+fQqGo0RsAA9GxY8dx48YxL0Ui0d69e3Nzc/UYEgBAo2Xw6UtmZuazZ88IIW5ubvQdESUcDmfkyJH09u3bt7VpMzU1NS4ujhDi7u7+2WefqTxm5MiRkZGRkZGRixcvrmboYFCcnJyUnjUzNTXlcg3+GwQAYIgM/pdvSkoKvYRe165dTUxMVB7TuXNneiMxMVGbNhMTE+k2Bw8ezOfzdRQp6J+JiYmRkRG7pEpPD/Xq1Wv69OnMy9evX2/evLmqQ8IBAKDmDH7sYU5ODr3h4uKi7pg2bdqYmJhIJJKsrCy5XK70B6yif//9l97o1KkTIUQqlV67du3y5ct09tO+ffvAwMCgoCDMHG9wCgoKxGIx89LU1NTa2lr76o6Ojl27dmVeSiSS6OhouVyuyxABAEALBp++MA8229vbqzumadOmdPqSl5cnkUjMzc01t8mkRB4eHi9evJgzZw57iT6BQLB///4BAwbs27evQ4cONX4HUHdWrVpFj8imjRw5cv78+VVqwdLS0tramrnjQlFUTk6OnZ2dLqMEAIDKGHznUVFREb1hY2Oj7hgrKyv6jotEItFmpO27d+8IIWZmZikpKQEBASqXF46KigoMDKSH3YBBoCgqKyuL3VvUrFmzqmYekydPZvcfPX/+fM2aNToKEAAAtGXw6QtFUfSGhkk4mGNKS0u1udUvFAoJITKZbOnSpampqXw+f8aMGRcuXIiMjLxw4cKcOXPoATFZWVmzZ8+mR8mAQTAzM2O/rMa0uWZmZuzOR4VC8eTJk9jYWB0EBwAAWms46YsO0XdoZDJZWVlZ06ZNL168+Ntvv40YMcLPz2/EiBEHDhy4cOGCra0tISQ2NvbkyZM6D4CBNZXqIV9fX/ZAq+fPn2/fvl2P8QAANEIGn74wN100LD/EJAGWlpaVjtslhLCPOXjwoJ+fn9IBgwcPXrZsGb1dq9PWmZiYIIOpb8aOHdurVy92CabfBQCoYwb/a5cZ8sIMgqmopKSE7jOytLTU5i8Nvc4AIaRbt26jRo1Secy4cePWrFlTXl6emJgoFAo1P18tFAp3796dnZ2tTfLEMDY2zszM1H6mYKgzM2bMuH//PrOQZ0JCwpkzZ9iT2gEAQK0y+PSFeeCIHm+r0rt37+gkwN7eXpunnZk2XV1d1d38aNmyZYsWLTIyMt69e1dQUKAhfZFIJD/88AOzKhM0AEOGDHF1dWXSl8zMzKtXryJ9AQCoMwbfecSMQtCwdGJubi6dvrRq1UqbaVKdnZ0rPYbD4aibJU+JWCyOiIjQ5kgwFDKZzMzMjP2zxOFwMIgbAKDOGHz64u7uTs/jkpiYqG74CzPZrpeXlzZtduzYkd5IT09X96RSQUEBvd6Nra0tPYxXHR6P165dO23OC4aCx+OtX7+e/eN06tSpU6dO6TEkAIBGxeA7j5ycnLy8vB48eJCYmBgfH+/r61vxmEuXLtEbSiMu1enevbudnV1BQcHDhw8FAoG/v3/FY+7evUvPXdatWzcLCwsNrZmbm+/YsYPL5WZmZlZpjKeRkVFRUVFaWhpWhayHnJ2d2R2RRUVFt2/fHjlypOZcFgAAdMLg0xcjI6PAwMAHDx4oFIq1a9eGh4cr9en8/vvvUVFRhBAnJ6fevXtr06ajo2NQUNDx48cJIcuXL4+MjFQa2iIUCjdu3EhvBwQEVNqgm5vb8ePHJRJJlR4j4nA4d+7cGTNmDHol6iGKorp37/7s2TNmbPWxY8cCAgLGjx+v38AAABqDStKX3NzcjIyMlJSU169f0wsGURTVrFkzR0dHDw8PNzc3Dw8PvS+6O2XKlB07dohEomvXro0dO3bLli30XP7v37//7bffVq1aRc8NM3PmTEtLS3bFnJyc58+fE0IsLS29vb3ZbyQkJOTMmTNisfju3bujRo3atGnTxx9/TO96+vTp0qVL4+PjCSFOTk7Tpk3TJkg+n1+N1R+rtCIP1CULC4vly5dfuXKFWWJCLBZfunSpX79+jo6O+o0NAKDho1TJyMjYv39/QEBAy5YtNdSl/+ovXrw4NjZWoVCobKpufP3110xUFhYWffv29fPzY88t1rFjx4KCAqVaW7Zsofe6urqKRCKlvdu2bWOqm5qa+vj4+Pn59ezZkz1z6+nTp2v1fUVGRjKn43K54eHhtXq6hk2hUIwcOZL9Azx37tyaNFhaWrpkyRKlu31XrlzRVcAAAKCOcvqSmJg4b968pk2bVikH4nA4ffv2PXr0aFlZmV7eRllZ2YQJE9SF5+bm9vjx44q1NKcvFEVt3bpV3eNFfD5/3759tf2+kL7o1ujRo9kXcebMmTVsMDk5WenLMn78+OzsbJ1ECwAA6vy38ygrK2vjxo3Hjx8vLS2lS4yNjV1cXFxcXDw9PR0dHZs1a8blcjkcTklJyZs3b1JTU1+8eJGenk7f1YiOjo6Ojt6+fft333332Wef1XGPEp/PP3HihL+//4EDB1JSUsrKyuhyd3f3oUOHLl++XOX9fBcXF3pG3Xbt2qkM+Ntvv/X19f3555+jo6OZB7Nbt27dv3//xYsXe3t719b7gVogk8mUBkFXaRZBldq0abNo0aLVq1czJWfPng0JCWndunUNWwYAAA04FEXJ5fJ9+/atX78+Pz+fEGJra9urV68RI0b06dPHxcVF8/CL9PT0p0+fXrp0KTIykh5HQggJCgpav359t27d6uId/C+KolJSUvLy8gghfD7f09NTJ8NH8vLy0tLSZDIZl8v18PCos8ENAoEgMDCQHrrL5XLDwsKGDRtWN6dueHbu3Ll+/fqCggL6Zc+ePQ8fPsw8JF9tDx488Pf3LywspF9aWlqGh4cPGDCghs0CAIAmqampQUFB9Larq+umTZvS0tKqcRunoKDgzz//HDp0KP0frYWFxZ49e8RisW5vFjU26DzSocmTJ7N/8sePH6+TZsvLy3fu3Mk0y+FwevbsST8Kp5P2AQCgIu7YsWMvXbrUokWLnTt3JiQkLF261M3NrRppkK2t7cSJEy9fvhwdHT1hwoSysrIvv/zywoUL1cyqAHRNaXoeiURC6WK5cjMzMycnJ+YlRVHx8fEhISFMDyYAAOgcVyQSffXVV/fu3fv666/t7Oxq3mKvXr1OnTp16dKlLl26vH37tuYNAtRz9vb2bdq0YZf8+++/MTExmG8QAKCWcMPDw3ft2qX5AelqCAwMvHPnjrrlmgEakn79+h06dMjT05MpycvL27p1q96nRAIAaKi4Hh4etdS0hYWFzrMigHqIw+F88sknSpPKJCcn//PPP/oKCQCgYcN/hwC6MWLEiM6dOzMvc3NzFyxYgOFfAAC1AekLgG706dOnT58+7JKcnJwzZ87oZIAwAACw8fLz81+/fl3D+bsoimrTpg3W2oVGbt68eY8fP46Li2NSlsjIyDNnzmAdRwAA3eIdPHhwzZo1PF6Nlp5WKBQHDhwIDg7WVVgAhqhLly6HDx8eOXJkWloaXfLq1auoqKhx48ZVabFxAADQjCeRSGQymUwmq2FDEolEJwEBGDRPT8+PP/44MzOT+U4dO3bM1dU1JCQEGQwAgK7w2L9Sra2tW7VqRVGUSCSqUkJDUZSlpWUthAdgYDgczg8//HD79u1Xr17RJUVFRUuXLiWEIIMBANAVntLUFB4eHmPGjPH19XV0dFQoFCKRSJuptxQKhU6WFgJoAJycnAYNGvTHH38wJRKJZNmyZRRFzZ8/39zcXI+xAQA0DLw5c+Y4ODicOnXq7t27xcXFFy5cuHDhQufOnT/55JOxY8f26tVL3xECGBg+n79z506Koo4dO8YUisXizZs3jxgxonqLcgAAABu3RYsWn3/++c2bNxMSEjZv3tyzZ08ul/vkyZPt27f37t27S5cuK1euTEhI0HecAIbE3t4+NDR0ypQp7MLi4uI//vhDKpXqKyoAgAbjvz1HXl5e33//fVxcXFxc3IoVK+gJuJ48ebJhw4ZevXr17t17w4YNycnJ+gsVwJDY29vv2rXrs88+Y0rEYvGGDRvWrl0rFov1GBgAQAOgYto6Hx+f9evXJyQkREZGLlq0yMPDQ6FQxMXFrVy5snv37gMHDty9e/fz58/rPlYAw2Jvbz9ixAh2iVwu3759+6hRo3bv3q2vqAAAGgC1072YmJj4+fn5+fkVFxfHxsaePn362rVr2dnZAoFAIBCsXr26Z8+eY8aMCQwMVFprFwAYgwcP/uKLL/bu3cuUiMXiK1euCAQCiqKmTp3atGnTOgumqKhIIpHg6ScAqCcoiuJwOE2aNKnGAreVz1ZnbUV/CBkAACAASURBVG0dEBAQEBCQl5cXHR198uTJ6OjovLy8iIiIiIgIBweHPn36TJo0KSAgwMbGplrxAzRY9vb227Zt43A4e/fuZa8eIBKJli9fvn///sWLFwcGBup2cdOsrKzy8nL2rwMej/fq1auVK1fm5ubWcI5KAABdUSgUNjY2169ft7KyqmrdKvwic3BwGDt27NixY3Nycu7cuXP+/Pn4+PgXL16cP3/+/PnzR48enTZtWlVPD9DgmZubb9++naIo9j0YQohQKExOTv7yyy/btGmzdu3adu3aNW3a1NXVtUqNi8XiR48eMYkRj8fLzs5etWpVfn4+eyUQDocjFos/fPhQ87cDAKBD5ubm2szPUlF1/g9r3br1J598wuVy09PTX7x4QRcKhcJqNAXQGJiamm7bts3S0vLWrVuxsbHsXeXl5ampqTNmzODxeJ06dfr+++95PB5FUQqFwtzcfODAgcbGxoSQoqKiW7du0TdambrGxsaxsbG7du1il0ul0vLy8rp8dwAA1WZiYlK9ilVLX7Kzs6Oios6fP3/nzp28vDym3NraukWLFtWLAKBuKI35qOOFoM3NzTdv3pyXl7dkyRL2fDA0kUhECImLixs/fjwdJ0VRpqamISEhHh4ehJDY2NhDhw6R/30XHA5HKpViRWsAMFzV/g2mVfqSl5d3586ds2fP3rhxg521WFhY+Pj4jB49eujQofQvWYB6i76NwdDLLQoHB4fQ0FCKoo4fP67yAPZiHTKZbMOGDXUVGgCAHlR7yUVN6QudtZw/fz4qKio7O5spNzY29vb2Hj9+fFBQkJeXV/VODFCXrly5cvPmTeZl27ZtP//8c708g2Nvb79jxw5fX98LFy5ERETU0lkq3mqytbVduHChg4ND9bqZAQB0TqFQmJmZmZmZVaOuivSlsLAwOjr69OnTAoGAnbUQQry9vceMGfPpp5926dKlmsEC6MP169fZky46OzuPGTNGX8E4ODjMnz9/2LBh0dHR+/btu3//vkKhqMma7cw6SgqFwsHB4bvvvmvevLlcLmcOkMvlTZo0CQwMrGnoAAD1w3/Tl8LCwvj4+HPnzt28eVNpVrrOnTsPHz58+PDh3t7eSnfgAQyC0kKJUqm0rKxMv8ukt23bdvLkyT4+PllZWXl5eWvXrn379i1z16TiU0IcDsfOzk6pUKFQDBkyZP78+RRFURQll8vt7Ox8fHzq4g0AANSYQqHgcDjVuBfOKykpiYmJUZm1eHl5DRkyZNy4cT179qz22GAA0MDd3d3d3Z0Q4uPjU1ZWxuFw6PlaQkNDIyIi6O8dRVEymWzUqFHz5s1TKBTskW4KhaJ169bNmjXTV/wAAHrBO3jw4OLFi//7msfr1KmTv7//xIkT8T8cQJ2hkxjG7t27P3z4wEw9p1Ao7O3t+Xy+PkIDAKh3eIWFhcwLDw+PMWPG9OrVq1WrVhRFRUdHaz8k2NPT09HRsXaCBGh0LC0t9du3BQBQn/HYU3OmpqZu3ry5eg39+uuvn3/+uY6iAgAAAFCLW+1HrpUbqvp6SwAAANCYVXsCC17Lli07dOhQw+SDoqi6XDgXAAAAGoDqpy9z5swJDg6uXvrCzG5OURQeTQIAAIC6waNVr7JYLDY1NdVtQAAAAACa1ajPKD4+fvr06adOndJVNAAAAACVquZ9F1r//v3btm27devWjIyMZcuW6SomAAAAAA1q+riQs7PzggULNm7c+OTJE50EBAAAAKBZTdOXN2/e7Nmzp7S09Nq1azoJCKA2KM1XKxQKsfAyAIDhUt15dOTIkf/7v/+rtLJCocjIyMjJySGESKVS3UYGoCtJSUkCgYB5aWNjM3bsWKVFHAEAwICoTl9SUlLYv+4rZWlpOXz4cN1EBKBrERERV69eZV62adNm4cKFWDsdAMBwqU5fLC0tNT9QzeFwZDKZVCp1cHDw8vL65ptvOnbsWGtBAtSI0qRECoVCJBLpKxgAAKg51QnKnDlzPv30U/ZySEro9OWnn36Ki4s7efIkFmuE+qzirI4UReklEgAA0AnV6Uvz5s2bN29eaeXffvstMDAwKCjo1q1bWB23NpiamlZ7QmUAAICGqkbzvhBC9u3b5+rqGhIScujQIZ0E1Dg9f/5cKpUqZSomJibPnz/HAzIAAABKapq+uLi4+Pv7Hz58+JtvvunQoYNOYmpUZDLZ2bNnv//++7KyMqX0hcPhiMVisVisr9gAAADqp5qmL4SQwsJCQsidO3eQvlTDy5cvly9f/vLlS30HAgAAYDBqOm3dhQsXHj58SAh59eqVLuJpdCQSSUFBgb6jAAAAMCSq777k5+e/fv1aw5NHXC63tLT01q1bP/74o1wuJ4T06NGjtmJs0Fq2bDl9+vTQ0FB9BwIAAGAwVKcvBw8eXLNmjYZ5X7hcrlAoZF5OnDgxKCiIEJKRkfHo0aOkpCQTE5PBgwd//PHHOo+4gbGxsVm3bt1HH31UVlbG5f7PzTAjI6OUlJS9e/diRmMAAAA21QlKaWmpTCaTyWRatsLn87/66qsHDx4kJSUxXSF8Pv/atWt9+vTRTaQNl6Wl5YwZM1TuSkhI2L9/P9IXAAAANtXpi6enp5+fn/atJCcnSySS169fs4dxCIVC9h0aqIaysjJMsAYAAKBEdfoSHBwcHBxc1bYKCwsTExPv3LmTkpLC4/GGDRs2ePDgGkcIAAAA8D908OA0w9bWtm/fvn379tVhmwAAAABKavrgNAAAAEAd4y5fvvzff//VebsURf3222+XL1/WecsAAADQyHF3797ds2fP9evX63DytJiYmMDAwFmzZqWnp+uqTQAAAAAa99tvvy0qKlq1apWPj09oaOj79++r3ZZcLr9x48bEiRP79+8fERHRoUOHQYMG6TBWAAAAAEIId/Xq1RcvXvTy8kpPT//mm298fHxCQkLi4uLKy8u1b+XZs2c//fRT7969Bw8efPr0ablcPmvWrOjoaKyCBPWBsbEx+6VUKsXj6AAABo1HCAkKCurdu/fWrVv37t2bmZn5008//fTTTx06dPDx8fHx8enatauDg4O1tbWVlRWHw+FwOCKRqLi4OC8v7+XLl9HR0TExMYmJicwULz169Fi1atWnn36q1/cF8P+TyWSlpaXsEisrKw0LYgAAQP3HYf8bSt9EOXHihNKve1tbW5Xpi1JbXbp0WbRo0eTJk83MzOoi9kZAIBAEBgaKRCJCCJfLDQsLGzZsmL6DMjDXr18PDg7Ozc2lX9rb2//xxx+ffPKJ0hINAABgQP5n3pcOHTrs37//66+/Pnz48MWLF5OTk+nywsLCwsJCdU3Y2tr6+fkFBwcHBASYm5vXbrwAVZSfn8/kLoQQMzMzDw8P5C4AAAZNxbR1np6e27ZtW7Nmzd27d2/duhUbG5udnV1UVPThwweKoiiKsrKysrKyatasWbdu3fr169ezZ083N7e6Dx1AG0oDXxQKBX03CwAADJfaWXctLCwGDhw4cOBAQohQKCwqKiooKFAoFIQQS0tLa2vrJk2a1F2YAAAAAP+PVosG8Pl8Pp/fokWL2o4GAAAAoFIYAQAAAAAGBukLAAAAGBikLwAAAGBgkL4AAACAgUH6AgAAAAYG6Qs0cFZWVuyXZWVlMplMX8EAAIBOIH2BhqywsFAgEDAvuVyuv79/s2bN9BcRAADoANIXaMgePXq0c+dO5qWFhcV3332HGYwAAAxd5ekLRVFyubwOQgHQOS6Xy+FwmJfsBUoBAMBwaUpfoqOjZ86c6ePj89dff9VZQAA6xOFwjIyM2CX0whcAAGDQ1C4asHr16k2bNkmlUkJIYmIie5dCoVixYkXbtm2nTp2qNC4SAAAAoLapvvvy+++/r1u3js5deDzlFEcmk509e3bBggW+vr5Xrlyp9RgBAAAAWFSkL0KhcOPGjYQQMzOzFStWJCQkLFmyhH2AVCotKir6/9q788CYzv1/4M9sySSTPSRBiGykYk0lVbVMltLG0hJLUS2tq1RQa2lwFUXlFtcSmosu0lYVbVGxhEQlRCQogrpkiJBdIjNJZiaz/P443+/5nt9kMUkmOXMm79df5zznOWc+k0ecT855FkLIzZs3R48evXXr1taJFQAAAIDUmb5kZWXdv3+fELJq1ap169b17dvXycmJWcHW1vb48eMffPABn8+vqalZsGDBH3/80UrxAgAAQJtXR/oik8kIIa6urrNnz67zHB6PFxwcvHfv3oMHD0okEkLIvHnzqOcxAAAAAC2tjvRFrVYTQjp37vzCbrlRUVG7du3i8/k5OTl4AANmyMbGhjlwuqqqiurRBQAAnFZH+uLm5kYIyc/Pr6qqeuH5U6dOffXVVwkh586dM3lwAM1RWlqakJCgUqnoksmTJ/v5+bEYEgAAmEQd6UtAQICVlVVhYeHp06eNuUR4eDghpKCgwMShATRPbm7uvn376EkXeTze+++/37FjR3ajAgCA5qtj3pdu3bqFh4cnJiauWrUqLCzM2dm54UtQL5vMYT5TpVJ59OjR8+fP3759mxDSrl27iIiIiIgIX19fE37K9evXy8vLXV1de/XqZcLLgskJhUIbGxu5XE6XGPNAEQAAzF/d09YtXrw4MTHx9u3bkZGR27dv79+/f33nV1dXHz9+nBDC+h+1qampixYtysjIYBYeOnTI2dl50aJFy5YtM5h9tWnS09OHDh2qVqvDw8OTkpKaf0FoUcyOL8Q8kmwAAGi+uqetCwsLmz9/PiEkPT09NDR0+vTpp0+fLi4uNqhWVFQ0ffp0ak7eN998s6VjbUBWVtaoUaMMchdKWVnZihUrYmJimv8p5eXlM2bMoJ42icXi5l8QAAAAmqDeRQO+/PJLlUq1e/duhULx7bfffvvtt15eXt26devWrVvHjh11Ot2dO3dSU1Nzc3MJIYMGDWIxfdFoNHPnzi0vLyeE2NrafvDBB2+//bZAILh27VpcXBw1h01sbOzbb789YMCA5nzQ3Llzs7OzTRM0AAAANFW96Yu1tfWuXbuGDh26Zs2aO3fuEEIePXr06NGjM2fOGNT08/P7+uuvbWxsWjbS+h07duzSpUuEEFdX10OHDkmlUqpcKpW+//77EyZMOHv2rE6n27x588GDB5v8Kd99911CQoJJAgYAAIDmaGjFaULIO++8k56e/sMPP4wZM6Zr164GRzt06DB79uwLFy706NGjpQI0Ap1VxMTE0LkLxcXFZd++fVTv45MnT+bl5TXtI7Kzsz/55BNCiLe3N14bAQAAsKvepy80BweHyZMnT548uaSkJCcn58mTJyUlJSKRyMfHx9fXt1OnTq0QZQOeP39+8eJFKs5JkybVrtClS5cxY8bs27dPLpcnJydPnTq1sR+hUCg+/PDD8vJyHx+fDRs2TJs2rflhAwAAQJO9OH2htWvXrl27di0XStNkZ2cXFhYSQoKCgjw8POqsM3jw4H379hFCMjIympC+rFix4vLlywKBID4+vl27dsxp0AAAAKD1veDlkfmTyWTUaNiAgID66vj7+1OjpnNychp7/WPHju3YsYMQEh0dHR4erlAomhEsAAAAmADn0xd6tt8GXmO5ublZWVkRQvLy8qhhz0bKycmZOXOmVqt95ZVX1q1bRzBxCAAAgBngfPpCz0bj5ORUXx1XV1eRSEQIqaioMH7FPp1OFx0dXVBQYG9vHx8fb2dn1/xooTVZW1vz+f/3L1yv12O9RgAAy8D59IXuiSKRSOqrIxQKqdlX1Wq18Y9PYmNjExMTCSGbNm3q3bt3syOFVqXVau/du8fsqNS5c+f27duzGBIAAJgK59MXelb4BvIS+pBCoaAX8GtYUlLSqlWrCCHjxo2bNWtWs8OE1pafnx8TE/Ps2TO65NNPPx00aBCLIQEAgKlwPn2hUxOD1W2Y6EN2dnbGrHxUUlIyc+ZMtVrt4+Ozbds2k8TZNA18KWiYRqNhLtZICJFIJCZZ9woAAFjH