- Author:
- pmr2.import <nobody@models.cellml.org>
- Date:
- 2009-06-17 14:42:40+12:00
- Desc:
- committing version03 of jafri_rice_winslow_1998
- Permanent Source URI:
- http://models.cellml.org/workspace/jafri_rice_winslow_1998/rawfile/f3d934f387f4953e5eaa5e70374cea9b86842860/jafri_rice_winslow_1998_b.cellml
<?xml version='1.0' encoding='utf-8'?>
<!--
This CellML file was generated on 21/05/2007 at 12:08:45 using:
COR (0.9.31.587)
Copyright 2002-2007 Oxford Cardiac Electrophysiology Group
http://COR.physiol.ox.ac.uk/ - COR@physiol.ox.ac.uk
CellML 1.0 was used to generate this cellular model
http://www.CellML.org/
This file was created by Penny Noble of Oxford University, based on the model coded by Catherine Lloyd.
--><model xmlns="http://www.cellml.org/cellml/1.0#" xmlns:cmeta="http://www.cellml.org/metadata/1.0#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bqs="http://www.cellml.org/bqs/1.0#" xmlns:cellml="http://www.cellml.org/cellml/1.0#" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:vCard="http://www.w3.org/2001/vcard-rdf/3.0#" cmeta:id="jafri_rice_winslow_1998_version02" name="jafri_rice_winslow_1998_version02">
<documentation xmlns="http://cellml.org/tmp-documentation">
<article>
<articleinfo>
<title>Jafri-Rice-Winslow Ventricular Model 1998</title>
<author>
<firstname>Catherine</firstname>
<surname>Lloyd</surname>
<affiliation>
<shortaffil>Bioengineering Institute, University of Auckland</shortaffil>
</affiliation>
</author>
</articleinfo>
<section id="sec_status">
<title>Model Status</title>
<para>
This model is known to run in both PCEnv and COR, and has been curated by Penny Noble of Oxford University. This variant also contains an embedded CellML description of Niederer, Hunter and Smith's quantitative model of cardiac myocyte regulation. The reference for this paper is given below.
</para>
</section>
<sect1 id="sec_structure">
<title>Model Structure</title>
<para>
In 1998, M. Saleet Jafri, J. Jeremy Rice and Raimond L. Winslow published a model describing the ventricular action potential. By adding a more sophisticated model of calcium handling, this model builds upon the <ulink url="${HTML_EXMPL_DFN_MODEL}">Di Francesco-Noble</ulink> and the Luo-Rudy models (see the <ulink url="${HTML_EXMPL_LR_I_MODEL}">Luo-Rudy I</ulink> and the <ulink url="${HTML_EXMPL_LR_II_MODEL}">Luo-Rudy II</ulink> models with their accurate descriptions of membrane currents (see <xref linkend="fig_cell_diagram"/> below). Prior to this paper, membrane currents and calcium subsystems had only been considered separately.
</para>
<para>
The complete original paper reference is cited below:
</para>
<para>
<ulink url="http://www.biophysj.org/cgi/content/abstract/74/3/1149">Cardiac Calcium Dynamics: The Roles of Ryanodine Receptor Adaptation and Sarcoplasmic Reticulum Load</ulink>, M. Saleet Jafri, J. Jeremy Rice and Raimond L. Winslow, 1998, <ulink url="http://www.biophysj.org/">
<emphasis>Biophysical Journal</emphasis>
</ulink>, 74, 1149-1168. (<ulink url="http://www.biophysj.org/cgi/content/full/74/3/1149">Full text</ulink> and <ulink url="http://www.biophysj.org/cgi/reprint/74/3/1149.pdf">PDF</ulink> versions of the article are available for Journal Members on the Biophysical Journal website.) <ulink url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9512016&dopt=Abstract">PubMed ID: 9512016</ulink>
</para>
<para>
ABSTRACT
</para>
<para>
We construct a detailed mathematical model for Ca2+ regulation in the ventricular myocyte that includes novel descriptions of subcellular mechanisms based on recent experimental findings: 1) the Keizer-Levine model for the ryanodine receptor (RyR), which displays adaptation at elevated Ca2+; 2) a model for the L-type Ca2+ channel that inactivates by mode switching; and 3) a restricted subspace into which the RyRs and L-type Ca2+ channels empty and interact via Ca2+. We add membrane currents from the Luo-Rudy Phase II ventricular cell model to our description of Ca2+ handling to formulate a new model for ventricular action potentials and Ca2+ regulation. The model can simulate Ca2+ transients during an action potential similar to those seen experimentally. The subspace [Ca2+] rises more rapidly and reaches a higher level (10-30 µM) than the bulk myoplasmic Ca2+ (peak [Ca2+]i approx 1 µM). Termination of sarcoplasmic reticulum (SR) Ca2+ release is predominately due to emptying of the SR, but is influenced by RyR adaptation. Because force generation is roughly proportional to peak myoplasmic Ca2+, we use [Ca2+]i in the model to explore the effects of pacing rate on force generation. The model reproduces transitions seen in force generation due to changes in pacing that cannot be simulated by previous models. Simulation of such complex phenomena requires an interplay of both RyR adaptation and the degree of SR Ca2+ loading. This model, therefore, shows improved behavior over existing models that lack detailed descriptions of subcellular Ca2+ regulatory mechanisms.
</para>
<para>
The reference for the embedded Niederer Hunter Smith model of cardiac myocyte relaxation is: "A Quantitative Analysis of Cardiac Myocyte Relaxation: A Simulation Study" Niederer, S.A., Hunter, P.J., Smith, N.P, Biophysical Journal, Volume 90, March 2006, pp. 1697-1722.
</para>
<para>
The raw CellML description of the Jafri-Rice-Winslow model can be downloaded in various formats as described in <xref linkend="sec_download_this_model"/>. For an example of a more complete documentation for an electrophysiological model, see <ulink url="${HTML_EXMPL_HHSA_INTRO}">The Hodgkin-Huxley Squid Axon Model, 1952</ulink>.
</para>
<informalfigure float="0" id="fig_cell_diagram">
<mediaobject>
<imageobject>
<objectinfo>
<title>cell diagram of the Jafri-Rice-Winslow model showing ionic currents, pumps and exchangers within the sarcolemma and the sarcoplasmic reticulum</title>
</objectinfo>
<imagedata fileref="cell_diagram.gif"/>
</imageobject>
</mediaobject>
<caption>A schematic diagram describing the current flows across the cell membrane that are captured in the Jafri-Rice-Winslow model.</caption>
</informalfigure>
<informalfigure float="0" id="fig_cellml_rendering">
<mediaobject>
<imageobject>
<objectinfo>
<title>the cellml rendering of the Jafri-Rice-Winslow model</title>
</objectinfo>
<imagedata fileref="cellml_rendering.gif"/>
</imageobject>
</mediaobject>
<caption>The network defined in the CellML description of the Jafri-Rice-Winslow model. A key describing the significance of the shapes of the components and the colours of the connections between them is in the <ulink url="${HTML_EXMPL_GRAPHICAL_NOTATION}">notation guide</ulink>. For simplicity, not all the variables are shown.</caption>
</informalfigure>
<para>
The membrane physically contains the currents, exchangers and pumps, as indicated by the blue arrows in <xref linkend="fig_cellml_rendering"/>. The currents act independently and are not connected to each other. Several of the channels encapsulate <emphasis>and</emphasis> contain further components which represent activation and inactivation gates. The addition of an encapsulation relationship informs modellers and processing software that the gates are important parts of the current model. It also prevents any other components that aren't also encapsulated by the parent component from connecting to its gates, effectively hiding them from the rest of the model.
</para>
<para>
The breakdown of the model into components and the definition of encapsulation and containment relationships between them is somewhat arbitrary. When considering how a model should be broken into components, modellers are encouraged to consider which parts of a model might be re-used and how the physiological elements of the system being modelled are naturally bounded. Containment relationships should be used to provide simple rendering information for processing software (ideally, this will correspond to the layout of the physical system), and encapsulation should be used to group sets of components into sub-models.
</para>
</sect1>
</article>
</documentation>
<units name="ms">
<unit units="second" prefix="milli"/>
</units>
<units name="per_ms">
<unit units="second" prefix="milli" exponent="-1"/>
</units>
<units name="per_mm">
<unit units="metre" prefix="milli" exponent="-1"/>
</units>
<units name="mV">
<unit units="volt" prefix="milli"/>
</units>
<units name="per_mV">
<unit units="volt" prefix="milli" exponent="-1"/>
</units>
<units name="per_mV_ms">
<unit units="mV" exponent="-1"/>
<unit units="ms" exponent="-1"/>
</units>
<units name="mS_per_mm2">
<unit units="siemens" prefix="milli"/>
<unit units="metre" prefix="milli" exponent="-2"/>
</units>
<units name="mm2">
<unit units="metre" prefix="milli" exponent="2"/>
</units>
<units name="mM">
<unit units="mole" prefix="nano"/>
<unit units="metre" prefix="milli" exponent="-3"/>
</units>
<units name="mM_per_ms">
<unit units="mM"/>
<unit units="ms" exponent="-1"/>
</units>
<units name="per_mM_per_ms">
<unit units="mM" exponent="-1"/>
<unit units="ms" exponent="-1"/>
</units>
<units name="per_mM3_per_ms">
<unit units="mM" exponent="-3"/>
<unit units="ms" exponent="-1"/>
</units>
<units name="per_mM4_per_ms">
<unit units="mM" exponent="-4"/>
<unit units="ms" exponent="-1"/>
</units>
<units name="uF_per_mm2">
<unit units="farad" prefix="micro"/>
<unit units="metre" prefix="milli" exponent="-2"/>
</units>
<units name="uA_per_mm2">
<unit units="ampere" prefix="micro"/>
<unit units="metre" prefix="milli" exponent="-2"/>
</units>
<units name="uA_per_mmcu">
<unit units="ampere" prefix="micro"/>
<unit units="metre" prefix="milli" exponent="-3"/>
</units>
<units name="mm_per_ms">
<unit units="metre" prefix="milli"/>
<unit units="metre" prefix="milli" exponent="-2"/>
</units>
<units name="gas_constant_units">
<unit units="joule" prefix="pico"/>
<unit units="mole" prefix="nano" exponent="-1"/>
<unit units="kelvin" exponent="-1"/>
</units>
<units name="faradays_constant_units">
<unit units="coulomb" prefix="nano"/>
<unit units="mole" prefix="nano" exponent="-1"/>
</units>
<units name="micrometer">
<unit units="metre" prefix="micro"/>
</units>
<units name="N_per_mm2">
<unit units="newton"/>
<unit units="metre" prefix="milli" exponent="-2"/>
</units>
<component name="environment">
<variable units="ms" public_interface="out" name="time"/>
<variable units="dimensionless" public_interface="out" name="lambda" initial_value="1"/>
<variable units="per_ms" public_interface="out" name="dlambdadt" initial_value="0"/>
</component>
<component name="membrane">
<variable units="mV" public_interface="out" name="V" initial_value="-84.1638"/>
<variable units="gas_constant_units" public_interface="out" name="R" initial_value="8.3145e3"/>
<variable units="kelvin" public_interface="out" name="T" initial_value="310"/>
<variable units="faradays_constant_units" public_interface="out" name="F" initial_value="9.6845e4"/>
<variable units="ms" public_interface="in" name="time"/>
<variable units="uA_per_mm2" public_interface="in" name="i_Na"/>
<variable units="uA_per_mm2" public_interface="in" name="i_Ca_L_Ca"/>
<variable units="uA_per_mm2" public_interface="in" name="i_Ca_L_K"/>
<variable units="uA_per_mm2" public_interface="in" name="i_K"/>
<variable units="uA_per_mm2" public_interface="in" name="i_K1"/>
<variable units="uA_per_mm2" public_interface="in" name="i_NaCa"/>
<variable units="uA_per_mm2" public_interface="in" name="i_Kp"/>
<variable units="uA_per_mm2" public_interface="in" name="i_p_Ca"/>
<variable units="uA_per_mm2" public_interface="in" name="i_Na_b"/>
<variable units="uA_per_mm2" public_interface="in" name="i_Ca_b"/>
<variable units="uA_per_mm2" public_interface="in" name="i_NaK"/>
<variable units="uA_per_mm2" public_interface="in" name="i_ns_Ca"/>
<variable units="uF_per_mm2" name="Cm" initial_value="0.01"/>
<variable units="uA_per_mm2" name="I_stim"/>
<variable units="ms" name="stim_start" initial_value="100"/>
<variable units="ms" name="stim_end" initial_value="9000"/>
<variable units="ms" name="stim_period" initial_value="750"/>
<variable units="ms" name="stim_duration" initial_value="1"/>
<variable units="uA_per_mm2" name="stim_amplitude" initial_value="-100"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>V</ci>
</apply>
<apply>
<divide/>
<apply>
<plus/>
<ci>i_Na</ci>
<ci>i_Ca_L_Ca</ci>
<ci>i_Ca_L_K</ci>
<ci>i_K</ci>
<ci>i_NaCa</ci>
<ci>i_K1</ci>
<ci>i_Kp</ci>
<ci>i_p_Ca</ci>
<ci>i_Na_b</ci>
<ci>i_Ca_b</ci>
<ci>i_NaK</ci>
<ci>i_ns_Ca</ci>
<ci>I_stim</ci>
</apply>
<ci>Cm</ci>
</apply>
</apply>
<apply>
<eq/>
<ci>I_stim</ci>
<piecewise>
<piece>
<ci>stim_amplitude</ci>
<apply>
<and/>
<apply>
<geq/>
<ci>time</ci>
<ci>stim_start</ci>
</apply>
<apply>
<leq/>
<ci>time</ci>
<ci>stim_end</ci>
</apply>
<apply>
<leq/>
<apply>
<minus/>
<apply>
<minus/>
<ci>time</ci>
<ci>stim_start</ci>
</apply>
<apply>
<times/>
<apply>
<floor/>
<apply>
<divide/>
<apply>
<minus/>
<ci>time</ci>
<ci>stim_start</ci>
</apply>
<ci>stim_period</ci>
</apply>
</apply>
<ci>stim_period</ci>
</apply>
</apply>
<ci>stim_duration</ci>
</apply>
</apply>
</piece>
<otherwise>
<cn cellml:units="uA_per_mm2">0</cn>
</otherwise>
</piecewise>
</apply>
</math>
</component>
<component name="fast_sodium_current">
<variable units="uA_per_mm2" public_interface="out" name="i_Na"/>
<variable units="mV" public_interface="out" name="E_Na"/>
<variable units="mS_per_mm2" name="g_Na" initial_value="0.128"/>
<variable units="ms" public_interface="in" private_interface="out" name="time"/>
<variable units="mV" public_interface="in" private_interface="out" name="V"/>
<variable units="gas_constant_units" public_interface="in" name="R"/>
<variable units="kelvin" public_interface="in" name="T"/>
<variable units="faradays_constant_units" public_interface="in" name="F"/>
<variable units="mM" public_interface="in" name="Nai"/>
<variable units="mM" public_interface="in" name="Nao"/>
<variable units="dimensionless" private_interface="in" name="m"/>
<variable units="dimensionless" private_interface="in" name="h"/>
<variable units="dimensionless" private_interface="in" name="j"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<ci>i_Na</ci>
<apply>
<times/>
<ci>g_Na</ci>
<apply>
<power/>
<ci>m</ci>
<cn cellml:units="dimensionless">3</cn>
</apply>
<ci>h</ci>
<ci>j</ci>
<apply>
<minus/>
<ci>V</ci>
<ci>E_Na</ci>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>E_Na</ci>
<apply>
