Location: Devries, Sherman, 2000 @ 8bae9531e083 / devries_sherman_2000.cellml

Author:
Hanne <Hanne@hanne-nielsens-macbook.local>
Date:
2010-06-15 12:53:28+12:00
Desc:
Added iamges in ai and svg format
Permanent Source URI:
http://models.cellml.org/workspace/devries_sherman_2000/rawfile/8bae9531e08372520a043943b73f9b4a942eeba0/devries_sherman_2000.cellml

<?xml version='1.0' encoding='utf-8'?>
<!--  FILE :  devries_model_2000.xml

CREATED :  9th May 2002

LAST MODIFIED : 9th April 2003

AUTHOR :  Catherine Lloyd
          Bioengineering Institute
          The University of Auckland
          
MODEL STATUS :  This model conforms to the CellML 1.0 Specification released on
10th August 2001, and the 16/01/2002 CellML Metadata 1.0 Specification.

DESCRIPTION :  This file contains a CellML description of De Vries and Sherman's
2000 mathematical model of channel sharing in pancreatic beta cells.

CHANGES:  
  18/07/2002 - CML - Added more metadata.
  09/04/2003 - AAC - Added publication date information.  
--><model xmlns="http://www.cellml.org/cellml/1.0#" xmlns:cmeta="http://www.cellml.org/metadata/1.0#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bqs="http://www.cellml.org/bqs/1.0#" xmlns:cellml="http://www.cellml.org/cellml/1.0#" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:vCard="http://www.w3.org/2001/vcard-rdf/3.0#" cmeta:id="devries_sherman_2000_version01" name="devries_sherman_2000_version01">
<documentation xmlns="http://cellml.org/tmp-documentation">
<article>
  <articleinfo>
  <title>Enhancement Of Emergent Bursting In Pancreatic Beta-Cells</title>
  <author>
    <firstname>Catherine</firstname>
          <surname>Lloyd</surname>
    <affiliation>
      <shortaffil>Bioengineering Institute, University of Auckland</shortaffil>
    </affiliation>
  </author>
</articleinfo>
  <section id="sec_status">
    <title>Model Status</title>
    <para>
            This model has been validated and is known to run in OpenCell. The paper by Devries and Sherman describes several different parameter sets including single cell and two cell sets, and also describes a deterministic and a stochastic model. This file uses the equations and parameters given for the single cell deterministic model. 
          </para>
<para>
ValidateCellML confirms this model as valid CellML but detects unit inconsistencies. We have attempted to balance this model's units by replacing <emphasis>tau</emphasis>'s units to picoF, but this breaks the model.
</para>
  </section>
  <sect1 id="sec_structure">
<title>Model Structure</title>

<para>
When exposed to a threshold concentration of glucose, pancreatic beta-cells exhibit a complicated pattern of electrical activity.  Bursts of action potential spikes (the "active" phase) are observed, separated by a "silent" phase of membrane repolarisation.  At even higher glucose concentrations, continuous action potentials are seen.  This electrical activity has two important physiological correlates: increased cytosolic Ca<superscript>2+</superscript> concentration ([Ca<superscript>2+</superscript>]<subscript>i</subscript>) and increased rate of insulin secretion during the active phase.  It is generally accepted that the rise in [Ca<superscript>2+</superscript>]<subscript>i</subscript> plays a major role in insulin secretion and that the action potential spikes during a burst are responsible for the rise in [Ca<superscript>2+</superscript>]<subscript>i</subscript>.
</para>