+fSFfmdUWVlZXx2NRkNlOWKxmNkZok46nW7BggUymUwikSQkJHTo0IF5lJ5cWChsxJjzJhOLxchgmobP51Mdnmjo+AIAYDFa4x7cougeu2VlZfXVKS0tpW5dLi4u1BCkBnz//ffUNL6DBg3S6XQpKSnMozdv3qQ2CgsLqUMCgSAkJMTa2rqBa6pUqq+//vrx48eN+utfJBI9ePCgUUOlAAAA2gLOpy/0eGl6BHVtRUVFVBLg5ub2wqcmWVlZ1MapU6dOnTpVXzVqLW5q++HDh15eXvXVrKmpWbNmzYYNGzDoGgAAwCQ4//LIz8+Peh/04MGD+urIZDKqx66Pj88LL6jT6UwYHiFEqVQePXoUuUsrMxg1TQjRaDRsBQMAAKbF+acv/v7+bm5uBQUFmZmZRUVFbm5uteukpaVRG3369HnhBQMDAw3WfWR6/vz59evX9Xq9q6trr169CCFisbjh1bYFAoGnp+etW7de+NFgQsXFxcz3bhKJxN7ensV4AADAhDifvjg5Ob322muHDx8uLS39/vvvFy9ebFAhPz//t99+I4RYW1sPHTr0hRf8+OOPP/744/qOZmVlhYSE6PX6QYMGUZd9IVtb26+++kqn0z18+NCgM2nD+Hy+XC5/9OgRntw0llwuX758+aNHj+iSjz76aOzYsSyGBAAAJsT59IUQMnHixMOHDxNC1q5dGxAQMHLkSPpQSUnJ1KlTqW4xYWFh/v7+zfys6upqaqNRbyJ69Ohx6NAhpVLZqGFEfD4/LS1t/PjxWCSysTQazePHj5lz/Hh4eNja2rIYEgAAmJAlpC+RkZG9e/e+ceNGRUVFVFTUtGnToqKirKysMjMz4+LiZDIZIYTH4y1dutTgxF9++SUuLo4Q4uPjs3v37kY9Gmkse3v7Jry8cHFxwcDpJuDxeAZjwZACAgBYEktIXyQSydatW0eOHFlVVaVWq+Pj4+Pj4w3qxMTE1O7RIpPJqMHPjx8/NnmPXZPAVCUAAAC1cX7kESU0NPTo0aNUX1oDjo6OGzduXLNmjUk+SKvVUomOUqk0yQUBAACgsSzh6QslPDw8LS0tMTHx7Nmz9+7dI4Q4OTmFh4cPHz68vi4vkydPDgkJIYTY2dkZ+eaob9++KSkp1MgjEwYPAAAAxrOc9IUQYm9vP2HChAkTJhhZ39PT09PTs1Ef4ejoaMzwJQAAAGg5FvLyCAAAANoOpC9ggfh8vsGILfPsmg0AAE2D9AUskEgkwooBAAAWDOkLWBqdTrdly5Y7d+7QJaGhoePHj2cxJAAAMC2kL2BpdDrdyZMny8vL6ZKgoKA6B9UDAABHIX0BS8Pj8SQSCbMEk/QAAFgYpC8AAADAMUhfwNIIBAIrKytmSVVVFVvBAABAS0D6ApYmIyODWqeT4uHh8dprr7EYDwAAmBzSF7A027Ztu3nzJr07ZMiQDz/8kMV4AADA5JC+gKUxmPEFAAAsD/6jB0sjEAiYu5hvFwDA8iB9AUsjFP5/C5Gq1Wq2IgEAgBaC9AUsSlVVlUKhoHcFAoGzszOL8QAAQEtA+gIWZefOnUePHqV3+/Xr9/nnn7MYDwAAtASkL2BRnjx5wpzlxd7evnPnzizGAwAALQHpC1gUsVjM3NVoNCqViq1gAACghSB9AQAAAI5B+gIWxWDSF4yaBgCwSEhfwKLweDyDXb1ez1YwAADQQpC+gOU4ceLEL7/8Qu926tRpyZIlNjY2LIYEAAAtAekLWI4bN27897//pXfd3d3DwsIMnscAAIAFQPoClsNg2FFNTU1lZSVbwQAAQMtB+gKWw9bWlrlbXV2t1WrZCgYAAFoO0hewEEVFRVlZWfSuSCQaOHCgRCJhMSQAAGghSF/AQpw5c2bPnj30bocOHVasWOHo6MhiSAAA0EKQvoCF0Ov1zFleeDyewRwwAABgMfD/O1gIg2RFr9ej4wsAgKVC+gIWwsrKirlbU1ODKXcBACwV0hewBDqdTqFQMEvs7e2FQiFb8QAAQItC+gKWICsra+3atfSunZ3dF1980bVrV/YiAgCAFoT0BSxBdXV1Tk4OvavRaLy9vfH0BQDAUiF9Ac5TKpXXr19nJitBQUH29vYshgQAAC0K6Qtw3p07d9auXavRaKhdgUCwYsWKbt26sRsVAAC0HKQvwHk6nY7OXQghPB4Pr40AACwb0hfgPJFIJBKJ6F2NRqNWq1mMBwAAWhrSF+A8rVar1+vpXaFQiPl2AQAsG/6XB24rKipat25dWVkZXfLJJ58MGDCAxZAAAKClIX0BblMqlZcvX2auD9CvXz9nZ2cWQwIAgJaG9AU4TK/X5+bm8ng8uqRdu3a2trYshgQAAK0A6QtwWHl5+fLly588eUKXzJ07NzIyksWQAACgFSB9AQ6zsbGpqqoy6LdrsHYjAABYHqQvZg0jaBqg1+t//fXXwsJCuqRXr14hISEshgQAAK0Dd0ezJhQKmR07gEmr1e7atYv55mjYsGEREREshgQAAK0Dk5OyLzc3d+vWrXK53OBZi0gkevToEWZga4DBe6Kamhq2IgEAgNaE9IVlRUVF8+fP/+2339gOhHu2bNly9epVenfQoEH/+Mc/WIwHAABaDV4esaykpOTcuXNsR8FJly9fZs5W5+np2bNnTxbjAQCAVoP0hWV2dnb+/v5sR8E9paWlzNdqVlZWbm5uLMYDAACtCS+PWNa5c+edO3euWLFCLpcLBALmIT6fX1ZWdufOHZ1Ox1Z4ZmvLli2nTp2id1955ZXVq1ezFw4AALQqpC8s4/F4r7zyym+//abVag0GGfH5/NTU1LffflupVLIVntlSqVTMpy96vd7R0ZHFeAAAoDUhfTELEomkUeVtXHZ29rVr1+hdBweH4cOHMyevAwAAy4a+L2ZNo9GwHYI5OnHixNmzZ+ldLy+vuXPnGrx6AwAAC4b0BTgmKyvr8OHD9K6zs/OsWbOwTCMAQJuC9AU45saNG5cvX6Z3HR0dx4wZIxKJWAwJAABaGdIX4BKtVmswta5EIsHExAAAbQ3SF+CS69evf/HFF/SulZXVmjVrPD09WQwJAABaH9IX4Ay1Wn3x4sXc3Fy6pHfv3kFBQei0CwDQ1iB9Ac548ODB+vXrmSUxMTFeXl5sxQMAAGxB+gLcUFVVdfz48ZKSErpk6NChvXr1MpjrDwAA2gKkL8ANxcXF27ZtY06EM2vWLF9fXxZDAgAAtiB9AQ5QqVR79uwpLS2lSyIjI/v3789iSAAAwCKkL8AB5eXlBw4cqK6upnYFAsFbb73l5+fHblQAAMAWpC9g7ioqKj7//PPHjx/TJaNGjYqMjGQxJAAAYBeWbARzt3bt2l27dtG7YrH4tddew1wvAABtGZ6+gFl7+vTppUuXmCWhoaH/+Mc/2IoHAADMAdIXMGtxcXHMFY5EIpFUKnV0dGQxJAAAYB1eHoH5unv3blpaGj1Y2sHBYeHChfPnz2c3KgAAYB2evoD5+v3331NSUujdgICAJUuWWFtbsxcRAACYBaQvYKays7OPHj3KLFGr1QbLTQMAQNuEl0dgju7evTt9+vQrV67QJe3bt583b55EImExKgAAMBNIX8Ds6PX6a9euMXMXsVgcGxv7/vvvsxgVAACYD7w8ArNz//79L7/8klnSsWNHqVTKUjgAAGB2kL6A2bl+/fqNGzfoXW9v723btnXq1InFkAAAwKzg5RGYEa1We+LEiSVLluj1errws88+GzFiBItRAQCAucHTFzAjlZWVq1atevToEV3Su3fvl19+mcWQAADADCF9ATNy7Nix3NxcZsn06dP79evHVjwAAGCekL6Audi/f/+CBQuePXtGlwQHB6PHLgAA1Ia+L2AWdDpdQkJCcXExXdK/f/9vvvkmMDCQxagAAMA84ekLmIU9e/Zcu3aNWfLqq68idwEAgDrh6QuwT6vVnjlzhn70IhAIwsLCoqOj2Y0KAADMFtIXYFllZeW//vWvkydP0iX+/v7x8fFdu3ZlLygAADBrSF+AZcePH1+7dq1Wq6V2RSLRgAEDvLy82I0KAADMmUWlL0ql8ujRo+fPn799+zYhpF27dhEREREREb6+vk2+pkwmS01NTUlJycnJIYQIBIIhQ4YMGjRIKpXy+eg51FzFxcVnz56lcxdCiIeHR0xMDI/HYzEqAAAwc5aTvqSmpi5atCgjI4NZeOjQIWdn50WLFi1btkwgEDTqgmq1esOGDdu3by8tLWWWnz17lhAyfPjwr776Cn1LmykrK2vv3r3MksjIyI4dO7IVDwAAcIKFpC9ZWVmjRo0qLy+vfaisrGzFihVyuXzjxo3GX1Cr1U6dOvXgwYP1VTh16tT169f/+OMPzAnbZKWlpT/99JNOp6N2eTzexx9/vH79eltbW3YDAwAAM2cJrz80Gs3cuXOp3MXW1jY6OjopKSk5OXnz5s1+fn5UndjY2PT0dOOvuXv3bjp3CQwMXL169dmzZ5OTkxMSEt5++22qvLCw8MMPP3z+/LlJv01bUVpaunDhwu+//54usba2njZtmoODA4tRAQAAN+i578iRI9R3cXV1TU5OZh4qLS0NDw+njo4fP97IC1ZUVNDDXqZOnVpZWWlQ4bvvvhOLxVSFvXv3muRb1Ck5OZn+ID6ff/z48Zb7rNYkl8vfe+89g3+Kn376aXl5OduhAQAAB1jC05eEhARqIyYmxmCOeRcXl3379jk7OxNCTp48mZeXZ8wF09LSHj58SAjp2rXrjh07ar/LeO+992bNmkVtnzt3rlnRt0lPnjw5c+YMs0QkEkVGRjo6OrIVEgAAcAjn05fnz59fvHiREOLg4DBp0qTaFbp06TJmzBhCiFwuT05ONuaaNTU1AQEB9vb2oaGh9b3LGDVqFDU6Jjc3l+69AcZ48uTJ4sWLmesDWFlZbdiwITg4mMWoAACAQzifvmRnZxcWFhJCgoKCPDw86qwzePBgasNgXFJ9Ro0alZmZeeXKlZUrA0rTBAAAIABJREFUV9ZXx8bGhkpfhEIhRvkaTyaTzZw58/jx4xqNhipxdnbesGHDwoULbWxs2I0NAAC4gvMjj2QymV6vJ4QEBATUV8ff318gEGi1WmruFmNIJJLu3bs3UOHu3bvUQxdPT0+kL8bbvHnziRMnmCWRkZELFizAzxAAAIzH+acvBQUF1EanTp3qq+Pm5mZlZUUIycvLU6vVzf9QjUbzn//8h9qOjIxs/gXbiL/++uvy5cvMEmdn5+HDhyN3AQCARuF8+kJ3oXBycqqvjqurq0gkIoRUVFTU1NQ0/0PXr19/6dIlQkjPnj1HjRrV/Au2EQcPHrxy5Qq96+zs/NVXX02dOpXFkAAAgIs4n76oVCpqQyKR1FeH7p6iVqupN03NER8fv3r1akKIQCDYvHlzA58LTFeuXDl16hS96+zs/K9//Wv69OkshgQAABzF+b4v9HuHBvIS+pBCoWAur9ME8fHxs2fPpi64fv36119/vTlXazuuX78+ffr07OxsuqRr167jx49nMSQAAOAuzj99oVOTBvpP0Ifs7Owau/IRU2xs7KxZs6geu0uWLFm6dGmTL9Wm6HS6zMxMZu5ib2+/dOlSDDUCAICm4Xz6Qr+7qaysrK+ORqOhshyxWNy0ZaLVanV0dPTSpUup66xcuXLTpk1NirdxxGKxBXRrzc7Ojo2NpXd5PJ6fn59UKhUKOf/wDwAAWMH5+wfdY7esrKy+OqWlpVSPXRcXF2oIUqMUFBTMnj37t99+I4QIhcItW7ZER0c39iI5OTlyubxRyZOVlRU9PJu7ampqMjIy7t27R5fw+fx//vOf7du3ZzEqAADgNM6nL/R4aXoEdW1FRUXUeGk3N7fG/sV/4cKF6dOnP3jwgBDi6Oi4b9++sWPHNuoKer0+JSVl3rx5T548adSjFD6fr1Kp6L7JHPXo0aO1a9cyS0JCQvr06dOct3gAANDGcT598fPz4/P5Op2OyjDqJJPJqB67Pj4+jbr44cOHp0+fLpfLCSG9evXas2dPSEhIYyOsqqr65z//eevWrcaeaAFUKtXJkyfz8/OZhUuWLKFXxAQAAGgCzvd98ff3d3NzI4RkZmYWFRXVWSctLY3a6NOnj/FXPnTo0OTJk6ncZdiwYWfPnm1C7kII0el0FRUVTTjRAjx79mzLli3MqQKHDh3aqFYAAACojfPpi5OT02uvvUYIKS0t/f7772tXyM/Pp7qtWFtbDx061MjLXr58efr06dR9d+LEib///nuT+2rY2trOmDGjDa6lrFKp9u3bx8wpIyIi9uzZ09hnYAAAAAY4//KIEDJx4sTDhw8TQtauXRsQEDBy5Ej6UElJydSpU6luMWFhYf7+/sZcUKlURkdHKxQK6uIHDhxoTngCgSA6OrpLly75+fmN6nkjEAhu3769detWk8wU3PoqKioSEhKoHyNl9OjRfn5+LIYEAACWwRLSl8jIyN69e9+4caOioiIqKmratGlRUVFWVlaZmZlxcXEymYwQwuPxak/T8ssvv8TFxRFCfHx8du/eTS0sQAj56aefMjMzqe179+5FREQ0MNmdwbn1GT16dBO+2pUrV3bs2MHR9EUsFtvZ2TFLysvL2QoGAAAsiSWkLxKJZOvWrSNHjqyqqlKr1fHx8fHx8QZ1YmJipFKpQaFMJktJSSGEPH78mB6frNPpEhIS6DrXrl1r+NOZ55pcZWVl81c5YMuzZ8+YvV5sbGwcHBxYjAcAACwG5/u+UEJDQ48ePdqrV6/ahxwdHTdu3LhmzRojL6VQKNLT000aXRu1evXq27dv07ujR4/GCkcAAGASlvD0hRIeHp6WlpaYmHj27FlqkjQnJ6fw8PDhw4fX1+Vl8uTJ1GAiOzs7+u2Pra3tyZMnjV8aiXku0O7cuZOZmanRaKhdJyenIUOG4OkLAACYhOWkL4QQe3v7CRMmTJgwwcj6np6enp6eBoVCoXDw4MGmDq3N2bBhA3ORo2HDhs2YMYPFeAAAwJJYyMsjMDdqtZrZa0cgEDRhuQYAAIA6IX2BFmGwmnRVVRVbkQAAgOVB+gKm9/vvv1+4cIHe9fLy+uijj1iMBwAALAzSFzAxrVZ74sQJ5hJUgYGBb775JoshAQCAhUH6Aib2888/Hzt2jN719fX97LPPuDt7DQAAmCGkL2Bi9+/fZy4x7eLi0q9fPx6Px2JIAABgYZC+gImJxWLmrkajQb9dAAAwLaQvYGK2trbM3aqqqpZbVAEAANompC9gSjKZ7M8//6R3bWxsIiMjJRIJiyEBAIDlQfoCpnT+/PlffvmF3nV3d//kk0+QvgAAgGkhfQFTsra2Zu5qtdqamhq2ggEAAEuF9AVM5tatW9u3b6d3JRLJkiVLOnXqxGJIAABgkZC+gMnk5ORcunSJ3rW1tX399dcNBiIBAAA0H9IXMBknJyeRSETvVlZWVlRUsBgPAABYKqQvYBpqtfrvv/9mjpHu1q2bg4MDiyEBAIClQvoCpnHr1q2VK1dqtVpqVyQSrV27tnv37uxGBQAAFgnpC5hGTU2NQqGgd3k8nr29PdYKAACAloD0BUxDKBRaWVnRu1qtVq1WsxgPAABYMKQvYBoCgYD5rEWn09EvkgAAAEwL6QuYQHFx8ebNm5njjD7++OOgoCAWQwIAAAuG9AVMoLS0NDExUaPR0CWvv/66m5sbiyEBAIAFQ/oCJiAUCg0WNmJ24wUAADAtpC9gAjY2NgKBgFmCfrsAANBykL5Ac2m12qtXrzIft3h7e3fp0oXFkAAAwLIhfYHmKi0tXb16dVFREV0yZ86c0NBQFkMCAADLhvQFmkuv1yuVSmaJSCTi8/FPCwAAWgruMdBcPB5PKBQyS5hDkAAAAEwO6Qs0l1AoNHjWgvQFAABaFNIXaC6lUslcaNpg9QAAAACTQ/oCzaJWq//5z3/evXuXLpk4ceKkSZNYDAkAACwe0hdoFq1We/PmTeYsLz4+Pu7u7iyGBAAAFg/pCzQLj8eztrZmlqhUKraCAQCANgLpCzSLWCw26OlSWVnJVjAAANBGIH2BZjl16lROTg696+vrGxYWxmI8AADQFiB9gWbZuXMnM32RSqVjx45lMR4AAGgLkL5Asxh0fNFqtWxFAgAAbQfSF2gWgwnr9Ho9W5EAAEDbgfQFAAAAOAbpCwAAAHAM0hdoFoyaBgCA1of0BZruzp07MpmM3nVycgoODmYxHgAAaCOQvpg1Ho/HdggN2bFjR1paGr07YMCAhQsXshgPAAC0EUhfzJq1tbU5ZzDMhaYJITweTyAQsBUMAAC0HUK2AwCSn58fFxenUCgMMhWRSCSTyZirIZobofD/+/ej0+m0Wq1BIQAAgMnhTsOykpKShQsXHjhwgO1AmsIgU6mpqWErEgAAaFPw8ohlRUVFiYmJbEfRFCqVqrq6mt7l8Xh2dnYsxgMAAG0H0heWSSSSLl26sB1FU+zfv//gwYP07ksvvbRu3Tq8OQIAgFaAmw3LOnfuvGPHjuXLl8vlcoN+r3w+//nz5zKZzKCHrJnIzc0tKyujdx0dHbt168ZiPAAA0HYgfWEZn88fMmRIYmKiRqMx6LrL5/NTU1PHjRunVCqJ+b2dMVisUaPRVFdXGxQCAAC0BKQvZsHBwaHOcicnJ3pbp9MlJSX169evvsqtzCDZwmKNAADQatD3xawxx/Lo9fotW7Y8ePCAxXiYxGIxc1epVJrnSy4AALA8SF+4RKlU7t2799mzZ2wHQq5evfrrr7/Su87OzjNmzDCrd1sAAGDBkL5wiVarPXDgQHFxMduBkEuXLqWmptK77u7uU6ZMMVi+EQAAoIUgfeEYGxsbc5iHt3a/Xaw1DQAArQbpC8fk5+evWLHCHN4fAQAAsAXpC8dotdp79+7x+Wg4AABou3AX5B6lUvnXX39hoDIAALRZSF+45+HDh+vXrzeYdqWVsfvpAADQxiF94aQ7d+4cP36cxQBsbW2Zu9XV1Vqtlq1gAACgrUH6wkmPHz+Oj49n69Pv37//008/0bs2NjbTp09v3749W/EAAEBbg/SFq65du/bzzz+z8tG3b98+duwYvevk5PTee+/Z29uzEgwAALRBSF+4Ki8vj5lDtCYej8fs+1JdXY1JXwAAoDUhfeEMHo/n4ODAnNn29OnTO3fubM0YdDpdRkbG6tWrmeOenJ2dRSJRa4YBAABtHNIXzrC1td20aVNQUBBdUlxcvGTJkp07dz58+PDvv//Oy8tr6RiKi4tnz5599epVZuGaNWu6d+/e0h8NAABAQ/rCGXq9vnv37iEhIczC6urqxYsXv/rqq4MHDx45cuTFixdbLoAHDx6cOXPGYMlrf3//l19+WSgUttznAgAAGED6whlKpVKtVn/++eeTJk0SCATM8oKCguLi4r/++uujjz46cODAvXv3TP7pGRkZY8eOnTlzplwupwt9fX337t0bEBBg8o8DAABoANIXLqmpqXFyclq+fLlYLK6zwq1btyZPnjx9+vQ9e/Y8fPjQJB969+7dr7/+eubMmTdu3KiurtbpdFR5r1699u3bN3jwYExhBwAArQzP/LmnQ4cOa9asSU5OrnPmOr1ef/HixYsXLw4fPjwsLEylUrm7u0+bNo3Z57dhNTU13377bX5+vkgk4vP5x44dS0tLq11t5MiRQ4YMadY3AQAAaBKkL9zTrl27hQsXTpkyZc6cOYcPH6YeftReAunUqVOnTp0ihIhEotTUVFdXV2MmxhUIBM+ePTtw4IBarW6gWr9+/caMGdOMLwEAANB0SF+4yt3dffv27VFRUQKBQKVSxcbG3r59u84EpaamZv/+/ab63O7duy9duvSVV14JDAw01TUBAAAaBekLh3Xo0GHSpEnU9ssvv3zlypUvvvji8ePHSqWyJT7O1tbW29t7x44dUqm0Ja4PAABgJKQvFqJHjx49evSQSqVJSUkbNmx48uSJqZIYGxsbd3d3sVi8evXqgQMHdu7c2SSXBQAAaDKkLxbFy8vrww8/HDly5I8//rh//369Xn/z5s2mrQXds2dPsVis0WjefffdKVOmEEI8PDxMHS8AAEBTIH2xQO7u7p988skHH3yg0WjWr1//119/NWpSf41G4+3tvXLlSkdHR51O5+DgwOdjgD0AAJgRpC+WicfjOTo6EkI2bdpUU1PTqKlZ9Hq9UCjERLoAAGC2cIuycAKBgDlFLwAAgAXASwEAAADgGKQvAAAAwDFIXwAAAIBjkL4AAAAAxyB9AQAAAI5B+gIAAAAcg/QFAAAAOMai5n1RKpVHjx49f/787du3CSHt2rWLiIiIiIjw9fU1q2sCAABAc1hO+pKamrpo0aKMjAxm4aFDh5ydnRctWrRs2bImzN7WEtcEAACAZrKQ9CUrK2vUqFHl5eW1D5WVla1YsUIul2/cuJH1awIAAEDzWULfF41GM3fuXCrPsLW1jY6OTkpKSk5O3rx5s5+fH1UnNjY2PT2d3WsCAACAaei578iRI9R3cXV1TU5OZh4qLS0NDw+njo4fP57dazZBcnKyWCymPovP5x8/frxFPw4AAIATLOHpS0JCArURExMjlUqZh1xcXPbt2+fs7EwIOXnyZF5eHovXBAAAAJPgfPry/PnzixcvEkIcHBwmTZpUu0KXLl3GjBlDCJHL5cnJyWxdEwAAAEyF8+lLdnZ2YWEhISQoKMjDw6POOoMHD6Y2DMYQteY1AQAAwFQ4n77IZDK9Xk8ICQgIqK+Ov78/NcI5JyeHrWsCAACAqXA+fSkoKKA2OnXqVF8dNzc3KysrQkheXp5arWblmgAAAGAqnE9fiouLqQ0nJ6f66ri6uopEIkJIRUVFTU0NK9cEAAAAU+F8+qJSqagNiURSXx2hUMjj8QgharWaeivU+tcEAAAAU+F8+kLlEISQBnII+pBCodBqtaxcs2msra3pYHg8nrW1dQt9EAAAAIdwftEAOo2gb/O10Yfs7OyMWaWoJa759OlThULRwAVrs7KyevjwoU6no0tyc3MfPXqErjYAAGAxhEKhUCgkhOj1ej6f36FDB2PuqpxPX+j3O5WVlfXV0Wg0VEYiFov5/Bc/cDLtNfV6fXp6+ty5c3Nzcxu1xCOfz1cqlfSbLK1Wu3jxYhsbG2ZCAwAAYBl0Ot3gwYN//vlnYypzPn2he9eWlZXVV6e0tJTqXevi4kINF2rNa1ZVVX322WdZWVkv/NwXKisrayAkAAAATlMoFMY8ZSAW0PeFHttMj3auraioiHrh4ubmRj2has1r6nS6Z8+evfBDAQAA2jhjHjFQOJ+++Pn5UZnagwcP6qsjk8mo3rU+Pj6tf00bG5t3333XxsbGmI8GAABos4zvIcr5l0f+/v5ubm4FBQWZmZlFRUVubm6166SlpVEbffr0af1rCoXCxYsXd+7c+cmTJ8Y8+2Ge+Pfff+/atUuj0RBC+Hz+jBkzevfuTe1ymkAgyMvLi4uLk8vlVMnEiRMHDRrUcmO4WpNAIHj69GlcXNzz58+pkvHjxw8ZMsRivl1+fn5cXFx5eTlVEhUVJZVKLebbFRYW7ty5k35L+/bbb4eHh1vAt+Pz+QqFYufOnU+ePKFKpFLp2LFjqcV72Y2t+fh8fmVl5a5du3Jzc6mSIUOGjBs3zjK+HY/HUyqVu3btevjwIVUyaNCgCRMmWMC3o5KVPXv23Lx5s9Ent87C1i0qKiqK+i6xsbG1jz59+pRat8ja2vrevXssXrMJMjIy6Mc2AoEgJSWl5T6rlclksg4dOtD/Dn/44Qe2IzKlR48ede7cmf523377LdsRmVJeXp6Xlxf97fbs2cN2RKaUn5/PfKS6e/dutiMyGZVKFRwcTH+15cuXsx2RKWm12ldffZX+dkuWLGE7IhMbNGgQ/e0WLFjAdjimNH78ePqrjR49WqfTGXMW518eEUImTpxIbaxdu/b48ePMQyUlJVOnTqW6sISFhfn7+7N4zSaorKzU/29yrdfrFQpFy31WK1MoFMwhVJb01Uit2YAaGMLGRfh2HFVRUcF8dqtUKlkMxuSeP3/OnADdwr6dwfTulvTt9Hp902YD4fzLI0JIZGRk7969b9y4UVFRERUVNW3atKioKCsrq8zMzLi4OJlMRgjh8XhLly41OPGXX36Ji4sjhPj4+OzevZtaBKCZ1wQAAICWZgnpi0Qi2bp168iRI6uqqtRqdXx8fHx8vEGdmJgYqVRqUCiTyVJSUgghjx8/NphMpcnXBAAAgJZmCS+PCCGhoaFHjx7t1atX7UOOjo4bN25cs2aNOVwTAAAAms8Snr5QwsPD09LSEhMTz549e+/ePUKIk5NTeHj48OHD6+ueMnny5JCQEEKInZ0d881Rc64JAAAALc1y0hdCiL29/YQJEyZMmGBkfU9PT09PT9NeE4yk1+uZL+z0HB/+16YYtB1WseAKNBynoe0MWMjLI+AcnU7H7EhvAfNqtB1oO+5iNhazEcHM6fV6ZttZwOxfzYf0Bdjh4+OzcOFCGxsboVD41ltvDR8+nO2IwFheXl6LFi2ytbUVCoWRkZGjRo1iOyIwirOz84IFC9q3by8QCPr37z99+nS2IwJj2dnZLViwwMPDQyAQ9O3bd8aMGWxHxD6LenkEHGJvb79kyZIBAwYolcqXX365Y8eObEcExpJIJAsWLOjfv39VVVXfvn2ZE/SBORMKhR988EG3bt1KS0u7d+8eEBDAdkRgLIFA8O677/r4+BQXF/v5+QUGBrIdEfuQvgBrxGLx66+/znYU0BRWVlbh4eFsRwFNwZy8Fbhl4MCBbIdgRvDyCAAAADgG6QsAAABwDNIXAAAA4BikLwAAAMAxSF8AAACAY5C+mDWtVktPT6TT6TA/GFfodDrmvFKYY4pD0HYcpdfr0XAcxZxB0fjZFJG+mDWhUCgUCmtvg5kTCARWVlb0rrW1NYvBQKOg7TiKx+MxGwsNxyFNazjB6tWrWyQcMAV3d3d7e/tr165JJJJly5ZNnDiR+R8rmC0nJ6cOHTpkZGRYWVl98MEHs2fPtrW1ZTsoMIqDg0PHjh0zMzMFAsGUKVPmzZtnZ2fHdlDwYtbW1r6+vlevXtVqtcOGDVu9erWTkxPbQcGL8Xi8l1566ebNm5WVlUFBQbGxsR4eHkadiKXyzJxGo3nw4AEhxMfHp85lscE86fX6nJwctVrdpUsXiUTCdjjQODk5OSqVytPT097enu1YoBEeP34sl8vd3d1dXV3ZjgUaIT8//9mzZy4uLh06dDDyFKQvAAAAwDHo+wIAAAAcg/QFAAAAOAbpCwAAAHAM0hcAAADgGKQvAAAAwDFIXwAAAIBjkL4AAAAAxyB9AQAAAI5B+gIAAAAcgyUAzZFSqTx69Oj58+dv375NCGnXrl1ERERERISvry/bocH/kMlkqampKSkpOTk5hBCBQDBkyJBBgwZJpVI+v6G/CrKzs0+cOJGamlpRUUEICQ4ODg8PDwsLw4oQbLl+/Xp5ebmrq2uvXr0aqIaGMwd///13UlJSSkpKSUkJIaRbt27h4eGjR48Wi8UNnIW2Y9GNGzdOnjx5/vz5qqoqQkifPn0GDx48YsSIhpvMqJugHszMhQsXQkJCajens7PzunXrNBoN2wG2dSqVavXq1fWtqDJ8+PBbt27VeaJSqVy+fHmdazcOHTr02rVrrfxFQK/XX7p0iVoGNTw8vL46aDhzUF1dvWzZsjqXoAoJCUlLS6vzLLQdi6qqqubMmVNnmhISEnLhwoX6TjTyJoj0xbxkZmY2vErqp59+ynaMbZpGo5kwYUIDDUQIcXd3z8zMNDhRq9XOmDGjgbM6dep09+5dVr5Um1VWVhYYGEj9/EeMGFFnHTScOVCpVGPHjm2gFVxcXK5evWpwFtqORWq1OioqqoEfvqOj48WLF2ufaPxNEOmLGampqXn11VepFrK1tY2Ojk5KSkpOTt68ebOfnx9VzufzL126xHakbdeOHTvo36LAwMDVq1efPXs2OTk5ISHh7bffpg/16dOnvLyceeKRI0foo/3799+zZ09ycvLRo0enTp0qEAio8qioKJa+Vhv17rvv0o1SX/qChjMHy5cvp37UPB5v5MiR+/fvT05O/uOPP2bOnEk/WXnttdfUajXzLLQdi/7973/TP/w33niDarJz584tW7aMfnTdu3dvhULBPKtRN0GkL2aE/mVzdXVNTk5mHiotLQ0PD6eOjh8/nqUA27qKioquXbtSrTB16tTKykqDCt999x39pHTv3r10OfN38v3336+urmaelZCQQJ0lEAguX77cGt8E9Ppvv/2W+SddnekLGs4c3Lhxw9ramspdtm3bZnD09OnTdnZ2VBslJSXR5Wg7FtXU1PTt25f64S9YsMDg6PXr1zt27EgdPXDgAPNQo26CSF/MCP10dPPmzbWPPnr0yNnZmRBib2//+PHj1g8PEhMTqQbq2rXr8+fP66zzySefUHWmTJlCF168eJEq9Pb2Nvhrw+CsxYsXt1T0wHDr1i3qAbW3tzd1G6szfUHDmYM5c+ZQP+R33nmnzgpz586lKsyfP58uRNux6MGDBzY2NoSQjh071vlf5dq1a2s3mb6RN0EMnDYXz58/p37fHBwcJk2aVLtCly5dxowZQwiRy+XJycmtHR8QUlNTExAQYG9vHxoa6uDgUGedUaNG8Xg8Qkhubq5Op6MKU1JSqI2JEydKJJLaZ/3jH/+g/r5MSkrSarUtETzQFArFhx9+WF5e7uPjs3HjRqq96oSGY51cLj9+/DghxNbWNiYmps46q1atSk5OTk5OnjlzJl2ItmORQqHQaDSEEG9v7zr/q6T7nD1//pwubOxNEOmLucjOzi4sLCSEBAUFeXh41Fln8ODB1EZGRkbrRQb/a9SoUZmZmVeuXFm5cmV9dWxsbKjboVAopO+LWVlZ1MbAgQPrPKt79+7dunUjhPz9998PHz40bdhgYMWKFZcvXxYIBPHx8d27d1epVPXVRMOx7tq1a48ePSKEDB06tGfPnnXWadeunVQqlUqlPXr0oAvRdixyd3enHmrev3+fmaDQ7t69S20wb3aNugleunQJ6Yu5kMlker2eEBIQEFBfHX9/f6rHGTXXCLQ+iUTSvXt3b2/v+ircvXuXeuji6elJpS8ajYb6/1csFnfv3r3OswQCAXWouroajduijh07RvW/jo6ODg8PVygU9dVEw5kD+j5Hd2QhhPz3v/9NSUlJSUmhjxpA27HLzc1t2LBhhJDCwsLPP//c4OidO3d2795NbUdGRtLljboJ3rt3D9PWmYuCggJqo1OnTvXVcXNzs7Kyqq6uzsvLU6vV1HwVYD40Gs1//vMfapv+tVSpVPn5+YQQW1vb+v6kIIS4ublRG3l5eS0cZtuVk5Mzc+ZMrVb7yiuvrFu3jhBC/XdZJzScOaATC+pJyW+//bZ169Zr165RE9DZ2dn17t174cKFBmN00