<times/>
<apply>
<divide/>
<apply>
<times/>
<ci>R</ci>
<ci>T</ci>
</apply>
<ci>F</ci>
</apply>
<apply>
<ln/>
<apply>
<divide/>
<ci>Nao</ci>
<ci>Nai</ci>
</apply>
</apply>
</apply>
</apply>
</math>
</component>
<component name="fast_sodium_current_m_gate">
<variable units="dimensionless" public_interface="out" name="m" initial_value="0.0328302"/>
<variable units="per_ms" name="alpha_m"/>
<variable units="per_ms" name="beta_m"/>
<variable units="mV" public_interface="in" name="V"/>
<variable units="ms" public_interface="in" name="time"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<ci>alpha_m</ci>
<apply>
<divide/>
<apply>
<times/>
<cn cellml:units="per_mV_ms">0.32</cn>
<apply>
<plus/>
<ci>V</ci>
<cn cellml:units="mV">47.13</cn>
</apply>
</apply>
<apply>
<minus/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<exp/>
<apply>
<times/>
<apply>
<minus/>
<cn cellml:units="per_mV">0.1</cn>
</apply>
<apply>
<plus/>
<ci>V</ci>
<cn cellml:units="mV">47.13</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>beta_m</ci>
<apply>
<times/>
<cn cellml:units="per_ms">0.08</cn>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<minus/>
<ci>V</ci>
</apply>
<cn cellml:units="mV">11</cn>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>m</ci>
</apply>
<apply>
<minus/>
<apply>
<times/>
<ci>alpha_m</ci>
<apply>
<minus/>
<cn cellml:units="per_mV">1</cn>
<ci>m</ci>
</apply>
</apply>
<apply>
<times/>
<ci>beta_m</ci>
<ci>m</ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="fast_sodium_current_h_gate">
<variable units="dimensionless" public_interface="out" name="h" initial_value="0.988354"/>
<variable units="per_ms" name="alpha_h"/>
<variable units="per_ms" name="beta_h"/>
<variable units="mV" public_interface="in" name="V"/>
<variable units="ms" public_interface="in" name="time"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<ci>alpha_h</ci>
<piecewise>
<piece>
<apply>
<times/>
<cn cellml:units="per_ms">0.135</cn>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<plus/>
<cn cellml:units="mV">80</cn>
<ci>V</ci>
</apply>
<apply>
<minus/>
<cn cellml:units="mV">6.8</cn>
</apply>
</apply>
</apply>
</apply>
<apply>
<lt/>
<ci>V</ci>
<apply>
<minus/>
<cn cellml:units="mV">40</cn>
</apply>
</apply>
</piece>
<otherwise>
<cn cellml:units="per_ms">0</cn>
</otherwise>
</piecewise>
</apply>
<apply>
<eq/>
<ci>beta_h</ci>
<piecewise>
<piece>
<apply>
<plus/>
<apply>
<times/>
<cn cellml:units="per_ms">3.56</cn>
<apply>
<exp/>
<apply>
<times/>
<cn cellml:units="mV">0.079</cn>
<ci>V</ci>
</apply>
</apply>
</apply>
<apply>
<times/>
<cn cellml:units="per_ms">310000</cn>
<apply>
<exp/>
<apply>
<times/>
<cn cellml:units="per_mV">0.35</cn>
<ci>V</ci>
</apply>
</apply>
</apply>
</apply>
<apply>
<lt/>
<ci>V</ci>
<apply>
<minus/>
<cn cellml:units="mV">40</cn>
</apply>
</apply>
</piece>
<otherwise>
<apply>
<divide/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<times/>
<cn cellml:units="ms">0.13</cn>
<apply>
<plus/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<plus/>
<ci>V</ci>
<cn cellml:units="mV">10.66</cn>
</apply>
<apply>
<minus/>
<cn cellml:units="mV">11.1</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
</otherwise>
</piecewise>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>h</ci>
</apply>
<apply>
<minus/>
<apply>
<times/>
<ci>alpha_h</ci>
<apply>
<minus/>
<cn cellml:units="dimensionless">1</cn>
<ci>h</ci>
</apply>
</apply>
<apply>
<times/>
<ci>beta_h</ci>
<ci>h</ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="fast_sodium_current_j_gate">
<variable units="dimensionless" public_interface="out" name="j" initial_value="0.99254"/>
<variable units="per_ms" name="alpha_j"/>
<variable units="per_ms" name="beta_j"/>
<variable units="mV" public_interface="in" name="V"/>
<variable units="ms" public_interface="in" name="time"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<ci>alpha_j</ci>
<piecewise>
<piece>
<apply>
<divide/>
<apply>
<times/>
<apply>
<minus/>
<apply>
<times/>
<apply>
<minus/>
<cn cellml:units="per_mV_ms">127140</cn>
</apply>
<apply>
<exp/>
<apply>
<times/>
<cn cellml:units="per_mV">0.2444</cn>
<ci>V</ci>
</apply>
</apply>
</apply>
<apply>
<times/>
<cn cellml:units="per_mV_ms">0.00003474</cn>
<apply>
<exp/>
<apply>
<times/>
<apply>
<minus/>
<cn cellml:units="per_mV">0.04391</cn>
</apply>
<ci>V</ci>
</apply>
</apply>
</apply>
</apply>
<apply>
<plus/>
<ci>V</ci>
<cn cellml:units="mV">37.78</cn>
</apply>
</apply>
<apply>
<plus/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<exp/>
<apply>
<times/>
<cn cellml:units="per_mV">0.311</cn>
<apply>
<plus/>
<ci>V</ci>
<cn cellml:units="mV">79.23</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<lt/>
<ci>V</ci>
<apply>
<minus/>
<cn cellml:units="mV">40</cn>
</apply>
</apply>
</piece>
<otherwise>
<cn cellml:units="per_ms">0</cn>
</otherwise>
</piecewise>
</apply>
<apply>
<eq/>
<ci>beta_j</ci>
<piecewise>
<piece>
<apply>
<divide/>
<apply>
<times/>
<cn cellml:units="per_ms">0.1212</cn>
<apply>
<exp/>
<apply>
<times/>
<apply>
<minus/>
<cn cellml:units="per_mV">0.01052</cn>
</apply>
<ci>V</ci>
</apply>
</apply>
</apply>
<apply>
<plus/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<exp/>
<apply>
<times/>
<apply>
<minus/>
<cn cellml:units="per_mV">0.1378</cn>
</apply>
<apply>
<plus/>
<ci>V</ci>
<cn cellml:units="mV">40.14</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<lt/>
<ci>V</ci>
<apply>
<minus/>
<cn cellml:units="mV">40</cn>
</apply>
</apply>
</piece>
<otherwise>
<apply>
<divide/>
<apply>
<times/>
<cn cellml:units="per_ms">0.3</cn>
<apply>
<exp/>
<apply>
<times/>
<apply>
<minus/>
<cn cellml:units="per_mV">0.0000002535</cn>
</apply>
<ci>V</ci>
</apply>
</apply>
</apply>
<apply>
<plus/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<exp/>
<apply>
<times/>
<apply>
<minus/>
<cn cellml:units="per_mV">0.1</cn>
</apply>
<apply>
<plus/>
<ci>V</ci>
<cn cellml:units="mV">32</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
</otherwise>
</piecewise>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>j</ci>
</apply>
<apply>
<minus/>
<apply>
<times/>
<ci>alpha_j</ci>
<apply>
<minus/>
<cn cellml:units="dimensionless">1</cn>
<ci>j</ci>
</apply>
</apply>
<apply>
<times/>
<ci>beta_j</ci>
<ci>j</ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="L_type_Ca_channel">
<variable units="uA_per_mm2" public_interface="out" name="i_Ca_L_Ca"/>
<variable units="uA_per_mm2" public_interface="out" name="i_Ca_L_K"/>
<variable units="mm_per_ms" name="P_Ca" initial_value="33.75e-6"/>
<variable units="mm_per_ms" name="P_K" initial_value="1e-9"/>
<variable units="mm_per_ms" name="p_k"/>
<variable units="uA_per_mm2" name="i_Ca_L_Ca_half" initial_value="-4.58e-3"/>
<variable units="uA_per_mm2" name="i_Ca_L_Ca_max"/>
<variable units="dimensionless" name="O" initial_value="9.84546e-21"/>
<variable units="dimensionless" name="O_Ca" initial_value="0"/>
<variable units="per_ms" name="alpha"/>
<variable units="per_ms" name="beta"/>
<variable units="per_ms" name="gamma"/>
<variable units="per_ms" name="alpha_a"/>
<variable units="per_ms" name="beta_b"/>
<variable units="dimensionless" name="a" initial_value="2"/>
<variable units="dimensionless" name="b" initial_value="2"/>
<variable units="per_ms" name="g" initial_value="2"/>
<variable units="per_ms" name="f" initial_value="0.3"/>
<variable units="per_ms" name="g_" initial_value="0"/>
<variable units="per_ms" name="f_" initial_value="0"/>
<variable units="per_ms" name="omega" initial_value="0.01"/>
<variable units="dimensionless" name="C0" initial_value="0.997208"/>
<variable units="dimensionless" name="C1" initial_value="6.38897e-5"/>
<variable units="dimensionless" name="C2" initial_value="1.535e-9"/>
<variable units="dimensionless" name="C3" initial_value="1.63909e-14"/>
<variable units="dimensionless" name="C4" initial_value="6.56337e-20"/>
<variable units="dimensionless" name="C_Ca0" initial_value="2.72826e-3"/>
<variable units="dimensionless" name="C_Ca1" initial_value="6.99215e-7"/>
<variable units="dimensionless" name="C_Ca2" initial_value="6.71989e-11"/>
<variable units="dimensionless" name="C_Ca3" initial_value="2.87031e-15"/>
<variable units="dimensionless" name="C_Ca4" initial_value="4.59752e-20"/>
<variable units="ms" public_interface="in" private_interface="out" name="time"/>
<variable units="mV" public_interface="in" private_interface="out" name="V"/>
<variable units="mM" public_interface="in" name="Ca_SS"/>
<variable units="mM" public_interface="in" name="Cao"/>
<variable units="mM" public_interface="in" name="Ko"/>
<variable units="mM" public_interface="in" name="Ki"/>
<variable units="gas_constant_units" public_interface="in" name="R"/>
<variable units="kelvin" public_interface="in" name="T"/>
<variable units="faradays_constant_units" public_interface="in" name="F"/>
<variable units="dimensionless" private_interface="in" name="y"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<ci>i_Ca_L_Ca</ci>
<apply>
<times/>
<ci>i_Ca_L_Ca_max</ci>
<ci>y</ci>
<apply>
<plus/>
<ci>O</ci>
<ci>O_Ca</ci>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>i_Ca_L_K</ci>
<apply>
<divide/>
<apply>
<times/>
<apply>
<divide/>
<apply>
<times/>
<ci>p_k</ci>
<ci>y</ci>
<apply>
<plus/>
<ci>O</ci>
<ci>O_Ca</ci>
</apply>
<ci>V</ci>
<apply>
<power/>
<ci>F</ci>
<cn cellml:units="dimensionless">2</cn>
</apply>
</apply>
<apply>
<times/>
<ci>R</ci>
<ci>T</ci>
</apply>
</apply>
<apply>
<minus/>
<apply>
<times/>
<ci>Ki</ci>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<times/>
<ci>V</ci>
<ci>F</ci>
</apply>
<apply>
<times/>
<ci>R</ci>
<ci>T</ci>
</apply>
</apply>
</apply>
</apply>
<ci>Ko</ci>
</apply>
</apply>
<apply>
<minus/>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<times/>
<ci>V</ci>
<ci>F</ci>
</apply>
<apply>
<times/>
<ci>R</ci>
<ci>T</ci>
</apply>
</apply>
</apply>
<cn cellml:units="dimensionless">1</cn>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>p_k</ci>
<apply>
<divide/>
<ci>P_K</ci>
<apply>
<plus/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<divide/>
<ci>i_Ca_L_Ca_max</ci>
<ci>i_Ca_L_Ca_half</ci>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>i_Ca_L_Ca_max</ci>
<apply>
<divide/>
<apply>
<times/>
<apply>
<divide/>
<apply>
<times/>
<ci>P_Ca</ci>
<cn cellml:units="dimensionless">4</cn>
<ci>V</ci>
<apply>
<power/>
<ci>F</ci>
<cn cellml:units="dimensionless">2</cn>
</apply>
</apply>
<apply>
<times/>
<ci>R</ci>
<ci>T</ci>
</apply>
</apply>
<apply>
<minus/>
<apply>
<times/>
<cn cellml:units="dimensionless">0.001</cn>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<times/>
<cn cellml:units="dimensionless">2</cn>
<ci>V</ci>
<ci>F</ci>
</apply>
<apply>
<times/>
<ci>R</ci>
<ci>T</ci>
</apply>
</apply>
</apply>
</apply>
<apply>
<times/>
<cn cellml:units="dimensionless">0.341</cn>
<ci>Cao</ci>
</apply>
</apply>
</apply>
<apply>
<minus/>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<times/>
<cn cellml:units="dimensionless">2</cn>
<ci>V</ci>
<ci>F</ci>
</apply>
<apply>
<times/>
<ci>R</ci>
<ci>T</ci>
</apply>
</apply>
</apply>
<cn cellml:units="dimensionless">1</cn>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>alpha</ci>
<apply>
<times/>
<cn cellml:units="per_ms">0.4</cn>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<plus/>
<ci>V</ci>
<cn cellml:units="mV">12</cn>
</apply>
<cn cellml:units="mV">10</cn>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>beta</ci>
<apply>
<times/>
<cn cellml:units="per_ms">0.05</cn>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<plus/>
<ci>V</ci>
<cn cellml:units="mV">12</cn>
</apply>
<apply>
<minus/>
<cn cellml:units="mV">13</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>alpha_a</ci>
<apply>
<times/>
<ci>alpha</ci>
<ci>a</ci>
</apply>
</apply>
<apply>
<eq/>
<ci>beta_b</ci>
<apply>
<divide/>
<ci>beta</ci>
<ci>b</ci>
</apply>
</apply>
<apply>
<eq/>
<ci>gamma</ci>
<apply>
<times/>
<cn cellml:units="dimensionless">0.1875</cn>
<ci>Ca_SS</ci>
</apply>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>C0</ci>
</apply>
<apply>
<minus/>
<apply>
<plus/>
<apply>
<times/>
<ci>beta</ci>
<ci>C1</ci>
</apply>
<apply>
<times/>
<ci>omega</ci>
<ci>C_Ca0</ci>
</apply>
</apply>
<apply>
<times/>
<apply>
<plus/>
<apply>
<times/>
<cn cellml:units="dimensionless">4</cn>
<ci>alpha</ci>
</apply>
<ci>gamma</ci>
</apply>
<ci>C0</ci>
</apply>
</apply>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>C1</ci>
</apply>
<apply>
<minus/>
<apply>
<plus/>
<apply>
<times/>
<cn cellml:units="dimensionless">4</cn>
<ci>alpha</ci>
<ci>C0</ci>
</apply>
<apply>
<times/>
<cn cellml:units="dimensionless">2</cn>
<ci>beta</ci>
<ci>C2</ci>
</apply>
<apply>
<times/>
<apply>
<divide/>
<ci>omega</ci>
<ci>b</ci>
</apply>
<ci>C_Ca1</ci>
</apply>
</apply>
<apply>
<times/>
<apply>
<plus/>
<ci>beta</ci>
<apply>
<times/>
<cn cellml:units="dimensionless">3</cn>
<ci>alpha</ci>
</apply>
<apply>
<times/>
<ci>gamma</ci>
<ci>a</ci>
</apply>
</apply>
<ci>C1</ci>
</apply>
</apply>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>C2</ci>
</apply>
<apply>
<minus/>
<apply>
<plus/>
<apply>
<times/>
<cn cellml:units="dimensionless">3</cn>
<ci>alpha</ci>
<ci>C1</ci>
</apply>
<apply>
<times/>
<cn cellml:units="dimensionless">3</cn>
<ci>beta</ci>
<ci>C3</ci>
</apply>
<apply>
<times/>
<apply>
<divide/>
<ci>omega</ci>
<apply>
<power/>
<ci>b</ci>
<cn cellml:units="dimensionless">2</cn>
</apply>
</apply>
<ci>C_Ca2</ci>
</apply>
</apply>
<apply>
<times/>
<apply>
<plus/>
<apply>
<times/>
<ci>beta</ci>
<cn cellml:units="dimensionless">2</cn>
</apply>
<apply>
<times/>
<cn cellml:units="dimensionless">2</cn>
<ci>alpha</ci>
</apply>
<apply>
<times/>
<ci>gamma</ci>
<apply>
<power/>
<ci>a</ci>
<cn cellml:units="dimensionless">2</cn>
</apply>
</apply>
</apply>
<ci>C2</ci>
</apply>
</apply>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>C3</ci>
</apply>
<apply>
<minus/>
<apply>
<plus/>
<apply>
<times/>
<cn cellml:units="dimensionless">2</cn>
<ci>alpha</ci>
<ci>C2</ci>
</apply>
<apply>
<times/>
<cn cellml:units="dimensionless">4</cn>
<ci>beta</ci>
<ci>C4</ci>
</apply>
<apply>
<times/>
<apply>
<divide/>
<ci>omega</ci>
<apply>
<power/>
<ci>b</ci>
<cn cellml:units="dimensionless">3</cn>
</apply>
</apply>
<ci>C_Ca3</ci>
</apply>
</apply>
<apply>
<times/>
<apply>
<plus/>
<apply>
<times/>
<ci>beta</ci>
<cn cellml:units="dimensionless">3</cn>
</apply>
<ci>alpha</ci>
<apply>
<times/>
<ci>gamma</ci>
<apply>
<power/>
<ci>a</ci>
<cn cellml:units="dimensionless">3</cn>
</apply>
</apply>