<para>
Normal bursting patterns are only observed when the beta-cells act synchronously, as they do <emphasis>in vivo</emphasis>, in electrically coupled organs called the islets of Langerhans.  Isolated beta-cells display atypical bursting or continuous spike activity.  In their 2000 paper, Gerda De Vries and Arthur Sherman study bursting as an emergent property of the population, with especial focus on interactions between the subclass of spiking cells.  The equations describing the ionic currents are based on a biophysical model of bursting pancreatic beta-cells according to the formula developed by Hodgkin and Huxley (<ulink url="${HTML_EXMPL_HHSA_INTRO}">The Hodgkin-Huxley Squid Axon Model, 1952</ulink>).  The biophysical model was simplified to produce a minimal, but representative, model of bursting.  This minimal model describes three ionic currents: a fast voltage-activated calcium current, I<subscript>Ca</subscript>; a delayed rectifier potassium current, I<subscript>K</subscript>; and a very slow inhibitory potassium current,  I<subscript>s</subscript>.  De Vries and Sherman modify this minimal model by including an additional ATP sensitive potassium current, I<subscript>K(ATP)</subscript> (see <xref linkend="fig_cell_diagram"/> below).  The calcium and delayed rectifier potassium currents are responsible for generating action potentials.  The slow potassium current is responsible for switching between the active and the silent phases of the bursting pattern.  Finally, I<subscript>K(ATP)</subscript> is a backgroud current which is responsible for setting the plateau fraction, the ratio of the active phase duration to the burst period.  For the deterministic version of the model that is presented here, <emphasis>p</emphasis>, representing the average fraction of open K(ATP) channels, is constant at 0.5. 
</para>

<para>
The complete original paper reference is cited below:
</para>

<para>
Channel Sharing in Pancreatic Beta-Cells Revisited: Enhancement of Emergent Bursting by Noise, Gerda De Vries and Arthur Sherman, 2000,
            <emphasis>The Journal Of Theoretical Biology</emphasis>
          , 207, 513-530. (A PDF version of the article is available to subscibers on the Science Direct website.)  <ulink url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;list_uids=11093836&amp;dopt=Abstract">PubMed ID: 11093836</ulink>   
</para>

<informalfigure float="0" id="fig_cell_diagram">
<mediaobject>
  <imageobject>
    <objectinfo>
      <title>diagram of the model</title>
    </objectinfo>
    <imagedata fileref="devries_2000.png"/>
  </imageobject>
</mediaobject>
<caption>A schematic representation of the four transmembrane currents captured by the De Vries and Sherman 2000 pancreatic beta-cell model.</caption>
</informalfigure>

</sect1>
</article>
</documentation>
  
  
  <!--
    Below, we define some additional units for association with variables and
    constants within the model. The identifiers are fairly self-explanatory.
  -->
  
  <units name="millisecond">
    <unit units="second" prefix="milli"/>
  </units>
  
  <units name="millivolt">
    <unit units="volt" prefix="milli"/>
  </units>
  
  <units name="nanoS">
    <unit units="siemens" prefix="nano"/>
  </units>
  
  <units name="picoA">
    <unit units="ampere" prefix="pico"/>
  </units>
  
  <!--
    The "environment" component is used to declare variables that are used by
    all or most of the other components, in this case just "time".
  -->
  <component name="environment">
    <variable units="millisecond" public_interface="out" name="time"/>
  </component>
  
  <component name="membrane">
    <variable units="millivolt" public_interface="out" name="V"/>
    <variable units="millisecond" public_interface="out" name="tau" initial_value="20.0"/>
  
    <variable units="millisecond" public_interface="in" name="time"/>
    <variable units="picoA" public_interface="in" name="i_K"/>
    <variable units="picoA" public_interface="in" name="i_K_ATP"/>
    <variable units="picoA" public_interface="in" name="i_Ca"/>
    <variable units="picoA" public_interface="in" name="i_s"/>
     
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply id="membrane_voltage_diff_eq">
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci> time </ci>
          </bvar>
          <ci> V </ci>
        </apply>
        <apply>
          <divide/>
          <apply>
            <minus/>
            <apply>
              <plus/>
              <ci> i_Ca </ci>
              <ci> i_K </ci>
              <ci> i_K_ATP </ci>
              <ci> i_s </ci>
            </apply>
          </apply>
          <ci> tau </ci>
        </apply>
      </apply>
    </math>
  </component>
  
  <component name="calcium_current">
    <variable units="picoA" public_interface="out" name="i_Ca"/>
    