Xbs4vF4a9asSUtLKygo2LJly3//+9933nmnU6dOer3+3Llze/fupVrnk08+oZ+mkEbeBB8+fIj0xVwUFxdTGw0MeXd1dRWJRNXV1RUVFTU1NUhfzM369esvXbpECOnZs+eoUaOoQoVCQT0+dXZ2bmCWT3owIfX/MpicTqeLjo4uKCiwt7ePj4+nh6vUBw1nDqhbmkAgcHNzW7duncF7W4VCcfHixYsXLy5dupTZjQltx7oePXr8+eefK1asOHHixPHjx6kOTDQ/P785c+bMmzePWdiom2B5eTnSF3NBv4Cvs5cZhe5OQU1v0EqRgXHi4+NXr15NCBEIBJs3b6bbUalUUo0lkUgaWE9AKPyfX0a1Wt3isbZJsbGx1NixTZs29e7d+4X10XDmgMpCrKysNm7cePr0aUKIWCzu06ePjY1NdXX1zZs3qanoN23a5OLi8umnn1Jnoe3MgYuLi5+fX51d411cXEJCQgyaplE3QZVKhb4v5oJu4wbyEvqQQqFAV3mzEh8/Sb/zAAARgklEQVQfP3v2bKqB1q9f//rrr9OHjGlZ5tHKysoWC7PtSkpKWrVqFSFk3Lhxs2bNMuYUNJw5qKmpIYRUV1dTucs777xz5cqV9PT05OTk9PT0K1eu0LNgf/7557du3aK20XasS0lJ6du37/r16+VyubW1dXBwsFQqHTp0KDXjS0ZGxmuvvbZs2TJ6eCZp/E0Q6Yu5oFulgWGc9CE7Ozt61khgXWxs7KxZs6jfwyVLlixdupR51JiWZR5t4C8PaJqSkpKZM2eq1WofH59t27YZeRYaztxMmjTpxx9/ZI4/6tGjxw8//DB8+HBCSHV19ddff02Vo+3Y9fDhw0mTJlE9iqiMMyMjIzk5OSUl5cqVK9u3b6fWrvryyy+Zv4+NvQkifTEX9O9PA38HUEtVEULEYnHDyxpD61Cr1dHR0UuXLqXaZeXKlZs2bTKoY2dnRzVWZWUl808NA9Q0CYSQhhdihcbS6XQLFiyQyWQSiSQhIaFDhw7Mo9TkWoTxHoGGhjMHdM8VFxeXLVu21L6xCYXCJUuWUOUXL16kmgNtx65t27ZRnZZGjBjx448/Mtdy79ixY3R09I8//kj9Bb5x40aqGy9p5E3QxsYGfV/MBd1ZqaysrL46paWl1KNUFxcX9NtlXUFBwezZs3/77TdCiFAo3LJlS3R0dO1qYrHYwcFBLpeXlZWp1Wr6fmmgtLSU2nBxcWm5mNug77//PiEhgRAyaNAgnU5Hz2ZGuXnzJrVRWFhIHRIIBCEhIdbW1mg4c0Df0gYMGODu7l5nnf79+7dr1664uDgnJ6eiosLFxQVtxyKlUnn06FFCiFAoXLduXZ2PUkaOHDly5Mjff/+9sLDwzJkz7733HmnkTbB9+/ZIX8wFPVSMHjxWW1FREdXFzM3NrfYfi9CaLly4MH369AcPHhBCHB0d9+3bV9+KuNbW1p06dXry5ElVVVVRUZGjo2Od1YqKiqgNejAnmAQ9fdmpU6dOnTpVX7X09PTQ0FBq++HDh15eXmg4c+Dp6UltNDBSTCwWt2/fvri4WK1WU+kL2o5FpaWl1AMVLy8v5kSCBoYNG/b7778Txp8QjboJenh44AWEufDz86OedlJ3xDrJZDKqx66Pj0/rRQa1HD58eMSIEVRL9erV6/Tp0/XlLoQQoVDo6+tLCFGpVPXNjqXT6air2djYoHFNq4F3Bw1Dw5kDf39/aqPhCQblcjkhRCgUUp0q0HYsop6OEEIkEkkDvVjo52p0/UbdBLt3746/4M2Fv7+/m5tbQUFBZmZmUVFRnX8NpKWlURt9+vRp3ejg/xw6dGjKlCnUXwDDhg1LSEho3759w6dQnQ31en1qairVzdBATk7OnTt3CCFdu3bt3LlzC0TddgUGBkql0vqOPn/+/Pr163q93tXVlXpDLxaL6XcNaDjW9evXj8/n63S69PT0wsLCOt8fPXjwgPpz38fHh37QgrZji4ODg7W1dVVV1ePHj8vKyup7svX48WNqw9bWltpo1E0wKCgIK06bEXriyNjY2NpHnz59Sk0faW1tfe/evdYPD/R6fXp6Ov0Qe+LEidXV1cacRS9+W99S1Z999hlVgRp9Da0mMzOT+oPvrbfeqn0UDcc6tVrdt29f6occExNTZx26FWbNmkUXou3YotPphgwZQv1s4+Pj66wjl8vp90q//PILXd6omyDSFzNy8OBBOns9duwY81BxcXF4eDh19M0332Qrwjauurq6f//+dO5i/Ik1NTX0iePHj6+oqGAe/e6776iVbwkh586dM3XU0JALFy5Q6cuIESNqH0XDmYN///vf1A/Z2tqaeaujHDlyhGoFPp+flpZGl6PtWLR582bqZ+vh4XHmzBmDo9XV1VOnTqUqdOnSpaysjD7UqJsgT4/JW81GZWXlwIEDb9y4QQixsrKaNm1aVFSUlZVVZmZmXFycTCYjhPB4vHPnzjXwMBxazjfffPPBBx9Q2/369XNxcWlg8kAfH5/du3fTwz73799P9a4nhPTs2XPOnDkBAQEVFRUHDhw4cOAA9Ws4cuTIo0ePNjxTBZhWamrq0KFDdTrdiBEjDOY1p6DhWFdVVRUeHp6enk4IEQgEkyZNGjt2rLOzc0VFxa+//vrjjz9Sb3KnTJlCDTGjoe3YUlFRIZVKr127RggRiUQjRox46623unbtqtfrL1++/NNPP1G3OULIN998M23aNPrExt0EWzYHg0Y6d+4c/SKwTitWrGA7xjZKq9WGhYUZ/wvs6+tLzVxOnz5u3LgG6nt5eT148IDFL9g2Nfz0RY+GMw/37t176aWXGmiF/v37FxUVGZyFtmPRzZs3u3bt2tB/kYRQM2YZMP4miPTF7CQlJTEn+aE5Ojpu3LhRp9OxHWAb9fz584Z/qQwYpC96vb6qqmr+/Pl1TpA1dOjQ7Oxstr5aW0ZPAxMeHl5fHTScOXj69OmECRNqTxghEommTZtWUlJS51loOxbl5OSMHz++zhlWu3Tp8vXXX9d3opE3Qbw8MkdyuTwxMfHs2bP37t0jhDg5OYWHhw8fPpweQwitT6PRXLp0yfilpuzs7IKCgmr/6t64cePkyZPnz5+nlprr27cv1bgNrIsLLaf2yKP6oOHMwdWrVxMTEy9cuKBSqQQCgVQqjYyMDAoKavgstB2Lrly5cubMmbS0NOqH7+/vL5VKIyIiGp5rx5ibINIXAAAA4BhMWwcAAAAcg/QFAAAAOAbpCwAAAHAM0hcAAADgGKQvAAAAwDFIXwAAAIBjkL4AAAAAxyB9AQAAAI5B+gIAAAAcg/QFAAAAOAbpCwAAAHAM0hcAAADgGKQvAAAAwDFIXwAAAIBjkL4AAAAAxyB9AQAAAI5B+gIAAAAcg/QFAAAAOAbpCwAAAHAM0hcAAADgGKQvAAAAwDFIXwAAAIBjkL4AAAAAxyB9AQAAAI5B+gIAAAAcg/QFAAAAOAbpCwAAAHAM0hcAAADgGKQvAAAAwDFIXwAAAIBjkL4AAAAAxyB9AQAAAI4Rsh0AAIDFqqmpqaqqcnR0bNRZ165de/bsWY8ePTp06NCED9Xr9enp6SqVql+/fo39aACuwNMXAIAWcf78+cjIyKKiokadlZSUFBwcPGrUqKqqqiZ/9HfffRcaGjp16tQmXwHAzCF9AQAwMblcvnTp0mHDhj169MjHx8f4E589e/bRRx9ptdoNGzb4+vo27dN5PN7GjRs7d+587Nixr7/+umkXATBzSF8AAEzs3LlzsbGxarV64MCBAoHA+BNXrFiRk5Pz8ssvz5o1qzkBODk5rVy5khCyfPnynJyc5lwKwDwhfQEAMLGbN29SGz179jT+rLS0tPj4eEJITEyMtbV1M2N4//33X3nllbKysmXLljXzUgBmCOkLAICJXb16ldro3bu38WetWbNGq9UOHDhw9OjRzY/Byspq/vz5hJDDhw+npKQ0/4IAZgUjjwAATOz27duEEFdX1wEDBhh5SlJS0unTpwkhM2bMaOB9U25urkwm0+v1PB6va9euXl5eDVxz9OjRvr6+Dx482LRpk1QqbcQXADB7ePoCAGAaP/zwQ2ho6KBBg+7du0cIUSqVb731Vmho6IoVK1547s6dOwkh7u7uI0aMqLPCkSNHwsLCgoODpVJpaGioVCrt379/cHDw9u3blUplnadIJJLx48cTQs6cOZORkdH0LwZgfpC+AACYxs8//5ySkpKWlqbX6wkhlZWVKSkpKSkpcrm84RPv3r176tQpQkh4eLibm1vtCp999llUVFRycjJzGHZJSUlmZua8efOioqIqKirqvPLIkSN5PJ5Go/nhhx+a/sUAzA/SFwAAE9DpdJ6enlKp1MPDgyoJDAyUSqVSqXTcuHENn3v8+PHq6mpCyLBhw2of/f333zds2EBte3h4DB06VCqVDh482NXVlSo8ceLE2rVr67xy//79/f39CSGJiYkKhaJJ3wzALOkBAMB03nrrLUIIn8/PzMw0pr5Op4uIiCCEiESiW7duGRzVarXh4eGEEB6PFxMT8/jxY/pQTk7O7Nmzqf/J7e3tCwoK6rz+lClTqDrnzp1r8pcCMDd4+gIAYDKVlZWZmZmEEFdXVyMnrCsvL//rr78IIR07dvT29q59Qeqon5/funXrPD096UPe3t5xcXHUygBdunR58uRJndfv1asXtYHuL2BJMPIIAMBk/v7774KCAkJIz549nZycjDyltLSUEOLn52dra1u7Ap/PJ4QUFBScPHnyjTfeMDh68OBBQkjnzp3rmyqGenlEGLPRAFgAPH0BADCZW7duabVaQkjPnj15PJ4xp+Tl5el0OkJInZ127ezsgoKCCCFyuXzMmDFvvvnmpk2b/vzzTyrjIYT4+fn5+fk1MM2dh4cHNRL76dOner2+8d8JwBzh6QsAgMnQL2j69+9v5CmFhYXURvv27Wsf5fF48+fPP3nyJCFEqVSePHmS2vb29u7Xr9+YMWOGDBnSpUuXBq7v4uIiEom0Wm1JSYlarW7+fL4A5gBPXwAATEOv19+6dYsQIhAIevToYeRZKpWK2hAK6/578o033oiLi3N0dGQWymSyI0eOTJ06NTg4+OOPP6YfxtQmkUiopy8VFRUajcbIqADMHNIXAADTKCsro/qXuLu7d+/e3YRXnj17dkZGxuLFi/v06WNwqKioaNeuXW+88cazZ89M+IkAZg7pCwCAady8ebOsrIwQ0qdPH3t7eyPPot/mNPxopFu3brGxsVeuXMnIyPjqq6/efPNN5simzMzML7/8ss4T6YcuDg4O9T3gAeAcpC8AAKZBzdpCCAkMDDT+LHd3d2qjuLj4hZVFIlFwcPDChQtPnDhx5cqVM2fOULPCEEKSkpLqTIDKyspqamoIIe3atbOysjI+MABzhkwcAMA0srKyqI3ar3ga4OXlxefzdTodNe+cwXilhw8fJiYmXr9+vXfv3nPmzGEecnFxiYiI8Pf3DwgIUCqVpaWlKpWq9vOVwsJCamSTp6enkYOhAMwf0hcAABPQarXZ2dmEEJFI1KinL/7+/u7u7vn5+Xfv3pXL5Q4ODsyjf/7558cff0wI8fT0nDRpkouLi8HpRUVFVHbi6upa56giqjcxYcxfB2AB8PIIAMAEKioq7t+/TwixtbV96aWXjD/Rycnp5ZdfJoQUFRVRV2AaNWpUhw4dCCF5eXnjxo1LT0+n3xBpNJo///xzxowZarWaEBIWFlZn1xb6mdCAAQMa/a0AzBXSFwAAE8jPz6eWfVYoFHFxcSkpKSdOnFAqlcacGxYWRgjRarUXL140OOTs7LxkyRJqOzk5eeDAgcHBwaGhoaGhocHBwVKp9MaNG4QQDw+PuXPn1r5yRUUFtYiBv79/SEhIM74fgHnhYRJGAIDmKy8vf+mll6gVAyiBgYHXr183ZrDP/fv3+/Xrp1Ao3njjjcTERIOjWq123rx5cXFx9Z3u6em5f/9+qVRa+9DZs2ep9SAXL14cGxtr5HcBMH94+gIAYAJOTk7ffPMNs3/Jm2++aeRAZT8/P2oxo9TU1NzcXIOjAoFg586dP//8c2hoKHPJRqFQ2LNnz8WLF1++fLnO3IUQ8uuvvxJCrKys3n///UZ+IQCzhqcvAAAmo1Qq//rrr+rqamtr6169etnZ2Rl54rlz56gh0F999dXChQvrq1ZQUHD//n2q+4uTk1NAQIBYLK6vcllZWWBgYH5+/pgxY44cOdLIrwJg1pC+AACwT6/Xv/HGG6dPnw4MDMzMzGwgKTFefHz8Rx99xOfz09LS0G8XLAxeHgEAsI/H461cuZLH42VnZ//xxx/Nv2B1dfX27dsJIVFRUchdwPIgfQEAMAuDBg2aNm0aIWTDhg30Oo5NduDAgVu3bjk7O2/cuNEEwQGYGaQvAADmYsOGDV5eXllZWd9//31zrlNeXr5u3TpCyOeff85cGgnAYiB9AQAwF+7u7nFxcRKJZNWqVY8ePWraRfR6/RdffJGTkzNmzBhqxl4Ay/P/AItnQogKrJqvAAAAAElFTkSuQmCC]]></Image>
<CoordSystem>
<General CursorSize="3" ExtraPrecision="1"/>
<Coords Type="0" TypeString="Cartesian" Coords="0" ScaleXTheta="0" ScaleXThetaString="Linear" ScaleYRadius="0" ScaleYRadiusString="Linear" UnitsX="0" UnitsXString="Number" UnitsY="0" UnitsYString="Number" UnitsTheta="0" UnitsThetaString="Degrees (DDD.DDDDD)" UnitsRadius="0" UnitsRadiusString="Number" UnitsDate="3" UnitsDateString="YYYY/MM/DD" UnitsTime="2" UnitsTimeString="HH:MM:SS"/>
<DigitizeCurve CursorInnerRadius="5" CursorLineWidth="2" CursorSize="1" CursorStandardCross="True"/>
<Export PointsSelectionFunctions="0" PointsSelectionFunctionsString="InterpolateAllCurves" PointsIntervalFunctions="10" PointsIntervalUnitsFunctions="1" PointsSelectionRelations="0" PointsSelectionRelationsString="Interpolate" PointsIntervalUnitsRelations="1" PointsIntervalRelations="10" LayoutFunctions="0" LayoutFunctionsString="AllPerLine" Delimiter="0" OverrideCsvTsv="False" DelimiterString="Commas" ExtrapolateOutsideEndpoints="True" Header="1" HeaderString="Simple" XLabel="x">
<CurveNamesNotExported/>
</Export>
<AxesChecker Mode="1" Seconds="3" LineColor="6"/>
<GridDisplay Stable="True" DisableX="0" CountX="5" StartX="0" StepX="2.5" StopX="10" DisableY="0" CountY="11" StartY="-0.1" StepY="0.1" StopY="0.9" Color="0" ColorString="Black"/>
<GridRemoval Stable="False" DefinedGridLines="False" CloseDistance="10" CoordDisableX="0" CoordDisableXString="Count" CountX="16" StartX="-15.3245" StepX="5.07343" StopX="60.7769" CoordDisableY="0" CoordDisableYString="Count" CountY="32" StartY="-0.0950915" StepY="0.0321145" StopY="0.900457"/>
<PointMatch PointSize="48" ColorAccepted="4" ColorAcceptedString="Green" ColorCandidate="7" ColorCandidateString="Yellow" ColorRejected="6" ColorRejectedString="Red"/>
<Segments PointSeparation="25" MinLength="2" FillCorners="False" LineWidth="4" LineColor="4" LineColorString="Green"/>
<Curve CurveName="Axes">
<ColorFilter CurveName="Axes" Mode="2" ModeString="Intensity" IntensityLow="0" IntensityHigh="50" ForegroundLow="0" ForegroundHigh="10" HueLow="180" HueHigh="360" SaturationLow="50" SaturationHigh="100" ValueLow="0" ValueHigh="50"/>
<CurveStyle CurveName="Axes">
<LineStyle Width="0" Color="8" ColorString="Transparent" ConnectAs="4" ConnectAsString="ConnectSkipForAxisCurve"/>
<PointStyle Radius="10" LineWidth="1" Color="6" ColorString="Red" Shape="1" ShapeString="Cross"/>
</CurveStyle>
<CurvePoints>
<Point Identifier="Axes	point	1" Ordinal="1" IsAxisPoint="True" IsXOnly="False" Index="67">
<PositionScreen X="140.954" Y="554.995"/>
<PositionGraph X="0" Y="0"/>
</Point>
<Point Identifier="Axes	point	5" Ordinal="2" IsAxisPoint="True" IsXOnly="False" Index="67">
<PositionScreen X="214.029" Y="554.995"/>
<PositionGraph X="10" Y="0"/>
</Point>
<Point Identifier="Axes	point	7" Ordinal="3" IsAxisPoint="True" IsXOnly="False" Index="67">
<PositionScreen X="140.954" Y="124.89"/>
<PositionGraph X="0" Y="0.8"/>
</Point>
</CurvePoints>
</Curve>
<CurvesGraphs>
<Curve CurveName="Curve1">
<ColorFilter CurveName="Curve1" Mode="2" ModeString="Intensity" IntensityLow="0" IntensityHigh="50" ForegroundLow="0" ForegroundHigh="10" HueLow="180" HueHigh="360" SaturationLow="50" SaturationHigh="100" ValueLow="0" ValueHigh="50"/>
<CurveStyle CurveName="Curve1">
<LineStyle Width="1" Color="1" ColorString="Blue" ConnectAs="0" ConnectAsString="FunctionSmooth"/>
<PointStyle Radius="10" LineWidth="1" Color="1" ColorString="Blue" Shape="1" ShapeString="Cross"/>
</CurveStyle>
<CurvePoints>
<Point Identifier="Curve1	point	59" Ordinal="0" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="144" Y="512"/>
</Point>
<Point Identifier="Curve1	point	62" Ordinal="1" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="149.301" Y="520.977"/>