</apply>
<ci>C3</ci>
</apply>
</apply>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>C4</ci>
</apply>
<apply>
<minus/>
<apply>
<plus/>
<apply>
<times/>
<ci>alpha</ci>
<ci>C3</ci>
</apply>
<apply>
<times/>
<ci>g</ci>
<ci>O</ci>
</apply>
<apply>
<times/>
<apply>
<divide/>
<ci>omega</ci>
<apply>
<power/>
<ci>b</ci>
<cn cellml:units="dimensionless">4</cn>
</apply>
</apply>
<ci>C_Ca4</ci>
</apply>
</apply>
<apply>
<times/>
<apply>
<plus/>
<apply>
<times/>
<ci>beta</ci>
<cn cellml:units="dimensionless">4</cn>
</apply>
<ci>f</ci>
<apply>
<times/>
<ci>gamma</ci>
<apply>
<power/>
<ci>a</ci>
<cn cellml:units="dimensionless">4</cn>
</apply>
</apply>
</apply>
<ci>C4</ci>
</apply>
</apply>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>O</ci>
</apply>
<apply>
<minus/>
<apply>
<times/>
<ci>f</ci>
<ci>C4</ci>
</apply>
<apply>
<times/>
<ci>g</ci>
<ci>O</ci>
</apply>
</apply>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>C_Ca0</ci>
</apply>
<apply>
<minus/>
<apply>
<plus/>
<apply>
<times/>
<ci>beta_b</ci>
<ci>C_Ca1</ci>
</apply>
<apply>
<times/>
<ci>gamma</ci>
<ci>C_Ca0</ci>
</apply>
</apply>
<apply>
<times/>
<apply>
<plus/>
<apply>
<times/>
<cn cellml:units="dimensionless">4</cn>
<ci>alpha_a</ci>
</apply>
<ci>omega</ci>
</apply>
<ci>C_Ca0</ci>
</apply>
</apply>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>C_Ca1</ci>
</apply>
<apply>
<minus/>
<apply>
<plus/>
<apply>
<times/>
<cn cellml:units="dimensionless">4</cn>
<ci>alpha_a</ci>
<ci>C_Ca0</ci>
</apply>
<apply>
<times/>
<cn cellml:units="dimensionless">2</cn>
<ci>beta_b</ci>
<ci>C_Ca2</ci>
</apply>
<apply>
<times/>
<ci>gamma</ci>
<ci>a</ci>
<ci>C1</ci>
</apply>
</apply>
<apply>
<times/>
<apply>
<plus/>
<ci>beta_b</ci>
<apply>
<times/>
<cn cellml:units="dimensionless">3</cn>
<ci>alpha_a</ci>
</apply>
<apply>
<divide/>
<ci>omega</ci>
<ci>b</ci>
</apply>
</apply>
<ci>C_Ca1</ci>
</apply>
</apply>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>C_Ca2</ci>
</apply>
<apply>
<minus/>
<apply>
<plus/>
<apply>
<times/>
<cn cellml:units="dimensionless">3</cn>
<ci>alpha_a</ci>
<ci>C_Ca1</ci>
</apply>
<apply>
<times/>
<cn cellml:units="dimensionless">3</cn>
<ci>beta_b</ci>
<ci>C_Ca3</ci>
</apply>
<apply>
<times/>
<ci>gamma</ci>
<apply>
<power/>
<ci>a</ci>
<cn cellml:units="dimensionless">2</cn>
</apply>
<ci>C2</ci>
</apply>
</apply>
<apply>
<times/>
<apply>
<plus/>
<apply>
<times/>
<ci>beta_b</ci>
<cn cellml:units="dimensionless">2</cn>
</apply>
<apply>
<times/>
<cn cellml:units="dimensionless">2</cn>
<ci>alpha_a</ci>
</apply>
<apply>
<divide/>
<ci>omega</ci>
<apply>
<power/>
<ci>b</ci>
<cn cellml:units="dimensionless">2</cn>
</apply>
</apply>
</apply>
<ci>C_Ca2</ci>
</apply>
</apply>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>C_Ca3</ci>
</apply>
<apply>
<minus/>
<apply>
<plus/>
<apply>
<times/>
<cn cellml:units="dimensionless">2</cn>
<ci>alpha_a</ci>
<ci>C_Ca2</ci>
</apply>
<apply>
<times/>
<cn cellml:units="dimensionless">4</cn>
<ci>beta_b</ci>
<ci>C_Ca4</ci>
</apply>
<apply>
<times/>
<ci>gamma</ci>
<apply>
<power/>
<ci>a</ci>
<cn cellml:units="dimensionless">3</cn>
</apply>
<ci>C3</ci>
</apply>
</apply>
<apply>
<times/>
<apply>
<plus/>
<apply>
<times/>
<ci>beta_b</ci>
<cn cellml:units="dimensionless">3</cn>
</apply>
<ci>alpha_a</ci>
<apply>
<divide/>
<ci>omega</ci>
<apply>
<power/>
<ci>b</ci>
<cn cellml:units="dimensionless">3</cn>
</apply>
</apply>
</apply>
<ci>C_Ca3</ci>
</apply>
</apply>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>C_Ca4</ci>
</apply>
<apply>
<minus/>
<apply>
<plus/>
<apply>
<times/>
<ci>alpha_a</ci>
<ci>C_Ca3</ci>
</apply>
<apply>
<times/>
<ci>g_</ci>
<ci>O_Ca</ci>
</apply>
<apply>
<times/>
<ci>gamma</ci>
<apply>
<power/>
<ci>a</ci>
<cn cellml:units="dimensionless">4</cn>
</apply>
<ci>C4</ci>
</apply>
</apply>
<apply>
<times/>
<apply>
<plus/>
<apply>
<times/>
<ci>beta_b</ci>
<cn cellml:units="dimensionless">4</cn>
</apply>
<ci>f_</ci>
<apply>
<divide/>
<ci>omega</ci>
<apply>
<power/>
<ci>b</ci>
<cn cellml:units="dimensionless">4</cn>
</apply>
</apply>
</apply>
<ci>C_Ca4</ci>
</apply>
</apply>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>O_Ca</ci>
</apply>
<apply>
<minus/>
<apply>
<times/>
<ci>f_</ci>
<ci>C_Ca4</ci>
</apply>
<apply>
<times/>
<ci>g_</ci>
<ci>O_Ca</ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="L_type_Ca_channel_y_gate">
<variable units="dimensionless" public_interface="out" name="y" initial_value="0.998983"/>
<variable units="dimensionless" name="y_infinity"/>
<variable units="dimensionless" name="tau_y"/>
<variable units="mV" public_interface="in" name="V"/>
<variable units="ms" public_interface="in" name="time"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>y</ci>
</apply>
<apply>
<divide/>
<apply>
<minus/>
<ci>y_infinity</ci>
<ci>y</ci>
</apply>
<ci>tau_y</ci>
</apply>
</apply>
<apply>
<eq/>
<ci>y_infinity</ci>
<apply>
<plus/>
<apply>
<divide/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<plus/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<plus/>
<ci>V</ci>
<cn cellml:units="mV">55</cn>
</apply>
<cn cellml:units="mV">7.5</cn>
</apply>
</apply>
</apply>
</apply>
<apply>
<divide/>
<cn cellml:units="dimensionless">0.1</cn>
<apply>
<plus/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<plus/>
<apply>
<minus/>
<ci>V</ci>
</apply>
<cn cellml:units="mV">21</cn>
</apply>
<cn cellml:units="mV">6</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>tau_y</ci>
<apply>
<plus/>
<cn cellml:units="dimensionless">20</cn>
<apply>
<divide/>
<cn cellml:units="dimensionless">600</cn>
<apply>
<plus/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<plus/>
<ci>V</ci>
<cn cellml:units="mV">30</cn>
</apply>
<cn cellml:units="mV">9.5</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
</component>
<component name="time_dependent_potassium_current">
<variable units="uA_per_mm2" public_interface="out" name="i_K"/>
<variable units="mS_per_mm2" name="g_K"/>
<variable units="mS_per_mm2" name="g_K_max" initial_value="0.001128"/>
<variable units="mV" name="E_K"/>
<variable units="dimensionless" name="P_NaK" initial_value="0.01833"/>
<variable units="ms" public_interface="in" private_interface="out" name="time"/>
<variable units="mV" public_interface="in" private_interface="out" name="V"/>
<variable units="mM" public_interface="in" name="Ko"/>
<variable units="mM" public_interface="in" name="Ki"/>
<variable units="mM" public_interface="in" name="Nao"/>
<variable units="mM" public_interface="in" name="Nai"/>
<variable units="gas_constant_units" public_interface="in" name="R"/>
<variable units="kelvin" public_interface="in" name="T"/>
<variable units="faradays_constant_units" public_interface="in" name="F"/>
<variable units="dimensionless" private_interface="in" name="X"/>
<variable units="dimensionless" private_interface="in" name="Xi"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<ci>g_K</ci>
<apply>
<times/>
<ci>g_K_max</ci>
<apply>
<root/>
<apply>
<divide/>
<ci>Ko</ci>
<cn cellml:units="mM">5.4</cn>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>E_K</ci>
<apply>
<times/>
<apply>
<divide/>
<apply>
<times/>
<ci>R</ci>
<ci>T</ci>
</apply>
<ci>F</ci>
</apply>
<apply>
<ln/>
<apply>
<divide/>
<apply>
<plus/>
<ci>Ko</ci>
<apply>
<times/>
<ci>P_NaK</ci>
<ci>Nao</ci>
</apply>
</apply>
<apply>
<plus/>
<ci>Ki</ci>
<apply>
<times/>
<ci>P_NaK</ci>
<ci>Nai</ci>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>i_K</ci>
<apply>
<times/>
<ci>g_K</ci>
<ci>Xi</ci>
<apply>
<power/>
<ci>X</ci>
<cn cellml:units="dimensionless">2</cn>
</apply>
<apply>
<minus/>
<ci>V</ci>
<ci>E_K</ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="time_dependent_potassium_current_X_gate">
<variable units="dimensionless" public_interface="out" name="X" initial_value="0.000928836"/>
<variable units="per_ms" name="alpha_X"/>
<variable units="per_ms" name="beta_X"/>
<variable units="mV" public_interface="in" name="V"/>
<variable units="ms" public_interface="in" name="time"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<ci>alpha_X</ci>
<apply>
<divide/>
<apply>
<times/>
<cn cellml:units="per_mV_ms">0.0000719</cn>
<apply>
<plus/>
<ci>V</ci>
<cn cellml:units="mV">30</cn>
</apply>
</apply>
<apply>
<minus/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<exp/>
<apply>
<times/>
<apply>
<minus/>
<cn cellml:units="per_mV">0.148</cn>
</apply>
<apply>
<plus/>
<ci>V</ci>
<cn cellml:units="mV">30</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>beta_X</ci>
<apply>
<divide/>
<apply>
<times/>
<cn cellml:units="per_mV_ms">0.000131</cn>
<apply>
<plus/>
<ci>V</ci>
<cn cellml:units="mV">30</cn>
</apply>
</apply>
<apply>
<plus/>
<apply>
<minus/>
<cn cellml:units="dimensionless">1</cn>
</apply>
<apply>
<exp/>
<apply>
<times/>
<cn cellml:units="per_mV">0.0687</cn>
<apply>
<plus/>
<ci>V</ci>
<cn cellml:units="mV">30</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>X</ci>
</apply>
<apply>
<minus/>
<apply>
<times/>
<ci>alpha_X</ci>
<apply>
<minus/>
<cn cellml:units="dimensionless">1</cn>
<ci>X</ci>
</apply>
</apply>
<apply>
<times/>
<ci>beta_X</ci>
<ci>X</ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="time_dependent_potassium_current_Xi_gate">
<variable units="dimensionless" public_interface="out" name="Xi"/>
<variable units="mV" public_interface="in" name="V"/>
<variable units="ms" public_interface="in" name="time"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<ci>Xi</ci>
<apply>
<divide/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<plus/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<minus/>
<ci>V</ci>
<cn cellml:units="mV">56.26</cn>
</apply>
<cn cellml:units="mV">32.1</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
</component>
<component name="time_independent_potassium_current">
<variable units="uA_per_mm2" public_interface="out" name="i_K1"/>
<variable units="mV" public_interface="out" private_interface="out" name="E_K1"/>
<variable units="mS_per_mm2" name="g_K1"/>
<variable units="mS_per_mm2" name="g_K1_max" initial_value="7.5e-3"/>
<variable units="ms" public_interface="in" private_interface="out" name="time"/>
<variable units="mV" public_interface="in" private_interface="out" name="V"/>
<variable units="mM" public_interface="in" name="Ko"/>
<variable units="mM" public_interface="in" name="Ki"/>
<variable units="gas_constant_units" public_interface="in" name="R"/>
<variable units="kelvin" public_interface="in" name="T"/>
<variable units="faradays_constant_units" public_interface="in" name="F"/>
<variable units="dimensionless" private_interface="in" name="K1_infinity"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<ci>g_K1</ci>
<apply>
<times/>
<ci>g_K1_max</ci>
<apply>
<root/>
<apply>
<divide/>
<ci>Ko</ci>
<cn cellml:units="mM">5.4</cn>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>E_K1</ci>
<apply>
<times/>
<apply>
<divide/>
<apply>
<times/>
<ci>R</ci>
<ci>T</ci>
</apply>
<ci>F</ci>
</apply>
<apply>
<ln/>
<apply>
<divide/>
<ci>Ko</ci>
<ci>Ki</ci>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>i_K1</ci>
<apply>
<times/>
<ci>g_K1</ci>
<ci>K1_infinity</ci>
<apply>
<minus/>
<ci>V</ci>
<ci>E_K1</ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="time_independent_potassium_current_K1_gate">
<variable units="dimensionless" public_interface="out" name="K1_infinity"/>
<variable units="per_ms" name="alpha_K1"/>
<variable units="per_ms" name="beta_K1"/>
<variable units="mV" public_interface="in" name="V"/>
<variable units="ms" public_interface="in" name="time"/>
<variable units="mV" public_interface="in" name="E_K1"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<ci>alpha_K1</ci>
<apply>
<divide/>
<cn cellml:units="per_ms">1.02</cn>
<apply>
<plus/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<exp/>
<apply>
<times/>
<cn cellml:units="per_mV">0.2385</cn>
<apply>
<minus/>
<apply>
<minus/>
<ci>V</ci>
<ci>E_K1</ci>
</apply>
<cn cellml:units="mV">59.215</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>beta_K1</ci>
<apply>
<divide/>
<apply>
<plus/>
<apply>
<times/>
<cn cellml:units="per_ms">0.49124</cn>
<apply>
<exp/>
<apply>
<times/>
<cn cellml:units="dimensionless">0.08032</cn>
<apply>
<minus/>
<apply>
<plus/>
<ci>V</ci>
<cn cellml:units="mV">5.476</cn>
</apply>
<ci>E_K1</ci>
</apply>
</apply>
</apply>
</apply>
<apply>
<exp/>
<apply>
<times/>
<cn cellml:units="dimensionless">0.06175</cn>
<apply>
<minus/>
<ci>V</ci>
<apply>
<plus/>
<ci>E_K1</ci>
<cn cellml:units="mV">594.31</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<plus/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<exp/>
<apply>
<times/>
<apply>
<minus/>
<cn cellml:units="per_mV">0.5143</cn>
</apply>
<apply>
<plus/>
<apply>
<minus/>
<ci>V</ci>
<ci>E_K1</ci>
</apply>
<cn cellml:units="mV">4.753</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>K1_infinity</ci>
<apply>
<divide/>
<ci>alpha_K1</ci>
<apply>
<plus/>
<ci>alpha_K1</ci>
<ci>beta_K1</ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="plateau_potassium_current">
<variable units="uA_per_mm2" public_interface="out" name="i_Kp"/>
<variable units="mV" name="E_Kp"/>
<variable units="mS_per_mm2" name="g_Kp" initial_value="8.28e-5"/>
<variable units="dimensionless" name="Kp"/>
<variable units="ms" public_interface="in" name="time"/>
<variable units="mV" public_interface="in" name="V"/>
<variable units="mV" public_interface="in" name="E_K1"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<ci>E_Kp</ci>
<ci>E_K1</ci>
</apply>
<apply>
<eq/>
<ci>Kp</ci>
<apply>
<divide/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<plus/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<minus/>
<cn cellml:units="mV">7.488</cn>
<ci>V</ci>
</apply>
<cn cellml:units="mV">5.98</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>i_Kp</ci>
<apply>
<times/>
<ci>g_Kp</ci>
<ci>Kp</ci>
<apply>
<minus/>
<ci>V</ci>
<ci>E_Kp</ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="Na_Ca_exchanger">
<variable units="uA_per_mm2" public_interface="out" name="i_NaCa"/>
<variable units="uA_per_mm2" name="k_NaCa" initial_value="50"/>
<variable units="mM" name="K_mNa" initial_value="87.5"/>
<variable units="mM" name="K_mCa" initial_value="1.38"/>
<variable units="dimensionless" name="k_sat" initial_value="0.1"/>
<variable units="dimensionless" name="eta" initial_value="0.35"/>
<variable units="ms" public_interface="in" name="time"/>
<variable units="mV" public_interface="in" name="V"/>
<variable units="gas_constant_units" public_interface="in" name="R"/>