    <variable units="nanoS" name="g_Ca" initial_value="3.6"/>
    <variable units="millivolt" name="V_Ca" initial_value="25.0"/>
    
    <variable units="millisecond" public_interface="in" name="time"/>
    <variable units="millivolt" public_interface="in" private_interface="out" name="V"/>
      
    <variable units="dimensionless" private_interface="in" name="m_infinity"/>
    
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply id="i_Ca_calculation">
        <eq/>
        <ci> i_Ca </ci>
        <apply>
          <times/>
          <ci> g_Ca </ci>
          <ci> m_infinity </ci>
          <apply>
            <minus/>
            <ci> V </ci>
            <ci> V_Ca </ci>
          </apply>
        </apply>
      </apply>
    </math>
  </component>
  
  <component name="calcium_current_m_gate">
    <variable units="dimensionless" public_interface="out" name="m_infinity"/>
    
    <variable units="millivolt" name="V_m" initial_value="-20.0"/>
    <variable units="millivolt" name="theta_m" initial_value="12.0"/>
    
    <variable units="millivolt" public_interface="in" name="V"/>
    
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply id="m_infinity_calculation">
        <eq/>
        <ci> m_infinity </ci>
        <apply>
          <divide/>
          <cn cellml:units="dimensionless"> 1.0 </cn>
          <apply>
            <plus/>
            <cn cellml:units="dimensionless"> 1.0 </cn>
            <apply>
              <exp/>
              <apply>
                <divide/>
                <apply>
                  <minus/>
                  <ci> V_m </ci>
                  <ci> V </ci>
                </apply>
                <ci> theta_m </ci>
              </apply>
            </apply>    
          </apply>
        </apply>
      </apply>
    </math>
  </component>
  
  <component name="potassium_current">
    <variable units="picoA" public_interface="out" name="i_K"/>
    <variable units="millivolt" public_interface="out" name="V_K" initial_value="-75.0"/>
    
    <variable units="nanoS" name="g_K" initial_value="10.0"/>
    
    <variable units="millisecond" public_interface="in" private_interface="out" name="time"/>
    <variable units="millivolt" public_interface="in" private_interface="out" name="V"/>
    <variable units="millisecond" public_interface="in" private_interface="out" name="tau"/>
      
    <variable units="dimensionless" private_interface="in" name="n"/>
    
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply id="i_K_calculation">
        <eq/>
        <ci> i_K </ci>
        <apply>
          <times/>
          <ci> g_K </ci>
          <ci> n </ci>
          <apply>
            <minus/>
            <ci> V </ci>
            <ci> V_K </ci>
          </apply>
        </apply>
      </apply>
    </math>
  </component>
  
  <component name="potassium_current_n_gate">
    <variable units="dimensionless" public_interface="out" name="n"/>
    
    <variable units="dimensionless" name="n_infinity"/>
    <variable units="millivolt" name="V_n" initial_value="-17.0"/>
    <variable units="millivolt" name="theta_n" initial_value="5.6"/>
    <variable units="dimensionless" name="lamda" initial_value="0.8"/>
    
    <variable units="millivolt" public_interface="in" name="V"/>
    <variable units="millisecond" public_interface="in" name="tau"/>
    <variable units="millisecond" public_interface="in" name="time"/>
    
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply id="n_diff_eq">
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci> time </ci>
          </bvar>
          <ci> n </ci>
        </apply>
        <apply>
          <divide/>
          <apply>
            <times/>
            <ci> lamda </ci>
            <apply>
              <minus/>
              <ci> n_infinity </ci>
              <ci> n </ci>
            </apply>
          </apply>
          <ci> tau </ci>
        </apply>
      </apply>
      
      <apply id="n_infinity_calculation">
        <eq/>
        <ci> n_infinity </ci>
        <apply>
          <divide/>
          <cn cellml:units="dimensionless"> 1.0 </cn>
          <apply>
            <plus/>
            <cn cellml:units="dimensionless"> 1.0 </cn>
            <apply>
              <exp/>
              <apply>
                <divide/>
                <apply>
                  <minus/>
                  <ci> V_n </ci>
                  <ci> V </ci>
                </apply>
                <ci> theta_n </ci>
              </apply>
            </apply>    
          </apply>
        </apply>
      </apply>
    </math>
  </component>
  
  <component name="slow_current">
    <variable units="picoA" public_interface="out" name="i_s"/>
     
    <variable units="nanoS" name="g_s" initial_value="4.0"/>
    
    <variable units="millisecond" public_interface="in" private_interface="out" name="time"/>
    <variable units="millivolt" public_interface="in" private_interface="out" name="V"/>
    <variable units="millivolt" public_interface="in" name="V_K"/> 
    
    <variable units="dimensionless" private_interface="in" name="s"/>
    
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply id="i_s_calculation">
        <eq/>
        <ci> i_s </ci>
        <apply>
          <times/>
          <ci> g_s </ci>
          <ci> s </ci>
          <apply>
            <minus/>
            <ci> V </ci>
            <ci> V_K </ci>
          </apply>
        </apply>
      </apply>
    </math>
  </component>
  
  <component name="slow_current_s_gate">
    <variable units="dimensionless" public_interface="out" name="s"/>
    
    <variable units="dimensionless" name="s_infinity"/>
    <variable units="millivolt" name="V_s" initial_value="-22.0"/>
    <variable units="millivolt" name="theta_s" initial_value="8.0"/>
    <variable units="millisecond" name="tau_s" initial_value="20000.0"/>
    
    <variable units="millivolt" public_interface="in" name="V"/>
    <variable units="millisecond" public_interface="in" name="time"/>
    
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply id="s_diff_eq">
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci> time </ci>
          </bvar>
          <ci> s </ci>
        </apply>
        <apply>
          <divide/>
          <apply>
            <minus/>
            <ci> s_infinity </ci>
            <ci> s </ci>
          </apply>
          <ci> tau_s </ci>
        </apply>
      </apply>
      
      <apply id="s_infinity_calculation">
        <eq/>
        <ci> s_infinity </ci>
        <apply>
          <divide/>
          <cn cellml:units="dimensionless"> 1.0 </cn>
          <apply>
            <plus/>
            <cn cellml:units="dimensionless"> 1.0 </cn>
            <apply>
              <exp/>
              <apply>
                <divide/>
                <apply>
                  <minus/>
                  <ci> V_s </ci>
                  <ci> V </ci>
                </apply>
                <ci> theta_s </ci>
              </apply>
            </apply>    
          </apply>
        </apply>
      </apply>
    </math>
  </component>
  
  <component name="ATP_sensitive_potassium_current">
    <variable units="picoA" public_interface="out" name="i_K_ATP"/>
      
    <variable units="nanoS" name="g_K_ATP" initial_value="1.2"/>
    <variable units="dimensionless" name="p" initial_value="0.5"/>
    
    <variable units="millisecond" public_interface="in" name="time"/>
    <variable units="millivolt" public_interface="in" name="V"/>
    <variable units="millivolt" public_interface="in" name="V_K"/>
      
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply id="i_K_ATP_calculation">
        <eq/>
        <ci> i_K_ATP </ci>
        <apply>
          <times/>
          <ci> g_K_ATP </ci>
          <ci> p </ci>
          <apply>
            <minus/>
            <ci> V </ci>
            <ci> V_K </ci>
          </apply>
        </apply>
      </apply>
    </math>
  </component>
  
  <group>
    <relationship_ref relationship="containment"/>
    <component_ref component="membrane">
      <component_ref component="calcium_current">
        <component_ref component="calcium_current_m_gate"/>
      </component_ref>
      <component_ref component="potassium_current">
        <component_ref component="potassium_current_n_gate"/>
      </component_ref>
      <component_ref component="slow_current">
        <component_ref component="slow_current_s_gate"/>
      </component_ref>
      <component_ref component="ATP_sensitive_potassium_current"/>
    </component_ref>
  </group> 
  