</Point>
<Point Identifier="Curve1	point	60" Ordinal="2" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="162" Y="527"/>
</Point>
<Point Identifier="Curve1	point	63" Ordinal="3" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="174.499" Y="526.962"/>
</Point>
<Point Identifier="Curve1	point	61" Ordinal="4" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="187" Y="522.74"/>
</Point>
<Point Identifier="Curve1	point	51" Ordinal="5" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="193" Y="505"/>
</Point>
<Point Identifier="Curve1	point	52" Ordinal="6" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="196.74" Y="481"/>
</Point>
<Point Identifier="Curve1	point	53" Ordinal="7" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="202.74" Y="456"/>
</Point>
<Point Identifier="Curve1	point	54" Ordinal="8" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="214.055" Y="434"/>
</Point>
<Point Identifier="Curve1	point	55" Ordinal="9" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="227.37" Y="413"/>
</Point>
<Point Identifier="Curve1	point	56" Ordinal="10" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="237.37" Y="390"/>
</Point>
<Point Identifier="Curve1	point	57" Ordinal="11" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="243" Y="365"/>
</Point>
<Point Identifier="Curve1	point	58" Ordinal="12" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="246" Y="341"/>
</Point>
<Point Identifier="Curve1	point	64" Ordinal="13" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="247.889" Y="320.65"/>
</Point>
<Point Identifier="Curve1	point	65" Ordinal="14" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="249.464" Y="298.916"/>
</Point>
<Point Identifier="Curve1	point	48" Ordinal="15" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="251" Y="273"/>
</Point>
<Point Identifier="Curve1	point	49" Ordinal="16" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="252.055" Y="248"/>
</Point>
<Point Identifier="Curve1	point	50" Ordinal="17" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="253.425" Y="223"/>
</Point>
<Point Identifier="Curve1	point	26" Ordinal="18" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="255.11" Y="189"/>
</Point>
<Point Identifier="Curve1	point	66" Ordinal="19" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="258.914" Y="173.554"/>
</Point>
<Point Identifier="Curve1	point	27" Ordinal="20" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="265" Y="187"/>
</Point>
<Point Identifier="Curve1	point	28" Ordinal="21" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="271.055" Y="211"/>
</Point>
<Point Identifier="Curve1	point	29" Ordinal="22" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="279.37" Y="234"/>
</Point>
<Point Identifier="Curve1	point	30" Ordinal="23" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="292" Y="256"/>
</Point>
<Point Identifier="Curve1	point	31" Ordinal="24" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="314" Y="263.685"/>
</Point>
<Point Identifier="Curve1	point	32" Ordinal="25" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="339" Y="260"/>
</Point>
<Point Identifier="Curve1	point	33" Ordinal="26" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="364" Y="260"/>
</Point>
<Point Identifier="Curve1	point	34" Ordinal="27" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="389" Y="260"/>
</Point>
<Point Identifier="Curve1	point	35" Ordinal="28" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="414" Y="260"/>
</Point>
<Point Identifier="Curve1	point	36" Ordinal="29" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="439" Y="260"/>
</Point>
<Point Identifier="Curve1	point	37" Ordinal="30" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="464" Y="260"/>
</Point>
<Point Identifier="Curve1	point	38" Ordinal="31" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="489" Y="260"/>
</Point>
<Point Identifier="Curve1	point	39" Ordinal="32" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="514" Y="260"/>
</Point>
<Point Identifier="Curve1	point	40" Ordinal="33" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="539" Y="260"/>
</Point>
<Point Identifier="Curve1	point	41" Ordinal="34" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="564" Y="260"/>
</Point>
<Point Identifier="Curve1	point	42" Ordinal="35" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="589" Y="260"/>
</Point>
<Point Identifier="Curve1	point	43" Ordinal="36" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="614" Y="260"/>
</Point>
<Point Identifier="Curve1	point	44" Ordinal="37" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="639" Y="260"/>
</Point>
<Point Identifier="Curve1	point	45" Ordinal="38" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="664" Y="260"/>
</Point>
<Point Identifier="Curve1	point	46" Ordinal="39" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="689" Y="260"/>
</Point>
<Point Identifier="Curve1	point	47" Ordinal="40" IsAxisPoint="False" IsXOnly="False" Index="67">
<PositionScreen X="714" Y="260"/>
</Point>
</CurvePoints>
</Curve>
</CurvesGraphs>
</CoordSystem>
</Document>