<variable units="kelvin" public_interface="in" name="T"/>
<variable units="faradays_constant_units" public_interface="in" name="F"/>
<variable units="mM" public_interface="in" name="Nai"/>
<variable units="mM" public_interface="in" name="Nao"/>
<variable units="mM" public_interface="in" name="Cai"/>
<variable units="mM" public_interface="in" name="Cao"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<ci>i_NaCa</ci>
<apply>
<times/>
<apply>
<divide/>
<apply>
<times/>
<apply>
<divide/>
<apply>
<times/>
<apply>
<divide/>
<apply>
<times/>
<ci>k_NaCa</ci>
<cn cellml:units="dimensionless">1</cn>
</apply>
<apply>
<plus/>
<apply>
<power/>
<ci>K_mNa</ci>
<cn cellml:units="dimensionless">3</cn>
</apply>
<apply>
<power/>
<ci>Nao</ci>
<cn cellml:units="dimensionless">3</cn>
</apply>
</apply>
</apply>
<cn cellml:units="dimensionless">1</cn>
</apply>
<apply>
<plus/>
<ci>K_mCa</ci>
<ci>Cao</ci>
</apply>
</apply>
<cn cellml:units="dimensionless">1</cn>
</apply>
<apply>
<plus/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<times/>
<ci>k_sat</ci>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<times/>
<apply>
<minus/>
<ci>eta</ci>
<cn cellml:units="dimensionless">1</cn>
</apply>
<ci>V</ci>
<ci>F</ci>
</apply>
<apply>
<times/>
<ci>R</ci>
<ci>T</ci>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<minus/>
<apply>
<times/>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<times/>
<ci>eta</ci>
<ci>V</ci>
<ci>F</ci>
</apply>
<apply>
<times/>
<ci>R</ci>
<ci>T</ci>
</apply>
</apply>
</apply>
<apply>
<power/>
<ci>Nai</ci>
<cn cellml:units="dimensionless">3</cn>
</apply>
<ci>Cao</ci>
</apply>
<apply>
<times/>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<times/>
<apply>
<minus/>
<ci>eta</ci>
<cn cellml:units="dimensionless">1</cn>
</apply>
<ci>V</ci>
<ci>F</ci>
</apply>
<apply>
<times/>
<ci>R</ci>
<ci>T</ci>
</apply>
</apply>
</apply>
<apply>
<power/>
<ci>Nao</ci>
<cn cellml:units="dimensionless">3</cn>
</apply>
<ci>Cai</ci>
</apply>
</apply>
</apply>
</apply>
</math>
</component>
<component name="sarcolemmal_calcium_pump">
<variable units="uA_per_mm2" public_interface="out" name="i_p_Ca"/>
<variable units="mM" name="K_mpCa" initial_value="0.5e-3"/>
<variable units="uA_per_mm2" name="I_pCa" initial_value="1.15e-2"/>
<variable units="ms" public_interface="in" name="time"/>
<variable units="mM" public_interface="in" name="Cai"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<ci>i_p_Ca</ci>
<apply>
<divide/>
<apply>
<times/>
<ci>I_pCa</ci>
<ci>Cai</ci>
</apply>
<apply>
<plus/>
<ci>K_mpCa</ci>
<ci>Cai</ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="sodium_background_current">
<variable units="uA_per_mm2" public_interface="out" name="i_Na_b"/>
<variable units="mS_per_mm2" name="g_Nab" initial_value="1.41e-5"/>
<variable units="mV" name="E_NaN"/>
<variable units="ms" public_interface="in" name="time"/>
<variable units="mV" public_interface="in" name="V"/>
<variable units="mV" public_interface="in" name="E_Na"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<ci>E_NaN</ci>
<ci>E_Na</ci>
</apply>
<apply>
<eq/>
<ci>i_Na_b</ci>
<apply>
<times/>
<ci>g_Nab</ci>
<apply>
<minus/>
<ci>V</ci>
<ci>E_NaN</ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="calcium_background_current">
<variable units="uA_per_mm2" public_interface="out" name="i_Ca_b"/>
<variable units="mS_per_mm2" name="g_Cab" initial_value="6.032e-5"/>
<variable units="mV" name="E_CaN"/>
<variable units="ms" public_interface="in" name="time"/>
<variable units="mV" public_interface="in" name="V"/>
<variable units="gas_constant_units" public_interface="in" name="R"/>
<variable units="kelvin" public_interface="in" name="T"/>
<variable units="faradays_constant_units" public_interface="in" name="F"/>
<variable units="mM" public_interface="in" name="Cai"/>
<variable units="mM" public_interface="in" name="Cao"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<ci>E_CaN</ci>
<apply>
<times/>
<apply>
<divide/>
<apply>
<times/>
<ci>R</ci>
<ci>T</ci>
</apply>
<apply>
<times/>
<cn cellml:units="dimensionless">2</cn>
<ci>F</ci>
</apply>
</apply>
<apply>
<ln/>
<apply>
<divide/>
<ci>Cao</ci>
<ci>Cai</ci>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>i_Ca_b</ci>
<apply>
<times/>
<ci>g_Cab</ci>
<apply>
<minus/>
<ci>V</ci>
<ci>E_CaN</ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="sodium_potassium_pump">
<variable units="uA_per_mm2" public_interface="out" name="i_NaK"/>
<variable units="uA_per_mm2" name="I_NaK" initial_value="0.013"/>
<variable units="dimensionless" name="f_NaK"/>
<variable units="mM" name="K_mNai" initial_value="10"/>
<variable units="mM" name="K_mKo" initial_value="1.5"/>
<variable units="dimensionless" name="sigma"/>
<variable units="ms" public_interface="in" name="time"/>
<variable units="mV" public_interface="in" name="V"/>
<variable units="gas_constant_units" public_interface="in" name="R"/>
<variable units="kelvin" public_interface="in" name="T"/>
<variable units="faradays_constant_units" public_interface="in" name="F"/>
<variable units="mM" public_interface="in" name="Nai"/>
<variable units="mM" public_interface="in" name="Nao"/>
<variable units="mM" public_interface="in" name="Ko"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<ci>f_NaK</ci>
<apply>
<divide/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<plus/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<times/>
<cn cellml:units="dimensionless">0.1245</cn>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<times/>
<apply>
<minus/>
<cn cellml:units="dimensionless">0.1</cn>
</apply>
<ci>V</ci>
<ci>F</ci>
</apply>
<apply>
<times/>
<ci>R</ci>
<ci>T</ci>
</apply>
</apply>
</apply>
</apply>
<apply>
<times/>
<cn cellml:units="dimensionless">0.0365</cn>
<ci>sigma</ci>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<times/>
<apply>
<minus/>
<ci>V</ci>
</apply>
<ci>F</ci>
</apply>
<apply>
<times/>
<ci>R</ci>
<ci>T</ci>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>sigma</ci>
<apply>
<times/>
<apply>
<divide/>
<cn cellml:units="dimensionless">1</cn>
<cn cellml:units="dimensionless">7</cn>
</apply>
<apply>
<minus/>
<apply>
<exp/>
<apply>
<divide/>
<ci>Nao</ci>
<cn cellml:units="dimensionless">67.3</cn>
</apply>
</apply>
<cn cellml:units="dimensionless">1</cn>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>i_NaK</ci>
<apply>
<divide/>
<apply>
<times/>
<apply>
<divide/>
<apply>
<times/>
<ci>I_NaK</ci>
<ci>f_NaK</ci>
<cn cellml:units="dimensionless">1</cn>
</apply>
<apply>
<plus/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<power/>
<apply>
<divide/>
<ci>K_mNai</ci>
<ci>Nai</ci>
</apply>
<cn cellml:units="dimensionless">1.5</cn>
</apply>
</apply>
</apply>
<ci>Ko</ci>
</apply>
<apply>
<plus/>
<ci>Ko</ci>
<ci>K_mKo</ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="non_specific_calcium_activated_current">
<variable units="uA_per_mm2" public_interface="out" name="i_ns_Ca"/>
<variable units="uA_per_mm2" public_interface="out" name="i_ns_Na"/>
<variable units="uA_per_mm2" public_interface="out" name="i_ns_K"/>
<variable units="uA_per_mm2" name="I_ns_Na"/>
<variable units="uA_per_mm2" name="I_ns_K"/>
<variable units="mM" name="K_m_ns_Ca" initial_value="1.2e-3"/>
<variable units="mm_per_ms" name="P_ns_Ca" initial_value="1.75e-9"/>
<variable units="mV" name="EnsCa"/>
<variable units="mV" name="VnsCa"/>
<variable units="ms" public_interface="in" name="time"/>
<variable units="mM" public_interface="in" name="Cai"/>
<variable units="mV" public_interface="in" name="V"/>
<variable units="gas_constant_units" public_interface="in" name="R"/>
<variable units="kelvin" public_interface="in" name="T"/>
<variable units="faradays_constant_units" public_interface="in" name="F"/>
<variable units="mM" public_interface="in" name="Nao"/>
<variable units="mM" public_interface="in" name="Ko"/>
<variable units="mM" public_interface="in" name="Nai"/>
<variable units="mM" public_interface="in" name="Ki"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<ci>EnsCa</ci>
<apply>
<times/>
<apply>
<divide/>
<apply>
<times/>
<ci>R</ci>
<ci>T</ci>
</apply>
<ci>F</ci>
</apply>
<apply>
<ln/>
<apply>
<divide/>
<apply>
<plus/>
<ci>Ko</ci>
<ci>Nao</ci>
</apply>
<apply>
<plus/>
<ci>Ki</ci>
<ci>Nai</ci>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>VnsCa</ci>
<apply>
<minus/>
<ci>V</ci>
<ci>EnsCa</ci>
</apply>
</apply>
<apply>
<eq/>
<ci>i_ns_Na</ci>
<apply>
<divide/>
<apply>
<times/>
<ci>I_ns_Na</ci>
<cn cellml:units="dimensionless">1</cn>
</apply>
<apply>
<plus/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<power/>
<apply>
<divide/>
<ci>K_m_ns_Ca</ci>
<ci>Cai</ci>
</apply>
<cn cellml:units="dimensionless">3</cn>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>i_ns_K</ci>
<apply>
<divide/>
<apply>
<times/>
<ci>I_ns_K</ci>
<cn cellml:units="dimensionless">1</cn>
</apply>
<apply>
<plus/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<power/>
<apply>
<divide/>
<ci>K_m_ns_Ca</ci>
<ci>Cai</ci>
</apply>
<cn cellml:units="dimensionless">3</cn>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>i_ns_Ca</ci>
<apply>
<plus/>
<ci>i_ns_Na</ci>
<ci>i_ns_K</ci>
</apply>
</apply>
<apply>
<eq/>
<ci>I_ns_Na</ci>
<apply>
<divide/>
<apply>
<times/>
<apply>
<divide/>
<apply>
<times/>
<ci>P_ns_Ca</ci>
<apply>
<power/>
<cn cellml:units="dimensionless">1</cn>
<cn cellml:units="dimensionless">2</cn>
</apply>
<ci>VnsCa</ci>
<apply>
<power/>
<ci>F</ci>
<cn cellml:units="dimensionless">2</cn>
</apply>
</apply>
<apply>
<times/>
<ci>R</ci>
<ci>T</ci>
</apply>
</apply>
<apply>
<minus/>
<apply>
<times/>
<cn cellml:units="dimensionless">0.75</cn>
<ci>Nai</ci>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<times/>
<ci>VnsCa</ci>
<ci>F</ci>
</apply>
<apply>
<times/>
<ci>R</ci>
<ci>T</ci>
</apply>
</apply>
</apply>
</apply>
<apply>
<times/>
<cn cellml:units="dimensionless">0.75</cn>
<ci>Nao</ci>
</apply>
</apply>
</apply>
<apply>
<minus/>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<times/>
<ci>VnsCa</ci>
<ci>F</ci>
</apply>
<apply>
<times/>
<ci>R</ci>
<ci>T</ci>
</apply>
</apply>
</apply>
<cn cellml:units="dimensionless">1</cn>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>I_ns_K</ci>
<apply>
<divide/>
<apply>
<times/>
<apply>
<divide/>
<apply>
<times/>
<ci>P_ns_Ca</ci>
<apply>
<power/>
<cn cellml:units="dimensionless">1</cn>
<cn cellml:units="dimensionless">2</cn>
</apply>
<ci>VnsCa</ci>
<apply>
<power/>
<ci>F</ci>
<cn cellml:units="dimensionless">2</cn>
</apply>
</apply>
<apply>
<times/>
<ci>R</ci>
<ci>T</ci>
</apply>
</apply>
<apply>
<minus/>
<apply>
<times/>
<cn cellml:units="dimensionless">0.75</cn>
<ci>Ki</ci>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<times/>
<ci>VnsCa</ci>
<ci>F</ci>
</apply>
<apply>
<times/>
<ci>R</ci>
<ci>T</ci>
</apply>
</apply>
</apply>
</apply>
<apply>
<times/>
<cn cellml:units="dimensionless">0.75</cn>
<ci>Ko</ci>
</apply>
</apply>
</apply>
<apply>
<minus/>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<times/>
<ci>VnsCa</ci>
<ci>F</ci>
</apply>
<apply>
<times/>
<ci>R</ci>
<ci>T</ci>
</apply>
</apply>
</apply>
<cn cellml:units="dimensionless">1</cn>
</apply>
</apply>
</apply>
</math>
</component>
<component name="calcium_subsystem">
<variable units="mM" public_interface="out" name="Cai" initial_value="9.94893e-11"/>
<variable units="mM" public_interface="out" name="Ca_SS" initial_value="1.36058e-4"/>
<variable units="per_mm" public_interface="out" name="Am" initial_value="546.69"/>
<variable units="dimensionless" public_interface="out" name="V_myo" initial_value="0.92"/>
<variable units="dimensionless" name="RyR_open"/>
<variable units="dimensionless" name="P_O1" initial_value="1.19168e-3"/>
<variable units="dimensionless" name="P_O2" initial_value="6.30613e-9"/>
<variable units="dimensionless" name="P_C1" initial_value="0.762527"/>
<variable units="dimensionless" name="P_C2" initial_value="0.236283"/>
<variable units="per_ms" name="v1" initial_value="1.8"/>
<variable units="per_ms" name="v2" initial_value="0.58e-4"/>
<variable units="mM_per_ms" name="v3" initial_value="1.8e-3"/>
<variable units="dimensionless" name="nCa" initial_value="4"/>
<variable units="dimensionless" name="mCa" initial_value="3"/>
<variable units="per_mM4_per_ms" name="k_a_plus" initial_value="1.215e10"/>
<variable units="per_ms" name="k_a_minus" initial_value="0.1425"/>
<variable units="per_mM3_per_ms" name="k_b_plus" initial_value="4.05e7"/>
<variable units="per_ms" name="k_b_minus" initial_value="1.93"/>
<variable units="per_ms" name="k_c_plus" initial_value="0.018"/>
<variable units="per_ms" name="k_c_minus" initial_value="0.0008"/>
<variable units="per_mM_per_ms" name="k_htrpn_plus" initial_value="20"/>
<variable units="per_ms" name="k_htrpn_minus" initial_value="0.066e-3"/>
<variable units="per_mM_per_ms" name="k_ltrpn_plus" initial_value="40"/>
<variable units="per_ms" name="k_ltrpn_minus" initial_value="0.04"/>
<variable units="ms" name="tau_tr" initial_value="34.48"/>
<variable units="mM" name="Ca_JSR" initial_value="1.17504"/>
<variable units="mM" name="Ca_NSR" initial_value="1.243891"/>
<variable units="dimensionless" name="V_JSR"/>
<variable units="dimensionless" name="V_NSR"/>
<variable units="dimensionless" name="V_SS"/>
<variable units="mM" name="K_mup" initial_value="0.5e-3"/>
<variable units="mM" name="K_mCMDN" initial_value="2.38e-3"/>
<variable units="mM" name="K_mCSQN" initial_value="0.8"/>
<variable units="ms" name="tau_xfer" initial_value="3.125"/>
<variable units="mM" name="HTRPN_tot" initial_value="0.14"/>
<variable units="mM" name="LTRPN_tot" initial_value="0.07"/>
<variable units="mM" name="HTRPNCa" initial_value="0.13598"/>
<variable units="mM" name="LTRPNCa" initial_value="0.00635"/>
<variable units="mM" name="CSQN_tot" initial_value="15"/>
<variable units="mM" name="CMDN_tot" initial_value="0.05"/>
<variable units="dimensionless" name="Bi"/>
<variable units="dimensionless" name="B_SS"/>
<variable units="dimensionless" name="B_JSR"/>
<variable units="mM_per_ms" name="J_rel"/>
<variable units="mM_per_ms" name="J_leak"/>
<variable units="mM_per_ms" name="J_up"/>
<variable units="mM_per_ms" name="J_tr"/>
<variable units="mM_per_ms" name="J_xfer"/>
<variable units="mM_per_ms" name="J_trpn"/>
<variable units="mM_per_ms" name="J_htrpn"/>
<variable units="mM_per_ms" name="J_ltrpn"/>
<variable units="ms" public_interface="in" name="time"/>
<variable units="faradays_constant_units" public_interface="in" name="F"/>