  <group>
    <relationship_ref relationship="encapsulation"/>
    <component_ref component="calcium_current">
      <component_ref component="calcium_current_m_gate"/>
    </component_ref>
    <component_ref component="potassium_current">
      <component_ref component="potassium_current_n_gate"/>
    </component_ref>
    <component_ref component="slow_current">
      <component_ref component="slow_current_s_gate"/>
    </component_ref>
  </group>
  
  <connection>
    <map_components component_2="environment" component_1="membrane"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>
  
  <connection>
    <map_components component_2="environment" component_1="calcium_current"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>
  
  <connection>
    <map_components component_2="environment" component_1="potassium_current"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>
  
  <connection>
    <map_components component_2="environment" component_1="slow_current"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>
  
  <connection>
    <map_components component_2="environment" component_1="ATP_sensitive_potassium_current"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>
  
  <connection>
    <map_components component_2="membrane" component_1="calcium_current"/>
    <map_variables variable_2="V" variable_1="V"/>
    <map_variables variable_2="i_Ca" variable_1="i_Ca"/>
  </connection>
  
  <connection>
    <map_components component_2="membrane" component_1="potassium_current"/>
    <map_variables variable_2="V" variable_1="V"/>
    <map_variables variable_2="i_K" variable_1="i_K"/>
    <map_variables variable_2="tau" variable_1="tau"/>
  </connection>
  
  <connection>
    <map_components component_2="membrane" component_1="slow_current"/>
    <map_variables variable_2="V" variable_1="V"/>
    <map_variables variable_2="i_s" variable_1="i_s"/>
  </connection>
  
  <connection>
    <map_components component_2="membrane" component_1="ATP_sensitive_potassium_current"/>
    <map_variables variable_2="V" variable_1="V"/>
    <map_variables variable_2="i_K_ATP" variable_1="i_K_ATP"/>
  </connection>
  
  <connection>
    <map_components component_2="slow_current" component_1="potassium_current"/>
    <map_variables variable_2="V_K" variable_1="V_K"/>
  </connection>
  
  <connection>
    <map_components component_2="ATP_sensitive_potassium_current" component_1="potassium_current"/>
    <map_variables variable_2="V_K" variable_1="V_K"/>
  </connection>
  
  <connection>
    <map_components component_2="calcium_current_m_gate" component_1="calcium_current"/>
    <map_variables variable_2="m_infinity" variable_1="m_infinity"/>
    <map_variables variable_2="V" variable_1="V"/>
  </connection>
  
  <connection>
    <map_components component_2="potassium_current_n_gate" component_1="potassium_current"/>
    <map_variables variable_2="n" variable_1="n"/>
    <map_variables variable_2="V" variable_1="V"/>
    <map_variables variable_2="time" variable_1="time"/>
    <map_variables variable_2="tau" variable_1="tau"/>
  </connection>
  
  <connection>
    <map_components component_2="slow_current_s_gate" component_1="slow_current"/>
    <map_variables variable_2="s" variable_1="s"/>
    <map_variables variable_2="V" variable_1="V"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>