<variable units="uA_per_mm2" public_interface="in" name="i_Ca_b"/>
<variable units="uA_per_mm2" public_interface="in" name="i_Ca_L_Ca"/>
<variable units="uA_per_mm2" public_interface="in" name="i_NaCa"/>
<variable units="uA_per_mm2" public_interface="in" name="i_p_Ca"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<ci>V_SS</ci>
<apply>
<times/>
<cn cellml:units="dimensionless">5.828e-5</cn>
<ci>V_myo</ci>
</apply>
</apply>
<apply>
<eq/>
<ci>V_NSR</ci>
<apply>
<times/>
<cn cellml:units="dimensionless">0.081</cn>
<ci>V_myo</ci>
</apply>
</apply>
<apply>
<eq/>
<ci>V_JSR</ci>
<apply>
<times/>
<cn cellml:units="dimensionless">0.00464</cn>
<ci>V_myo</ci>
</apply>
</apply>
<apply>
<eq/>
<ci>J_rel</ci>
<apply>
<times/>
<ci>v1</ci>
<ci>RyR_open</ci>
<apply>
<minus/>
<ci>Ca_JSR</ci>
<ci>Ca_SS</ci>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>RyR_open</ci>
<apply>
<plus/>
<ci>P_O1</ci>
<ci>P_O2</ci>
</apply>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>P_C1</ci>
</apply>
<apply>
<plus/>
<apply>
<times/>
<apply>
<minus/>
<ci>k_a_plus</ci>
</apply>
<apply>
<power/>
<ci>Ca_SS</ci>
<ci>nCa</ci>
</apply>
<ci>P_C1</ci>
</apply>
<apply>
<times/>
<ci>k_a_minus</ci>
<ci>P_O1</ci>
</apply>
</apply>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>P_O1</ci>
</apply>
<apply>
<plus/>
<apply>
<minus/>
<apply>
<times/>
<ci>k_a_plus</ci>
<apply>
<power/>
<ci>Ca_SS</ci>
<ci>nCa</ci>
</apply>
<ci>P_C1</ci>
</apply>
<apply>
<plus/>
<apply>
<times/>
<ci>k_a_minus</ci>
<ci>P_O1</ci>
</apply>
<apply>
<times/>
<ci>k_b_plus</ci>
<apply>
<power/>
<ci>Ca_SS</ci>
<ci>mCa</ci>
</apply>
<ci>P_O1</ci>
</apply>
<apply>
<times/>
<ci>k_c_plus</ci>
<ci>P_O1</ci>
</apply>
</apply>
</apply>
<apply>
<times/>
<ci>k_b_minus</ci>
<ci>P_O2</ci>
</apply>
<apply>
<times/>
<ci>k_c_minus</ci>
<ci>P_C2</ci>
</apply>
</apply>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>P_O2</ci>
</apply>
<apply>
<minus/>
<apply>
<times/>
<ci>k_b_plus</ci>
<apply>
<power/>
<ci>Ca_SS</ci>
<ci>mCa</ci>
</apply>
<ci>P_O1</ci>
</apply>
<apply>
<times/>
<ci>k_b_minus</ci>
<ci>P_O2</ci>
</apply>
</apply>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>P_C2</ci>
</apply>
<apply>
<minus/>
<apply>
<times/>
<ci>k_c_plus</ci>
<ci>P_O1</ci>
</apply>
<apply>
<times/>
<ci>k_c_minus</ci>
<ci>P_C2</ci>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>J_leak</ci>
<apply>
<times/>
<ci>v2</ci>
<apply>
<minus/>
<ci>Ca_NSR</ci>
<ci>Cai</ci>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>J_up</ci>
<apply>
<divide/>
<apply>
<times/>
<ci>v3</ci>
<apply>
<power/>
<ci>Cai</ci>
<cn cellml:units="dimensionless">2</cn>
</apply>
</apply>
<apply>
<plus/>
<apply>
<power/>
<ci>K_mup</ci>
<cn cellml:units="dimensionless">2</cn>
</apply>
<apply>
<power/>
<ci>Cai</ci>
<cn cellml:units="dimensionless">2</cn>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>J_tr</ci>
<apply>
<divide/>
<apply>
<minus/>
<ci>Ca_NSR</ci>
<ci>Ca_JSR</ci>
</apply>
<ci>tau_tr</ci>
</apply>
</apply>
<apply>
<eq/>
<ci>J_xfer</ci>
<apply>
<divide/>
<apply>
<minus/>
<ci>Ca_SS</ci>
<ci>Cai</ci>
</apply>
<ci>tau_xfer</ci>
</apply>
</apply>
<apply>
<eq/>
<ci>J_htrpn</ci>
<apply>
<minus/>
<apply>
<times/>
<ci>k_htrpn_plus</ci>
<ci>Cai</ci>
<apply>
<minus/>
<ci>HTRPN_tot</ci>
<ci>HTRPNCa</ci>
</apply>
</apply>
<apply>
<times/>
<ci>k_htrpn_minus</ci>
<ci>HTRPNCa</ci>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>J_ltrpn</ci>
<apply>
<minus/>
<apply>
<times/>
<ci>k_ltrpn_plus</ci>
<ci>Cai</ci>
<apply>
<minus/>
<ci>LTRPN_tot</ci>
<ci>LTRPNCa</ci>
</apply>
</apply>
<apply>
<times/>
<ci>k_ltrpn_minus</ci>
<ci>LTRPNCa</ci>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>J_trpn</ci>
<apply>
<plus/>
<ci>J_htrpn</ci>
<ci>J_ltrpn</ci>
</apply>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>HTRPNCa</ci>
</apply>
<ci>J_htrpn</ci>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>LTRPNCa</ci>
</apply>
<ci>J_ltrpn</ci>
</apply>
<apply>
<eq/>
<ci>Bi</ci>
<apply>
<divide/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<plus/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<divide/>
<apply>
<times/>
<ci>CMDN_tot</ci>
<ci>K_mCMDN</ci>
</apply>
<apply>
<power/>
<apply>
<plus/>
<ci>K_mCMDN</ci>
<ci>Cai</ci>
</apply>
<cn cellml:units="dimensionless">2</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>B_SS</ci>
<apply>
<divide/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<plus/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<divide/>
<apply>
<times/>
<ci>CMDN_tot</ci>
<ci>K_mCMDN</ci>
</apply>
<apply>
<power/>
<apply>
<plus/>
<ci>K_mCMDN</ci>
<ci>Ca_SS</ci>
</apply>
<cn cellml:units="dimensionless">2</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>B_JSR</ci>
<apply>
<divide/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<plus/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<divide/>
<apply>
<times/>
<ci>CSQN_tot</ci>
<ci>K_mCSQN</ci>
</apply>
<apply>
<power/>
<apply>
<plus/>
<ci>K_mCSQN</ci>
<ci>Ca_JSR</ci>
</apply>
<cn cellml:units="dimensionless">2</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>Cai</ci>
</apply>
<apply>
<times/>
<ci>Bi</ci>
<apply>
<minus/>
<apply>
<plus/>
<ci>J_leak</ci>
<ci>J_xfer</ci>
</apply>
<apply>
<plus/>
<ci>J_up</ci>
<ci>J_trpn</ci>
<apply>
<divide/>
<apply>
<times/>
<apply>
<plus/>
<apply>
<minus/>
<ci>i_Ca_b</ci>
<apply>
<times/>
<cn cellml:units="dimensionless">2</cn>
<ci>i_NaCa</ci>
</apply>
</apply>
<ci>i_p_Ca</ci>
</apply>
<ci>Am</ci>
</apply>
<apply>
<times/>
<cn cellml:units="dimensionless">2</cn>
<ci>V_myo</ci>
<ci>F</ci>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>Ca_SS</ci>
</apply>
<apply>
<times/>
<ci>B_SS</ci>
<apply>
<minus/>
<apply>
<minus/>
<apply>
<divide/>
<apply>
<times/>
<ci>J_rel</ci>
<ci>V_JSR</ci>
</apply>
<ci>V_SS</ci>
</apply>
<apply>
<divide/>
<apply>
<times/>
<ci>J_xfer</ci>
<ci>V_myo</ci>
</apply>
<ci>V_SS</ci>
</apply>
</apply>
<apply>
<divide/>
<apply>
<times/>
<ci>i_Ca_L_Ca</ci>
<ci>Am</ci>
</apply>
<apply>
<times/>
<cn cellml:units="dimensionless">2</cn>
<ci>V_SS</ci>
<ci>F</ci>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>Ca_JSR</ci>
</apply>
<apply>
<times/>
<ci>B_JSR</ci>
<apply>
<minus/>
<ci>J_tr</ci>
<ci>J_rel</ci>
</apply>
</apply>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>Ca_NSR</ci>
</apply>
<apply>
<minus/>
<apply>
<divide/>
<apply>
<times/>
<apply>
<minus/>
<ci>J_up</ci>
<ci>J_leak</ci>
</apply>
<ci>V_myo</ci>
</apply>
<ci>V_NSR</ci>
</apply>
<apply>
<divide/>
<apply>
<times/>
<ci>J_tr</ci>
<ci>V_JSR</ci>
</apply>
<ci>V_NSR</ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="ionic_concentrations">
<variable units="mM" public_interface="out" name="Nai" initial_value="10.2042"/>
<variable units="mM" public_interface="out" name="Nao" initial_value="140"/>
<variable units="mM" public_interface="out" name="Ki" initial_value="143.727"/>
<variable units="mM" public_interface="out" name="Ko" initial_value="5.4"/>
<variable units="mM" public_interface="out" name="Cao" initial_value="1.8"/>
<variable units="ms" public_interface="in" name="time"/>
<variable units="faradays_constant_units" public_interface="in" name="F"/>
<variable units="uA_per_mm2" public_interface="in" name="i_Na"/>
<variable units="uA_per_mm2" public_interface="in" name="i_Na_b"/>
<variable units="uA_per_mm2" public_interface="in" name="i_ns_Na"/>
<variable units="uA_per_mm2" public_interface="in" name="i_NaCa"/>
<variable units="uA_per_mm2" public_interface="in" name="i_NaK"/>
<variable units="uA_per_mm2" public_interface="in" name="i_Ca_L_K"/>
<variable units="uA_per_mm2" public_interface="in" name="i_K"/>
<variable units="uA_per_mm2" public_interface="in" name="i_K1"/>
<variable units="uA_per_mm2" public_interface="in" name="i_Kp"/>
<variable units="uA_per_mm2" public_interface="in" name="i_ns_K"/>
<variable units="per_mm" public_interface="in" name="Am"/>
<variable units="dimensionless" public_interface="in" name="V_myo"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>Nai</ci>
</apply>
<apply>
<divide/>
<apply>
<times/>
<apply>
<minus/>
<apply>
<plus/>
<ci>i_Na</ci>
<ci>i_Na_b</ci>
<ci>i_ns_Na</ci>
<apply>
<times/>
<ci>i_NaCa</ci>
<cn cellml:units="dimensionless">3</cn>
</apply>
<apply>
<times/>
<ci>i_NaK</ci>
<cn cellml:units="dimensionless">3</cn>
</apply>
</apply>
</apply>
<ci>Am</ci>
</apply>
<apply>
<times/>
<ci>V_myo</ci>
<ci>F</ci>
</apply>
</apply>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>Ki</ci>
</apply>
<apply>
<divide/>
<apply>
<times/>
<apply>
<minus/>
<apply>
<plus/>
<ci>i_Ca_L_K</ci>
<ci>i_K</ci>
<ci>i_K1</ci>
<ci>i_Kp</ci>
<ci>i_ns_K</ci>
<apply>
<times/>
<apply>
<minus/>
<ci>i_NaK</ci>
</apply>
<cn cellml:units="dimensionless">2</cn>
</apply>
</apply>
</apply>
<ci>Am</ci>
</apply>
<apply>
<times/>
<ci>V_myo</ci>
<ci>F</ci>
</apply>
</apply>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>Ko</ci>
</apply>
<apply>
<divide/>
<apply>
<times/>
<apply>
<plus/>
<ci>i_Ca_L_K</ci>
<ci>i_K</ci>
<ci>i_K1</ci>
<ci>i_Kp</ci>
<ci>i_ns_K</ci>
<apply>
<times/>
<apply>
<minus/>
<ci>i_NaK</ci>
</apply>
<cn cellml:units="dimensionless">2</cn>
</apply>
</apply>
<ci>Am</ci>
</apply>
<apply>
<times/>
<ci>V_myo</ci>
<ci>F</ci>
</apply>
</apply>
</apply>
</math>
</component>
<component name="Myofilaments">
<variable units="ms" public_interface="in" name="time"/>
<variable units="dimensionless" public_interface="in" name="lambda"/>
<variable units="per_ms" public_interface="in" name="dlambdadt"/>
<variable units="mM" public_interface="in" name="Cai"/>
<variable units="N_per_mm2" name="Tref" initial_value="56.2"/>
<variable units="dimensionless" name="beta0" initial_value="4.9"/>
<variable units="dimensionless" name="a" initial_value="0.35"/>
<variable units="dimensionless" name="Q1" initial_value="0"/>
<variable units="dimensionless" name="Q2" initial_value="0"/>
<variable units="dimensionless" name="Q3" initial_value="0"/>
<variable units="dimensionless" name="A1" initial_value="-29"/>
<variable units="dimensionless" name="A2" initial_value="138"/>
<variable units="dimensionless" name="A3" initial_value="129"/>
<variable units="dimensionless" name="alpha1" initial_value="0.03"/>
<variable units="dimensionless" name="alpha2" initial_value="0.13"/>
<variable units="dimensionless" name="alpha3" initial_value="0.625"/>
<variable units="mM" name="Ca50ref" initial_value="1.05e-3"/>
<variable units="dimensionless" name="zp" initial_value="0.85"/>
<variable units="dimensionless" name="beta1" initial_value="-4"/>
<variable units="per_ms" name="alpha0" initial_value="8e-3"/>
<variable units="per_ms" name="alphar1" initial_value="2e-3"/>
<variable units="per_ms" name="alphar2" initial_value="1.75e-3"/>
<variable units="dimensionless" name="nRel" initial_value="3"/>
<variable units="dimensionless" name="Kz" initial_value="0.15"/>
<variable units="dimensionless" name="nHill" initial_value="3"/>
<variable units="per_mM_per_ms" name="kon" initial_value="100"/>
<variable units="per_ms" name="koff" initial_value="0.2"/>
<variable units="dimensionless" name="gamma_trpn" initial_value="2"/>
<variable units="mM" name="TRPN_tot" initial_value="0.07"/>
<variable units="N_per_mm2" name="T0"/>
<variable units="N_per_mm2" name="T0max"/>
<variable units="dimensionless" name="z" initial_value="0"/>
<variable units="dimensionless" name="z_max"/>
<variable units="dimensionless" name="Q"/>
<variable units="mM" name="Cab" initial_value="0"/>
<variable units="mM" name="Ca50"/>
<variable units="mM" name="CaTRPN50"/>
<variable units="dimensionless" name="K_2"/>
<variable units="dimensionless" name="K_1"/>
<variable units="N_per_mm2" name="Tension"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>Cab</ci>
</apply>
<apply>
<minus/>
<apply>
<times/>
<ci>kon</ci>
<ci>Cai</ci>
<apply>
<minus/>
<ci>TRPN_tot</ci>
<ci>Cab</ci>
</apply>
</apply>
<apply>
<times/>
<ci>koff</ci>
<apply>
<minus/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<divide/>
<ci>Tension</ci>
<apply>
<times/>
<ci>gamma_trpn</ci>
<ci>Tref</ci>
</apply>
</apply>
</apply>
<ci>Cab</ci>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>K_2</ci>
<apply>
<times/>
<apply>
<divide/>
<apply>
<times/>
<ci>alphar2</ci>
<apply>
<power/>
<ci>zp</ci>
<ci>nRel</ci>
</apply>
</apply>
<apply>
<plus/>
<apply>
<power/>
<ci>zp</ci>
<ci>nRel</ci>
</apply>
<apply>
<power/>
<ci>Kz</ci>
<ci>nRel</ci>
</apply>
</apply>
</apply>
<apply>
<minus/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<divide/>
<apply>
<times/>
<ci>nRel</ci>
<apply>
<power/>
<ci>Kz</ci>
<ci>nRel</ci>
</apply>
</apply>
<apply>
<plus/>
<apply>
<power/>
<ci>zp</ci>
<ci>nRel</ci>
</apply>
<apply>
<power/>
<ci>Kz</ci>
<ci>nRel</ci>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>K_1</ci>
<apply>
<divide/>
<apply>
<times/>
<ci>alphar2</ci>
<apply>
<power/>
<ci>zp</ci>
<apply>
<minus/>
<ci>nRel</ci>
<cn cellml:units="dimensionless">1</cn>
</apply>
</apply>
<ci>nRel</ci>
<apply>
<power/>
<ci>Kz</ci>
<ci>nRel</ci>
</apply>
</apply>
<apply>
<power/>
<apply>
<plus/>
<apply>
<power/>
<ci>zp</ci>
<ci>nRel</ci>
</apply>
<apply>
<power/>
<ci>Kz</ci>
<ci>nRel</ci>
</apply>
</apply>
<cn cellml:units="dimensionless">2</cn>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>z_max</ci>
<apply>
<divide/>
<apply>
<minus/>
<apply>
<divide/>
<ci>alpha0</ci>
<apply>
<power/>
<apply>
<divide/>
<ci>CaTRPN50</ci>
<ci>TRPN_tot</ci>
</apply>
<ci>nHill</ci>
</apply>
</apply>
<ci>K_2</ci>
</apply>
<apply>
<plus/>
<ci>alphar1</ci>
<ci>K_1</ci>
<apply>
<divide/>
<ci>alpha0</ci>
<apply>
<power/>
<apply>
<divide/>
<ci>CaTRPN50</ci>
<ci>TRPN_tot</ci>
</apply>
<ci>nHill</ci>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>Ca50</ci>
<apply>
<times/>
<ci>Ca50ref</ci>
<apply>
<plus/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<times/>
<ci>beta1</ci>
<apply>
<minus/>
<ci>lambda</ci>
<cn cellml:units="dimensionless">1</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>CaTRPN50</ci>
<apply>
<divide/>
<apply>
<times/>
<ci>Ca50</ci>
<ci>TRPN_tot</ci>
</apply>
<apply>
<plus/>
<ci>Ca50</ci>
<apply>
<times/>
<apply>
<divide/>
<ci>koff</ci>
<ci>kon</ci>
</apply>
<apply>
<minus/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<divide/>
<apply>
<times/>
<apply>
<plus/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<times/>
<ci>beta0</ci>
<apply>
<minus/>
<ci>lambda</ci>
<cn cellml:units="dimensionless">1</cn>
</apply>
</apply>
</apply>
<cn cellml:units="dimensionless">0.5</cn>
</apply>
<ci>gamma_trpn</ci>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>z</ci>
</apply>
<apply>
<plus/>
<apply>
<times/>
<ci>alpha0</ci>
<apply>
<power/>
<apply>
<divide/>
<ci>Cab</ci>
<ci>CaTRPN50</ci>
</apply>
<ci>nHill</ci>
</apply>
<apply>
<minus/>
<cn cellml:units="dimensionless">1</cn>
<ci>z</ci>
</apply>
</apply>
<apply>
<times/>
<apply>
<minus/>
<ci>z</ci>
</apply>
<ci>alphar1</ci>
</apply>
<apply>
<divide/>
<apply>
<times/>
<apply>
<minus/>
<ci>alphar2</ci>
</apply>
<apply>
<power/>
<ci>z</ci>
<ci>nRel</ci>
</apply>
</apply>
<apply>
<plus/>
<apply>
<power/>
<ci>z</ci>
<ci>nRel</ci>
</apply>
<apply>
<power/>
<ci>Kz</ci>
<ci>nRel</ci>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>T0max</ci>
<apply>
<times/>
<ci>Tref</ci>
<apply>
<plus/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<times/>
<ci>beta0</ci>
<apply>
<minus/>
<ci>lambda</ci>
<cn cellml:units="dimensionless">1</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>T0</ci>
<apply>
<divide/>
<apply>
<times/>
<ci>T0max</ci>
<ci>z</ci>
</apply>
<ci>z_max</ci>
</apply>
</apply>
<apply>
<eq/>
<ci>Tension</ci>
<piecewise>
<piece>
<apply>
<divide/>
<apply>
<times/>
<ci>T0</ci>
<apply>
<plus/>
<apply>
<times/>
<ci>a</ci>
<ci>Q</ci>
</apply>
<cn cellml:units="dimensionless">1</cn>
</apply>
</apply>
<apply>
<minus/>
<cn cellml:units="dimensionless">1</cn>
<ci>Q</ci>
</apply>
</apply>
<apply>
<lt/>
<ci>Q</ci>
<cn cellml:units="dimensionless">0</cn>
</apply>
</piece>
<otherwise>
<apply>
<divide/>
<apply>
<times/>
<ci>T0</ci>
<apply>
<minus/>
<cn cellml:units="dimensionless">1</cn>
<apply>
<times/>
<apply>
<plus/>
<ci>a</ci>
<cn cellml:units="dimensionless">2</cn>
</apply>
<ci>Q</ci>
</apply>
</apply>
</apply>
<apply>
<plus/>
<cn cellml:units="dimensionless">1</cn>
<ci>Q</ci>
</apply>
</apply>
</otherwise>
</piecewise>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>Q1</ci>
</apply>
<apply>
<minus/>
<apply>
<times/>
<ci>A1</ci>
<ci>dlambdadt</ci>
</apply>
<apply>
<times/>
<ci>alpha1</ci>
<ci>Q1</ci>
</apply>
</apply>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>Q2</ci>
</apply>
<apply>
<minus/>
<apply>
<times/>
<ci>A2</ci>
<ci>dlambdadt</ci>
</apply>
<apply>
<times/>
<ci>alpha2</ci>
<ci>Q2</ci>
</apply>
</apply>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>Q3</ci>
</apply>
<apply>
<minus/>
<apply>
<times/>
<ci>A3</ci>
<ci>dlambdadt</ci>
</apply>
<apply>
<times/>
<ci>alpha3</ci>
<ci>Q3</ci>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>Q</ci>
<apply>
<plus/>
<ci>Q1</ci>
<ci>Q2</ci>
<ci>Q3</ci>
</apply>
</apply>
</math>
</component>
<group>
<relationship_ref relationship="containment"/>
<component_ref component="membrane">
<component_ref component="fast_sodium_current">
<component_ref component="fast_sodium_current_m_gate"/>
<component_ref component="fast_sodium_current_h_gate"/>
<component_ref component="fast_sodium_current_j_gate"/>
</component_ref>
<component_ref component="L_type_Ca_channel">
<component_ref component="L_type_Ca_channel_y_gate"/>
</component_ref>
<component_ref component="time_dependent_potassium_current">
<component_ref component="time_dependent_potassium_current_X_gate"/>
<component_ref component="time_dependent_potassium_current_Xi_gate"/>
</component_ref>
<component_ref component="Na_Ca_exchanger"/>
<component_ref component="time_independent_potassium_current">
<component_ref component="time_independent_potassium_current_K1_gate"/>
</component_ref>
<component_ref component="plateau_potassium_current"/>
<component_ref component="sarcolemmal_calcium_pump"/>
<component_ref component="sodium_background_current"/>
<component_ref component="calcium_background_current"/>
<component_ref component="sodium_potassium_pump"/>
<component_ref component="non_specific_calcium_activated_current"/>
<component_ref component="calcium_subsystem"/>
<component_ref component="ionic_concentrations"/>
</component_ref>
</group>
<group>
<relationship_ref relationship="encapsulation"/>
<component_ref component="fast_sodium_current">
<component_ref component="fast_sodium_current_m_gate"/>
<component_ref component="fast_sodium_current_h_gate"/>
<component_ref component="fast_sodium_current_j_gate"/>
</component_ref>
<component_ref component="L_type_Ca_channel">
<component_ref component="L_type_Ca_channel_y_gate"/>
</component_ref>
<component_ref component="time_dependent_potassium_current">
<component_ref component="time_dependent_potassium_current_X_gate"/>
<component_ref component="time_dependent_potassium_current_Xi_gate"/>
</component_ref>
<component_ref component="time_independent_potassium_current">
<component_ref component="time_independent_potassium_current_K1_gate"/>
</component_ref>
</group>
<connection>
<map_components component_2="environment" component_1="membrane"/>
<map_variables variable_2="time" variable_1="time"/>
</connection>
<connection>
<map_components component_2="environment" component_1="fast_sodium_current"/>
<map_variables variable_2="time" variable_1="time"/>
</connection>
<connection>
<map_components component_2="environment" component_1="L_type_Ca_channel"/>
<map_variables variable_2="time" variable_1="time"/>
</connection>
<connection>
<map_components component_2="environment" component_1="time_dependent_potassium_current"/>
<map_variables variable_2="time" variable_1="time"/>
</connection>
<connection>
<map_components component_2="environment" component_1="Na_Ca_exchanger"/>
<map_variables variable_2="time" variable_1="time"/>
</connection>
<connection>
<map_components component_2="environment" component_1="time_independent_potassium_current"/>
<map_variables variable_2="time" variable_1="time"/>
</connection>
<connection>
<map_components component_2="environment" component_1="plateau_potassium_current"/>
<map_variables variable_2="time" variable_1="time"/>
</connection>
<connection>
<map_components component_2="environment" component_1="sarcolemmal_calcium_pump"/>
<map_variables variable_2="time" variable_1="time"/>
</connection>
<connection>
<map_components component_2="environment" component_1="sodium_background_current"/>
<map_variables variable_2="time" variable_1="time"/>
</connection>
<connection>
<map_components component_2="environment" component_1="calcium_background_current"/>
<map_variables variable_2="time" variable_1="time"/>
</connection>
<connection>
<map_components component_2="environment" component_1="sodium_potassium_pump"/>
<map_variables variable_2="time" variable_1="time"/>
</connection>
<connection>
<map_components component_2="environment" component_1="non_specific_calcium_activated_current"/>
<map_variables variable_2="time" variable_1="time"/>
</connection>
<connection>
<map_components component_2="environment" component_1="calcium_subsystem"/>
<map_variables variable_2="time" variable_1="time"/>
</connection>
<connection>
<map_components component_2="environment" component_1="ionic_concentrations"/>
<map_variables variable_2="time" variable_1="time"/>
</connection>
<connection>
<map_components component_2="environment" component_1="Myofilaments"/>
<map_variables variable_2="time" variable_1="time"/>
<map_variables variable_2="lambda" variable_1="lambda"/>
<map_variables variable_2="dlambdadt" variable_1="dlambdadt"/>
</connection>
<connection>
<map_components component_2="fast_sodium_current" component_1="membrane"/>
<map_variables variable_2="V" variable_1="V"/>
<map_variables variable_2="i_Na" variable_1="i_Na"/>
<map_variables variable_2="R" variable_1="R"/>
<map_variables variable_2="T" variable_1="T"/>
<map_variables variable_2="F" variable_1="F"/>
</connection>
<connection>
<map_components component_2="Myofilaments" component_1="calcium_subsystem"/>
<map_variables variable_2="Cai" variable_1="Cai"/>
</connection>
<connection>
<map_components component_2="L_type_Ca_channel" component_1="membrane"/>
<map_variables variable_2="V" variable_1="V"/>
<map_variables variable_2="i_Ca_L_Ca" variable_1="i_Ca_L_Ca"/>
<map_variables variable_2="i_Ca_L_K" variable_1="i_Ca_L_K"/>
<map_variables variable_2="R" variable_1="R"/>
<map_variables variable_2="T" variable_1="T"/>
<map_variables variable_2="F" variable_1="F"/>
</connection>
<connection>
<map_components component_2="time_dependent_potassium_current" component_1="membrane"/>
<map_variables variable_2="V" variable_1="V"/>
<map_variables variable_2="i_K" variable_1="i_K"/>
<map_variables variable_2="R" variable_1="R"/>
<map_variables variable_2="T" variable_1="T"/>
<map_variables variable_2="F" variable_1="F"/>
</connection>
<connection>
<map_components component_2="Na_Ca_exchanger" component_1="membrane"/>
<map_variables variable_2="V" variable_1="V"/>
<map_variables variable_2="i_NaCa" variable_1="i_NaCa"/>
<map_variables variable_2="R" variable_1="R"/>
<map_variables variable_2="T" variable_1="T"/>
<map_variables variable_2="F" variable_1="F"/>
</connection>
<connection>
<map_components component_2="time_independent_potassium_current" component_1="membrane"/>
<map_variables variable_2="V" variable_1="V"/>
<map_variables variable_2="i_K1" variable_1="i_K1"/>
<map_variables variable_2="R" variable_1="R"/>
<map_variables variable_2="T" variable_1="T"/>
<map_variables variable_2="F" variable_1="F"/>
</connection>
<connection>
<map_components component_2="plateau_potassium_current" component_1="membrane"/>
<map_variables variable_2="V" variable_1="V"/>
<map_variables variable_2="i_Kp" variable_1="i_Kp"/>
</connection>
<connection>
<map_components component_2="sarcolemmal_calcium_pump" component_1="membrane"/>
<map_variables variable_2="i_p_Ca" variable_1="i_p_Ca"/>
</connection>
<connection>
<map_components component_2="sodium_background_current" component_1="membrane"/>
<map_variables variable_2="V" variable_1="V"/>
<map_variables variable_2="i_Na_b" variable_1="i_Na_b"/>
</connection>
<connection>
<map_components component_2="calcium_background_current" component_1="membrane"/>
<map_variables variable_2="V" variable_1="V"/>
<map_variables variable_2="i_Ca_b" variable_1="i_Ca_b"/>
<map_variables variable_2="R" variable_1="R"/>
<map_variables variable_2="T" variable_1="T"/>
<map_variables variable_2="F" variable_1="F"/>
</connection>
<connection>
<map_components component_2="sodium_potassium_pump" component_1="membrane"/>
<map_variables variable_2="V" variable_1="V"/>
<map_variables variable_2="i_NaK" variable_1="i_NaK"/>
<map_variables variable_2="R" variable_1="R"/>
<map_variables variable_2="T" variable_1="T"/>
<map_variables variable_2="F" variable_1="F"/>
</connection>
<connection>
<map_components component_2="non_specific_calcium_activated_current" component_1="membrane"/>
<map_variables variable_2="V" variable_1="V"/>
<map_variables variable_2="i_ns_Ca" variable_1="i_ns_Ca"/>
<map_variables variable_2="R" variable_1="R"/>
<map_variables variable_2="T" variable_1="T"/>
<map_variables variable_2="F" variable_1="F"/>
</connection>
<connection>
<map_components component_2="calcium_subsystem" component_1="membrane"/>
<map_variables variable_2="F" variable_1="F"/>
</connection>
<connection>
<map_components component_2="ionic_concentrations" component_1="membrane"/>
<map_variables variable_2="F" variable_1="F"/>
</connection>
<connection>
<map_components component_2="ionic_concentrations" component_1="fast_sodium_current"/>
<map_variables variable_2="Nai" variable_1="Nai"/>
<map_variables variable_2="Nao" variable_1="Nao"/>
<map_variables variable_2="i_Na" variable_1="i_Na"/>
</connection>
<connection>
<map_components component_2="sodium_background_current" component_1="fast_sodium_current"/>
<map_variables variable_2="E_Na" variable_1="E_Na"/>
</connection>
<connection>
<map_components component_2="calcium_subsystem" component_1="L_type_Ca_channel"/>
<map_variables variable_2="Ca_SS" variable_1="Ca_SS"/>
<map_variables variable_2="i_Ca_L_Ca" variable_1="i_Ca_L_Ca"/>
</connection>
<connection>
<map_components component_2="ionic_concentrations" component_1="L_type_Ca_channel"/>
<map_variables variable_2="i_Ca_L_K" variable_1="i_Ca_L_K"/>
<map_variables variable_2="Ki" variable_1="Ki"/>
<map_variables variable_2="Ko" variable_1="Ko"/>
<map_variables variable_2="Cao" variable_1="Cao"/>
</connection>
<connection>
<map_components component_2="ionic_concentrations" component_1="time_dependent_potassium_current"/>
<map_variables variable_2="Ki" variable_1="Ki"/>
<map_variables variable_2="Ko" variable_1="Ko"/>
<map_variables variable_2="Nao" variable_1="Nao"/>
<map_variables variable_2="Nai" variable_1="Nai"/>
<map_variables variable_2="i_K" variable_1="i_K"/>
</connection>
<connection>
<map_components component_2="ionic_concentrations" component_1="Na_Ca_exchanger"/>
<map_variables variable_2="Cao" variable_1="Cao"/>
<map_variables variable_2="Nai" variable_1="Nai"/>
<map_variables variable_2="Nao" variable_1="Nao"/>
<map_variables variable_2="i_NaCa" variable_1="i_NaCa"/>
</connection>
<connection>
<map_components component_2="calcium_subsystem" component_1="Na_Ca_exchanger"/>
<map_variables variable_2="Cai" variable_1="Cai"/>
<map_variables variable_2="i_NaCa" variable_1="i_NaCa"/>
</connection>
<connection>
<map_components component_2="ionic_concentrations" component_1="time_independent_potassium_current"/>
<map_variables variable_2="Ki" variable_1="Ki"/>
<map_variables variable_2="Ko" variable_1="Ko"/>
<map_variables variable_2="i_K1" variable_1="i_K1"/>
</connection>
<connection>
<map_components component_2="time_independent_potassium_current" component_1="plateau_potassium_current"/>
<map_variables variable_2="E_K1" variable_1="E_K1"/>
</connection>
<connection>
<map_components component_2="ionic_concentrations" component_1="plateau_potassium_current"/>
<map_variables variable_2="i_Kp" variable_1="i_Kp"/>
</connection>
<connection>
<map_components component_2="ionic_concentrations" component_1="sodium_background_current"/>
<map_variables variable_2="i_Na_b" variable_1="i_Na_b"/>
</connection>
<connection>
<map_components component_2="calcium_subsystem" component_1="sarcolemmal_calcium_pump"/>
<map_variables variable_2="i_p_Ca" variable_1="i_p_Ca"/>
<map_variables variable_2="Cai" variable_1="Cai"/>
</connection>
<connection>
<map_components component_2="calcium_subsystem" component_1="calcium_background_current"/>
<map_variables variable_2="Cai" variable_1="Cai"/>
<map_variables variable_2="i_Ca_b" variable_1="i_Ca_b"/>
</connection>
<connection>
<map_components component_2="ionic_concentrations" component_1="calcium_background_current"/>