<rdf:RDF>
  <rdf:Seq rdf:about="rdf:#98794999-8cb1-4277-bc4f-cb95114dd55b">
    <rdf:li rdf:resource="rdf:#56bf1774-e18f-40dc-a679-e83f8ddf6991"/>
    <rdf:li rdf:resource="rdf:#4b13ed30-b15c-40b0-bc3c-988674725a00"/>
  </rdf:Seq>
  <rdf:Description rdf:about="rdf:#af85bc35-865b-4c23-8abd-7bd29bd75a99">
    <dc:creator rdf:resource="rdf:#3f2b4068-c042-4cea-94eb-bb94329f0bb5"/>
    <rdf:value>This is the CellML description of De Vries and Sherman's 2000 mathematical model of channel sharing in pancreatic beta cells.</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="">
    <dc:publisher>The University of Auckland, Bioengineering Institute</dc:publisher>
    <cmeta:comment rdf:resource="rdf:#9445be8a-8371-4705-a876-7b74dc40f1e5"/>
    <dcterms:created rdf:resource="rdf:#1e126bba-fb86-4d99-8b36-bc72e2fa582d"/>
    <dc:creator rdf:resource="rdf:#dca0b7cb-ed30-49ab-adb9-6aa2bd25b862"/>
    <cmeta:modification rdf:resource="rdf:#19990779-99e0-4c2e-8791-eb6ca661418a"/>
    <cmeta:modification rdf:resource="rdf:#a59f7078-aaa5-48b2-ba0f-21b4e2a5ad1a"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#4b13ed30-b15c-40b0-bc3c-988674725a00">
    <rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person"/>
    <vCard:N rdf:resource="rdf:#028ae873-a07c-419a-ab99-a28a8a03f810"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#b43c7271-f4e8-4054-b518-776543d9e3c1">
    <vCard:Orgname>The University of Auckland</vCard:Orgname>
    <vCard:Orgunit>The Bioengineering Institute</vCard:Orgunit>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#c851321c-aaa7-44d4-916f-f08eb90225f6">
    <bqs:Pubmed_id>11093836</bqs:Pubmed_id>
    <bqs:JournalArticle rdf:resource="rdf:#03e8ce8e-0889-4b62-9369-db3f6c4cb511"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#10cf7f4a-4a29-4b5a-8e2b-a6229cd4a75c">
    <vCard:Given>Gerda</vCard:Given>
    <vCard:Family>De Vries</vCard:Family>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#23130427-d0a6-4cc4-94a6-a28f521a245c">
    <bqs:subject_type>keyword</bqs:subject_type>
    <rdf:value>
      <rdf:Bag>
        <rdf:li>calcium dynamics</rdf:li>
        <rdf:li>electrophysiology</rdf:li>
        <rdf:li>beta cell</rdf:li>
        <rdf:li>pancreas</rdf:li>
      </rdf:Bag>
    </rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#56bf1774-e18f-40dc-a679-e83f8ddf6991">
    <rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person"/>
    <vCard:N rdf:resource="rdf:#10cf7f4a-4a29-4b5a-8e2b-a6229cd4a75c"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#cae683c8-a57a-46d1-953b-eb3b16eff93f">
    <rdf:type rdf:resource="http://imc.org/vCard/3.0#internet"/>
    <rdf:value>c.lloyd@auckland.ac.nz</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#9db561ec-2e53-4e57-8cf9-dd4b3973de08">
    <vCard:FN>James Lawson</vCard:FN>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#3f2b4068-c042-4cea-94eb-bb94329f0bb5">
    <vCard:FN>Catherine Lloyd</vCard:FN>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#e987619b-dafb-4773-9fec-ce920d9d2b8e">
    <dcterms:W3CDTF>2000-12-21</dcterms:W3CDTF>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#cf3e3f8f-7e11-443f-90ad-0822a735ce0a">
    <dcterms:W3CDTF>2003-04-09</dcterms:W3CDTF>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#1620a1f3-eb4c-497f-bd83-8bef5659b988">
    <vCard:N rdf:resource="rdf:#8baa6d71-9452-41af-be9f-dc416f56e34b"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#9445be8a-8371-4705-a876-7b74dc40f1e5">
    <dc:creator rdf:resource="rdf:#9db561ec-2e53-4e57-8cf9-dd4b3973de08"/>
    <rdf:value>This model has been validated and is known to run in PCEnv. The paper by Devries and Sherman describes several different parameter sets including single cell and two cell sets, and also describes a deterministic and a stochastic model. This file uses the equations and parameters given for the single cell deterministic model. </rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#7473cee2-7cc6-4a17-8e8e-eaf43ce94e06">