<map_variables variable_2="Cao" variable_1="Cao"/>
</connection>
<connection>
<map_components component_2="ionic_concentrations" component_1="sodium_potassium_pump"/>
<map_variables variable_2="Nai" variable_1="Nai"/>
<map_variables variable_2="Nao" variable_1="Nao"/>
<map_variables variable_2="Ko" variable_1="Ko"/>
<map_variables variable_2="i_NaK" variable_1="i_NaK"/>
</connection>
<connection>
<map_components component_2="ionic_concentrations" component_1="non_specific_calcium_activated_current"/>
<map_variables variable_2="i_ns_Na" variable_1="i_ns_Na"/>
<map_variables variable_2="i_ns_K" variable_1="i_ns_K"/>
<map_variables variable_2="Nai" variable_1="Nai"/>
<map_variables variable_2="Nao" variable_1="Nao"/>
<map_variables variable_2="Ko" variable_1="Ko"/>
<map_variables variable_2="Ki" variable_1="Ki"/>
</connection>
<connection>
<map_components component_2="calcium_subsystem" component_1="non_specific_calcium_activated_current"/>
<map_variables variable_2="Cai" variable_1="Cai"/>
</connection>
<connection>
<map_components component_2="calcium_subsystem" component_1="ionic_concentrations"/>
<map_variables variable_2="Am" variable_1="Am"/>
<map_variables variable_2="V_myo" variable_1="V_myo"/>
</connection>
<connection>
<map_components component_2="fast_sodium_current_m_gate" component_1="fast_sodium_current"/>
<map_variables variable_2="m" variable_1="m"/>
<map_variables variable_2="time" variable_1="time"/>
<map_variables variable_2="V" variable_1="V"/>
</connection>
<connection>
<map_components component_2="fast_sodium_current_h_gate" component_1="fast_sodium_current"/>
<map_variables variable_2="h" variable_1="h"/>
<map_variables variable_2="time" variable_1="time"/>
<map_variables variable_2="V" variable_1="V"/>
</connection>
<connection>
<map_components component_2="fast_sodium_current_j_gate" component_1="fast_sodium_current"/>
<map_variables variable_2="j" variable_1="j"/>
<map_variables variable_2="time" variable_1="time"/>
<map_variables variable_2="V" variable_1="V"/>
</connection>
<connection>
<map_components component_2="L_type_Ca_channel_y_gate" component_1="L_type_Ca_channel"/>
<map_variables variable_2="y" variable_1="y"/>
<map_variables variable_2="time" variable_1="time"/>
<map_variables variable_2="V" variable_1="V"/>
</connection>
<connection>
<map_components component_2="time_dependent_potassium_current_X_gate" component_1="time_dependent_potassium_current"/>
<map_variables variable_2="X" variable_1="X"/>
<map_variables variable_2="time" variable_1="time"/>
<map_variables variable_2="V" variable_1="V"/>
</connection>
<connection>
<map_components component_2="time_dependent_potassium_current_Xi_gate" component_1="time_dependent_potassium_current"/>
<map_variables variable_2="Xi" variable_1="Xi"/>
<map_variables variable_2="time" variable_1="time"/>
<map_variables variable_2="V" variable_1="V"/>
</connection>
<connection>
<map_components component_2="time_independent_potassium_current_K1_gate" component_1="time_independent_potassium_current"/>
<map_variables variable_2="time" variable_1="time"/>
<map_variables variable_2="V" variable_1="V"/>
<map_variables variable_2="E_K1" variable_1="E_K1"/>
<map_variables variable_2="K1_infinity" variable_1="K1_infinity"/>
</connection>
<rdf:RDF>
<rdf:Seq rdf:about="rdf:#citationAuthorsSeq">
<rdf:li rdf:resource="rdf:#author1Vcard"/>
<rdf:li rdf:resource="rdf:#author2Vcard"/>
<rdf:li rdf:resource="rdf:#author3Vcard"/>
</rdf:Seq>
<rdf:Seq rdf:about="rdf:#334d97a2-c6ef-4098-a135-65e3c0a6a9b0">
<rdf:li rdf:resource="rdf:#a9300910-4e31-4efe-a600-4c328a30dd59"/>
<rdf:li rdf:resource="rdf:#dcb0ba5e-ff99-4875-956b-59e9c8138570"/>
<rdf:li rdf:resource="rdf:#78e399fb-5bcb-4628-b7b4-7910708980d1"/>
</rdf:Seq>
<rdf:Seq rdf:about="rdf:#87a92662-4c14-4eed-8413-202b6f799ed6">
<rdf:li rdf:resource="rdf:#9d07ed1c-a3b8-4cb0-a3b6-f7ea5632d91c"/>
<rdf:li rdf:resource="rdf:#3b43bd0a-30b8-4549-99f1-0a5be5b0e8bd"/>
<rdf:li rdf:resource="rdf:#27315f86-73fe-44a3-80d5-17943ee81513"/>
</rdf:Seq>
<rdf:Description rdf:about="rdf:#8845e476-c0c5-4d31-a07d-501ec259885e">
<rdf:value>
The sodium potassium pump is an active protein in the cell membrane
which couples the free energy released by the hydrolysis of ATP to
the movement of Na and K ions against their electrochemical
gradients through the cell membrane.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#L_type_Ca_channel_y_gate">
<cmeta:comment rdf:resource="rdf:#381202dd-b46a-4f25-a29b-f5fb8775c135"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#5845a0e2-5166-485a-8890-5f5ed5d38b27">
<rdf:value>
The total nonspecific calcium activated current.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#beta_h_calculation_eq">
<cmeta:comment rdf:resource="rdf:#f482e965-99de-48a1-9852-4c2d7ed54695"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#482f5aa5-751c-4f08-a861-f0012b5a46b6">
<rdf:value>
Calculation of the maximal channel conductance, dependent on
extracellular potassium concentration.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#3a228af7-a587-44ff-a2f8-3fb836f3ddbe">
<rdf:value>
The Na/Ca exchanger component describes how a protein molecule in
the cell surface membrane transports Na ions into the cytosol and
exports Ca ions into the extracellular volume, in a ratio of 3:1
respectively.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#381df5ee-2bac-4704-83f3-032825cce1ea">
<rdf:value>
The calcium background current describes a time-independent
diffusion of Ca ions down their electrochemical gradient through the
cell surface membrane into the cytosol. However, calcium is not
allowed to accumulate to high intracellular concentrations. This
influx is balanced by the Ca ion extrusion through the Na-Ca
exchanger and the sarcolemmal Ca pump.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#author3VcardN">
<vCard:Given>Raimond</vCard:Given>
<vCard:Family>Winslow</vCard:Family>
<vCard:Other>L</vCard:Other>
</rdf:Description>
<rdf:Description rdf:about="rdf:#9c32c531-ccd3-45f2-92aa-931008c32918">
<rdf:value>
Keep track of the concentration of calcium ions bound to high and
low affinity troponin binding sites.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#3688824b-0370-4c66-ac0d-66e02999062e">
<vCard:FN>James Lawson</vCard:FN>
</rdf:Description>
<rdf:Description rdf:about="#potassium_internal_diff_eq">
<cmeta:comment rdf:resource="rdf:#b2d117d3-c431-4efc-956c-62608568025c"/>
</rdf:Description>
<rdf:Description rdf:about="#E_K1_calculation_eq">
<cmeta:comment rdf:resource="rdf:#0369ac4e-eed4-49da-ae19-79542aa70493"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#aee41d98-40e6-4b37-843c-d37f7b7132d9">
<rdf:value>
The opening rate of the K1 gate.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#390c1948-87ea-4ad5-b84b-e66a3e842826">
<rdf:value>
The reversal potential for the background calcium current.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#I_ns_Na_max_calculation_eq">
<cmeta:comment rdf:resource="rdf:#835c7777-1095-4391-89ed-42f400cea57d"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#02790508-bb45-42b1-b6da-39202a32797c">
<rdf:value>
Calculation of the background calcium current.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#8d17d79c-9e87-4ff1-877c-cf4000b524fc">
<rdf:value>
Calculation of the maximal channel conductance, dependent on
extracellular potassium concentration.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#C0_diff_eq">
<cmeta:comment rdf:resource="rdf:#6c2141e9-882d-4886-962f-5a9b8afc349e"/>
</rdf:Description>
<rdf:Description rdf:about="#time_independent_potassium_current_K1_gate">
<cmeta:comment rdf:resource="rdf:#d4ed6796-21bc-4d5a-84d7-7d0f669c1d5e"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#09bc439b-1d42-4289-bad1-ada2102458ca">
<rdf:value>
The opening rate of the j gate.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#i_ns_Na_calculation_eq">
<cmeta:comment rdf:resource="rdf:#7cbd6926-4079-4627-aeb4-980877d15eca"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#763637ea-02c8-449d-8507-2f55a271cefd">
<vCard:Given>M</vCard:Given>
<vCard:Family>Jafri</vCard:Family>
<vCard:Other>Saleet</vCard:Other>
</rdf:Description>
<rdf:Description rdf:about="#i_Ca_L_Ca_calculation_eq">
<cmeta:comment rdf:resource="rdf:#53293fee-69c3-4129-8cee-9ee80381c4f8"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#7d147585-9321-4c13-b0d9-65e00347bcf5">
<vCard:Given>Catherine</vCard:Given>
<vCard:Family>Lloyd</vCard:Family>
<vCard:Other>May</vCard:Other>
</rdf:Description>
<rdf:Description rdf:about="rdf:#903f5c62-f8f7-4436-9a15-9a235803802d">
<rdf:value>
Calculate the translocation flux between the uptake (NSR) and
release (JSR) stores.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#J_htrpn_calculation_eq">
<cmeta:comment rdf:resource="rdf:#398816f5-c23b-4cf8-bac4-0528e4302905"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#a9300910-4e31-4efe-a600-4c328a30dd59">
<rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person"/>
<vCard:N rdf:resource="rdf:#763637ea-02c8-449d-8507-2f55a271cefd"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#21b6861a-2143-4c1b-a408-49b106284dbe">
<dcterms:W3CDTF>2003-07-30</dcterms:W3CDTF>
</rdf:Description>
<rdf:Description rdf:about="rdf:#257afbc7-f3ab-4fcb-b9d1-a7e592ed1877">
<vCard:N rdf:resource="rdf:#4dd9aa78-8ef7-4c9e-81f4-c1788f3ed068"/>
</rdf:Description>
<rdf:Description rdf:about="#K1_infinity_calculation_eq">
<cmeta:comment rdf:resource="rdf:#6cb2ccac-6d26-4142-bfea-c5f71bec19a7"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#952ad3db-d625-49c2-83c1-be70e9dc46bd">
<dcterms:modified rdf:resource="rdf:#26691a20-5078-45b0-bc43-ff8d704f6501"/>
<rdf:value>
Added some initial values from Penny Noble's documentation.
</rdf:value>
<cmeta:modifier rdf:resource="rdf:#3b7f1b20-e9b7-4a74-a776-5a6e53787c98"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#6ef85e73-a236-458b-a884-b9048c08a25c">
<rdf:value>
The time-dependent potassium current has an X^2 dependence on it's
activation gate, and an Xi inactivation gate. This channel is also
assumed permeable to sodium ions.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#eb0ea281-b5e1-4386-9d7a-ebeaa4ea9477">
<rdf:value>
The kinetics of the j gate.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#5210dece-3135-4c13-9a3e-b75a3d82ea67">
<rdf:value>
The kinetics of the y gate.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#J_tr_calculation_eq">
<cmeta:comment rdf:resource="rdf:#903f5c62-f8f7-4436-9a15-9a235803802d"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#d586f61f-418e-4c58-b02c-d2e6a2a57d3d">
<vCard:N rdf:resource="rdf:#7d147585-9321-4c13-b0d9-65e00347bcf5"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#238b37c0-734c-4302-a362-9308923fe95c">
<dcterms:W3CDTF>2002-01-04</dcterms:W3CDTF>
</rdf:Description>
<rdf:Description rdf:about="rdf:#5503cefb-15ec-4084-9f59-a87f88601ce3">
<rdf:value>
The kinetics of the transmembrane potential, defined as the sum of
all the sarcolemmal currents and an applied stimulus current.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#d598fa86-d150-4cfe-8468-b6187db28592">
<dc:creator rdf:resource="rdf:#87a92662-4c14-4eed-8413-202b6f799ed6"/>
<dc:title>A Quantitative Analysis of Cardiac Myocyte Relaxation:
A Simulation Study</dc:title>
<bqs:volume>90(5)</bqs:volume>
<bqs:first_page>1697</bqs:first_page>
<bqs:Journal rdf:resource="rdf:#8bbe9e5b-4943-48ec-9d0d-cb394f8510b7"/>
<dcterms:issued rdf:resource="rdf:#090940e6-a5f0-49d0-942f-37496bae9baa"/>
<bqs:last_page>1722</bqs:last_page>
</rdf:Description>
<rdf:Description rdf:about="rdf:#771db157-b564-4bfb-85cc-435c88aa252c">
<dc:creator rdf:resource="rdf:#3688824b-0370-4c66-ac0d-66e02999062e"/>
<rdf:value>This model contains both the JRW model and and also an embedded model of cardiac myocyte relaxation by Niederer, Hunter and Smith. This version has been curated by Penny Noble of Oxford University</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#2a82804c-14ac-4488-96b4-897538ff88fd">
<rdf:value>
The sarcolemmal calcium pump is an additional mechanism for removing
Ca ions from the myoplasm to help maintain a low intracellular
calcium concentration when at rest.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#4e609ca2-bc3f-4ed6-9eb3-4bf9e2cdc962">
<rdf:value>
Calculation of the Na/Ca exchanger current.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#g_K1_calculation_eq">
<cmeta:comment rdf:resource="rdf:#482f5aa5-751c-4f08-a861-f0012b5a46b6"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#d9656274-5cfc-49ed-a7d9-15c58e71313c">
<dc:creator rdf:resource="rdf:#334d97a2-c6ef-4098-a135-65e3c0a6a9b0"/>
<dc:title>Cardiac Ca2+ Dynamics: The Roles of Ryanodine Receptor Adaptation and Sarcoplasmic Reticulum Load</dc:title>
<bqs:volume>74</bqs:volume>
<bqs:first_page>1149</bqs:first_page>
<bqs:Journal rdf:resource="rdf:#015e6d19-3fb5-4cbb-9e6d-670446ac0cab"/>
<dcterms:issued rdf:resource="rdf:#0a675540-e772-48dd-bd48-8894733e3f8c"/>
<bqs:last_page>1168</bqs:last_page>
</rdf:Description>
<rdf:Description rdf:about="rdf:#554d1c26-d6f6-47e5-bb23-84be70838675">
<dcterms:modified rdf:resource="rdf:#bd11fa50-e8f0-4d3f-90ea-730f01895492"/>
<rdf:value>
Corrected several equations, variable units and their initial values.
</rdf:value>
<cmeta:modifier rdf:resource="rdf:#919037b1-961d-4081-93ac-a5f50d172ed8"/>
</rdf:Description>
<rdf:Description rdf:about="#E_CaN_calculation_eq">
<cmeta:comment rdf:resource="rdf:#390c1948-87ea-4ad5-b84b-e66a3e842826"/>
</rdf:Description>
<rdf:Description rdf:about="#i_Na_b_calculation_eq">
<cmeta:comment rdf:resource="rdf:#2eeac2c4-b1fd-4c67-9abc-062101ce6d2b"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#author1Vcard">
<rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person"/>
<vCard:N rdf:resource="rdf:#author1VcardN"/>
</rdf:Description>
<rdf:Description rdf:about="#membrane_voltage_diff_eq">
<cmeta:comment rdf:resource="rdf:#5503cefb-15ec-4084-9f59-a87f88601ce3"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#da9e53fa-43be-462f-9e62-f707ef6f7e19">
<dcterms:modified rdf:resource="rdf:#2775d603-cc9c-4d0d-8f6a-794b4c5c838c"/>
<rdf:value>
Corrected equations: alpha_j_calculation and beta_j_calculation in
fast_sodium_current_j_gate, alpha_X_calculation and beta_X_calculation in time_dependent_potassium_current_X_gate, and f_NaK_calculation and
i_NaK_calculation in Ca_release_current_from_JSR.