    <vCard:Given>Catherine</vCard:Given>
    <vCard:Family>Lloyd</vCard:Family>
    <vCard:Other>May</vCard:Other>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#19990779-99e0-4c2e-8791-eb6ca661418a">
    <dcterms:modified rdf:resource="rdf:#57b716d5-56af-4748-9ff9-13052054666c"/>
    <rdf:value>
          Added more metadata.
        </rdf:value>
    <cmeta:modifier rdf:resource="rdf:#1620a1f3-eb4c-497f-bd83-8bef5659b988"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#be55801c-ef67-4ea1-bdc1-d2038675230d">
    <dc:title>Journal of theoretical Biology</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#a59f7078-aaa5-48b2-ba0f-21b4e2a5ad1a">
    <dcterms:modified rdf:resource="rdf:#cf3e3f8f-7e11-443f-90ad-0822a735ce0a"/>
    <rdf:value>
          Added publication date information.
        </rdf:value>
    <cmeta:modifier rdf:resource="rdf:#d96f743c-9626-4619-8e44-3a5c2f1bd007"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#03e8ce8e-0889-4b62-9369-db3f6c4cb511">
    <dc:creator rdf:resource="rdf:#98794999-8cb1-4277-bc4f-cb95114dd55b"/>
    <dc:title>Channel Sharing in Pancreatic Beta-Cells Revisited: Enhancement of               Emergent Bursting by Noise</dc:title>
    <bqs:volume>207</bqs:volume>
    <bqs:first_page>513</bqs:first_page>
    <bqs:Journal rdf:resource="rdf:#be55801c-ef67-4ea1-bdc1-d2038675230d"/>
    <dcterms:issued rdf:resource="rdf:#e987619b-dafb-4773-9fec-ce920d9d2b8e"/>
    <bqs:last_page>530</bqs:last_page>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#028ae873-a07c-419a-ab99-a28a8a03f810">
    <vCard:Given>Arthur</vCard:Given>
    <vCard:Family>Sherman</vCard:Family>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#dca0b7cb-ed30-49ab-adb9-6aa2bd25b862">
    <vCard:ORG rdf:resource="rdf:#b43c7271-f4e8-4054-b518-776543d9e3c1"/>
    <vCard:EMAIL rdf:resource="rdf:#cae683c8-a57a-46d1-953b-eb3b16eff93f"/>
    <vCard:N rdf:resource="rdf:#7473cee2-7cc6-4a17-8e8e-eaf43ce94e06"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#1e126bba-fb86-4d99-8b36-bc72e2fa582d">
    <dcterms:W3CDTF>2002-05-09T00:00:00+00:00</dcterms:W3CDTF>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#d96f743c-9626-4619-8e44-3a5c2f1bd007">
    <vCard:N rdf:resource="rdf:#9f930bac-df91-45f2-bb17-bc15167c624f"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#ab8aea5c-d64b-4526-8c53-76dd0b956d36">
    <dc:subject rdf:resource="rdf:#23130427-d0a6-4cc4-94a6-a28f521a245c"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#57b716d5-56af-4748-9ff9-13052054666c">
    <dcterms:W3CDTF>2002-07-18</dcterms:W3CDTF>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#9f930bac-df91-45f2-bb17-bc15167c624f">
    <vCard:Given>Autumn</vCard:Given>
    <vCard:Family>Cuellar</vCard:Family>
    <vCard:Other>A</vCard:Other>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#8baa6d71-9452-41af-be9f-dc416f56e34b">
    <vCard:Given>Catherine</vCard:Given>
    <vCard:Family>Lloyd</vCard:Family>
    <vCard:Other>May</vCard:Other>
  </rdf:Description>
  <rdf:Description rdf:about="#devries_sherman_2000_version01">
    <dc:title>
         De Vries and Sherman's 2000 mathematical model of channel sharing in 
         pancreatic beta cells.
      </dc:title>
    <cmeta:bio_entity>Pancreatic Beta-Cell</cmeta:bio_entity>
    <cmeta:comment rdf:resource="rdf:#af85bc35-865b-4c23-8abd-7bd29bd75a99"/>
    <bqs:reference rdf:resource="rdf:#ab8aea5c-d64b-4526-8c53-76dd0b956d36"/>
    <bqs:reference rdf:resource="rdf:#c851321c-aaa7-44d4-916f-f08eb90225f6"/>
  </rdf:Description>
</rdf:RDF>
</model>