</rdf:value>
<cmeta:modifier rdf:resource="rdf:#cd120ba1-6c08-4ce5-98fb-f801a999d130"/>
</rdf:Description>
<rdf:Description rdf:about="#RyR_open_calculation_eq">
<cmeta:comment rdf:resource="rdf:#3d74ad55-3a32-4a31-a3ef-1da4d0955353"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#bd11fa50-e8f0-4d3f-90ea-730f01895492">
<dcterms:W3CDTF>2002-02-28</dcterms:W3CDTF>
</rdf:Description>
<rdf:Description rdf:about="rdf:#eb43b67c-82df-4898-809c-095bf82436f7">
<bqs:Pubmed_id>9512016</bqs:Pubmed_id>
<bqs:JournalArticle rdf:resource="rdf:#d9656274-5cfc-49ed-a7d9-15c58e71313c"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#243419e0-6d85-4733-9b4c-f8546f83b7a4">
<rdf:value>
Calculation of the potassium current component of the total channel
current.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#dm_dt_eq">
<cmeta:comment rdf:resource="rdf:#0a2d9210-8282-4cb8-ba81-57ba73f665c4"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#219f5ab0-c1bc-4800-99db-37938c290bd3">
<rdf:value>
Calculate the uptake flux into the NSR from the myoplasm.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#9744ad5e-875e-46a5-8a9c-b2c39cc30222">
<dcterms:modified rdf:resource="rdf:#f692acee-8164-4826-bc05-63a80b8146e5"/>
<rdf:value>
Changed tau_y_calculation after checking mathml using the validator.
</rdf:value>
<cmeta:modifier rdf:resource="rdf:#d586f61f-418e-4c58-b02c-d2e6a2a57d3d"/>
</rdf:Description>
<rdf:Description rdf:about="#HTRPNCa_diff_eq">
<cmeta:comment rdf:resource="rdf:#9c32c531-ccd3-45f2-92aa-931008c32918"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#dd0f94a1-be17-4d3c-bf38-7db4369c0bb7">
<rdf:value>
The kinetics of the calcium ion concentration changes in the various
compartments of the model.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#calcium_subsystem">
<cmeta:comment rdf:resource="rdf:#b19917af-867f-44ba-ab12-31486eab52de"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#0a675540-e772-48dd-bd48-8894733e3f8c">
<dcterms:W3CDTF>1998-03-01</dcterms:W3CDTF>
</rdf:Description>
<rdf:Description rdf:about="#time_dependent_potassium_current">
<cmeta:comment rdf:resource="rdf:#6ef85e73-a236-458b-a884-b9048c08a25c"/>
</rdf:Description>
<rdf:Description rdf:about="#Na_Ca_exchanger">
<cmeta:comment rdf:resource="rdf:#3a228af7-a587-44ff-a2f8-3fb836f3ddbe"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#13a28452-e692-483c-9aa7-02e6c73e7464">
<rdf:value>
Calcium is buffered by calmodulin (CMDN) in the subspace and
myoplasm, and by calsequestrin (CSQN) in the JSR. These are fast
buffers and their effect is modelled using the rapid buffering
approximation.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#potassium_external_diff_eq">
<cmeta:comment rdf:resource="rdf:#19e507f5-2e34-4938-ba36-ab0660d9a60f"/>
</rdf:Description>
<rdf:Description rdf:about="#f_NaK_calculation_eq">
<cmeta:comment rdf:resource="rdf:#f690db2d-eb3d-4974-a518-dc77ff82de98"/>
</rdf:Description>
<rdf:Description rdf:about="#fast_sodium_current_h_gate">
<cmeta:comment rdf:resource="rdf:#7bc72e28-d28c-4160-b5c3-f9aa39b2c081"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#86d5770b-672b-4dd4-a4c6-73015fb1641e">
<rdf:value>
This is a dummy equation that we simply use to make grabbing the
value in CMISS much easier.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#53293fee-69c3-4129-8cee-9ee80381c4f8">
<rdf:value>
Calculation of the calcium current component of the total channel
current, given as the maximal current multiplied by the
voltage-dependent inactivation gate and the open probability of the
channel based on the mode-switching model.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#J_xfer_calculation_eq">
<cmeta:comment rdf:resource="rdf:#9fc3abe3-2c03-4489-8e83-726c4a8131e6"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#f274ee1d-bbfa-42f0-b724-8d5b10d6d4dc">
<vCard:Given>S</vCard:Given>
<vCard:Family>Niederer</vCard:Family>
<vCard:Other>A</vCard:Other>
</rdf:Description>
<rdf:Description rdf:about="#alpha_X_calculation_eq">
<cmeta:comment rdf:resource="rdf:#bd9fdeb3-53d0-4e83-aef8-0442dd315536"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#f692acee-8164-4826-bc05-63a80b8146e5">
<dcterms:W3CDTF>2001-12-07</dcterms:W3CDTF>
</rdf:Description>
<rdf:Description rdf:about="#y_diff_eq">
<cmeta:comment rdf:resource="rdf:#5210dece-3135-4c13-9a3e-b75a3d82ea67"/>
</rdf:Description>
<rdf:Description rdf:about="#alpha_j_calculation_eq">
<cmeta:comment rdf:resource="rdf:#09bc439b-1d42-4289-bad1-ada2102458ca"/>
</rdf:Description>
<rdf:Description rdf:about="#calcium_internal_diff_eq">
<cmeta:comment rdf:resource="rdf:#dd0f94a1-be17-4d3c-bf38-7db4369c0bb7"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#8fef7c77-6810-4289-97d0-2d35d54914cc">
<rdf:value>
The rate of change of intracellular sodium ion concentration.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#9c262e7e-ab38-4fd7-bd1a-dc1038ecfde3">
<rdf:value>
The potassium permeability of the channel, which depends on the
calcium current component.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#3b7f1b20-e9b7-4a74-a776-5a6e53787c98">
<vCard:N rdf:resource="rdf:#d77b30f8-bc47-4ff6-9789-9a9b183df857"/>
</rdf:Description>
<rdf:Description rdf:about="#ionic_concentrations">
<cmeta:comment rdf:resource="rdf:#b0fbc344-49e1-43f6-95a7-a2851c375fa8"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#6cb2ccac-6d26-4142-bfea-c5f71bec19a7">
<rdf:value>
The steady-state approximation for the K1 gating kinetics.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#E_Na_calculation_eq">
<cmeta:comment rdf:resource="rdf:#f996f632-013a-44f4-b739-8b14712ebdf3"/>
</rdf:Description>
<rdf:Description rdf:about="#VnsCa_calculation_eq">
<cmeta:comment rdf:resource="rdf:#99ea7d04-14f7-4f8f-a325-9b54ef8b2075"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#e74a1709-d4ab-43c0-83c3-922c33b716b1">
<vCard:Given>Catherine</vCard:Given>
<vCard:Family>Lloyd</vCard:Family>
<vCard:Other>May</vCard:Other>
</rdf:Description>
<rdf:Description rdf:about="#IStim_for_cmiss_eq">
<cmeta:comment rdf:resource="rdf:#86d5770b-672b-4dd4-a4c6-73015fb1641e"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#2eeac2c4-b1fd-4c67-9abc-062101ce6d2b">
<rdf:value>
Calculation of the background sodium current.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#5eb96e50-3a06-4319-a449-e041479a023f">
<rdf:value>
The JWR model creates a new mathematical model to describe the
L-type calcium channel that is based on the experimentally observed
mode-switching behaviour of the channel. Inactivation occurs as
calcium ion binding induces the channel to switch (from mode normal)
to a mode in which transitions to open states are extremely slow
(mode Ca). The channel has one voltage inactivation gate, y. As well
as Ca, the channel is assumed permeable to K ions also.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#4883548f-e381-4a8d-bdfe-2e6add011c43">
<rdf:value>
The potassium component of the channel's current.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#2775d603-cc9c-4d0d-8f6a-794b4c5c838c">
<dcterms:W3CDTF>2003-06-04</dcterms:W3CDTF>
</rdf:Description>
<rdf:Description rdf:about="rdf:#3b43bd0a-30b8-4549-99f1-0a5be5b0e8bd">
<rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person"/>
<vCard:N rdf:resource="rdf:#dea11591-f612-4c79-bbe9-db9a023993e1"/>
</rdf:Description>
<rdf:Description rdf:about="#jafri_rice_winslow_1998_version02">
<dc:title>
The Jafri-Rice-Winslow Model for Calcium Regulation in the Ventricular
Myocyte, 1997
</dc:title>
<cmeta:bio_entity>Ventricular Myocyte</cmeta:bio_entity>
<cmeta:comment rdf:resource="rdf:#f82343ca-191b-4d63-9d8b-2ff00f69eec2"/>
<bqs:reference rdf:resource="rdf:#14f47264-a5e7-460c-ba93-1960e67152ef"/>
<bqs:reference rdf:resource="rdf:#eb43b67c-82df-4898-809c-095bf82436f7"/>
<cmeta:species>Mammalia</cmeta:species>
</rdf:Description>
<rdf:Description rdf:about="rdf:#06a944f9-8b49-4d4c-8e8e-4c798a7bdf45">
<dcterms:modified rdf:resource="rdf:#35001bc1-312d-4aea-96da-2acbd8b8c2ba"/>
<rdf:value>
Corrected several equations.
</rdf:value>
<cmeta:modifier rdf:resource="rdf:#db0581ea-d6d8-4ca9-acbf-4f86cef69467"/>
</rdf:Description>
<rdf:Description rdf:about="#J_up_calculation_eq">
<cmeta:comment rdf:resource="rdf:#219f5ab0-c1bc-4800-99db-37938c290bd3"/>
</rdf:Description>
<rdf:Description rdf:about="#alpha_calculation_eq">
<cmeta:comment rdf:resource="rdf:#1f01afbb-c1b6-438f-97d0-c3969915c018"/>
</rdf:Description>
<rdf:Description rdf:about="#C_Ca0_diff_eq">
<cmeta:comment rdf:resource="rdf:#683e3709-a3fe-4eb9-95e4-bb3566e9f6f1"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#b0fbc344-49e1-43f6-95a7-a2851c375fa8">
<rdf:value>
The descriptions of the rate of change of [Na]i and [K]i are the
same as the LR-II model.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#090940e6-a5f0-49d0-942f-37496bae9baa">
<dcterms:W3CDTF>2006-03-01 00:00</dcterms:W3CDTF>
</rdf:Description>
<rdf:Description rdf:about="rdf:#1814fb0f-f79f-4e7c-8d1f-2449b1fb8720">
<rdf:value>
Rate constants for state changes in mode Ca (corresponding to
alpha-prime and beta-prime in the JRW paper).
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#8bbe9e5b-4943-48ec-9d0d-cb394f8510b7">
<dc:title>Biophysical Journal</dc:title>
</rdf:Description>
<rdf:Description rdf:about="rdf:#b2d117d3-c431-4efc-956c-62608568025c">
<rdf:value>
The rate of change of intracellular potassium ion concentration.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#373a86d2-0230-4aa9-bb3d-d655c58c8c0f">
<rdf:value>
The calcium release flux from the JSR into the restricted subspace
is governed by the fraction of RyR channels in an open state.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#author3Vcard">
<rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person"/>
<vCard:N rdf:resource="rdf:#author3VcardN"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#5d6c233b-69dc-4344-922f-95ad5138ca76">
<rdf:value>
The maximal calcium current through the channel.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#V_SS_calculation_eq">
<cmeta:comment rdf:resource="rdf:#76fd3acd-1b94-4d41-b8cc-72eac01422bc"/>
</rdf:Description>
<rdf:Description rdf:about="#sodium_diff_eq">
<cmeta:comment rdf:resource="rdf:#8fef7c77-6810-4289-97d0-2d35d54914cc"/>
</rdf:Description>
<rdf:Description rdf:about="#i_K1_calculation_eq">
<cmeta:comment rdf:resource="rdf:#4c24f963-b2b3-4b4c-a1b7-3bac71e76097"/>
</rdf:Description>
<rdf:Description rdf:about="#beta_K1_calculation_eq">
<cmeta:comment rdf:resource="rdf:#283ef951-972e-447c-a607-28aa80255764"/>
</rdf:Description>
<rdf:Description rdf:about="#L_type_Ca_channel">
<cmeta:comment rdf:resource="rdf:#5eb96e50-3a06-4319-a449-e041479a023f"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#a63bf5ee-4df7-4b74-893c-576b582a555e">
<vCard:Given>Penny</vCard:Given>
<vCard:Family>Noble</vCard:Family>
<vCard:Other>J</vCard:Other>
</rdf:Description>
<rdf:Description rdf:about="rdf:#64f3554c-3ce1-48ba-a505-31747a85ff7b">
<dcterms:modified rdf:resource="rdf:#21b6861a-2143-4c1b-a408-49b106284dbe"/>
<rdf:value>
Corrected equations.
</rdf:value>
<cmeta:modifier rdf:resource="rdf:#9a872fdc-5a08-4acd-9567-8ffea18211ab"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#fde43366-9d9e-4268-9644-d413b3e990b3">
<dcterms:W3CDTF>2001-10-19</dcterms:W3CDTF>
</rdf:Description>
<rdf:Description rdf:about="rdf:#4a1b3e75-9ca4-48ee-b22d-1e7795d75a7d">
<vCard:Given>Catherine</vCard:Given>
<vCard:Family>Lloyd</vCard:Family>
<vCard:Other>May</vCard:Other>
</rdf:Description>
<rdf:Description rdf:about="#alpha_h_calculation_eq">
<cmeta:comment rdf:resource="rdf:#0886d6e7-b4ed-4a05-877b-655f07f13c23"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#9fc3abe3-2c03-4489-8e83-726c4a8131e6">
<rdf:value>
Calculate the calcium flux from the diffusion of calcium out of the
restricted subspace into the myoplasm.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#time_dependent_potassium_current_Xi_gate">
<cmeta:comment rdf:resource="rdf:#12722d36-293a-4b83-8b20-06f18b5826ea"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#9d07ed1c-a3b8-4cb0-a3b6-f7ea5632d91c">
<rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person"/>
<vCard:N rdf:resource="rdf:#f274ee1d-bbfa-42f0-b724-8d5b10d6d4dc"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#e10d779d-5ea9-4866-a2a8-42119c7918e5">
<rdf:value>
The sodium background current is a time-independent diffusion of
Na ions down their electrochemical gradient, through the cell
surface membrane into the cytosol.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#1647eb04-92c1-4804-aab6-6fcfb410ad2c">
<rdf:value>
The time-independent potassium current.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#5367cdd4-0e34-41d4-82c4-8e8d261ed246">
<rdf:value>
The main component of the model which defines the action potential.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#i_ns_Ca_calculation_eq">
<cmeta:comment rdf:resource="rdf:#5845a0e2-5166-485a-8890-5f5ed5d38b27"/>
</rdf:Description>
<rdf:Description rdf:about="#fast_sodium_current_m_gate">
<cmeta:comment rdf:resource="rdf:#3e450836-34ec-4a41-bc56-d275ff567a6d"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#033e0120-32a3-460a-b3ed-e608fc10acb9">
<rdf:value>
Calculation of the time-dependent potassium current.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#11c8815a-fed4-4f76-8be7-2df9b3cddac5">
<rdf:value>
The kinetic equations governing the transitions between the four
states used to model the RyR's.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#dj_dt_eq">
<cmeta:comment rdf:resource="rdf:#eb0ea281-b5e1-4386-9d7a-ebeaa4ea9477"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#68023ec0-d242-4459-80e7-845fb91c4dca">
<rdf:value>
The voltage-dependent slow inactivation gate for the fast sodium
current - the j gate.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#0886d6e7-b4ed-4a05-877b-655f07f13c23">
<rdf:value>
The opening rate of the h gate.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#EnsCa_calculation_eq">
<cmeta:comment rdf:resource="rdf:#60792332-37ac-45fd-aa50-b8c1a538327d"/>
</rdf:Description>
<rdf:Description rdf:about="#calcium_background_current">
<cmeta:comment rdf:resource="rdf:#381df5ee-2bac-4704-83f3-032825cce1ea"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#3e450836-34ec-4a41-bc56-d275ff567a6d">
<rdf:value>
The voltage-dependent activation gate for the fast sodium current -
the m gate.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#cd120ba1-6c08-4ce5-98fb-f801a999d130">
<vCard:N rdf:resource="rdf:#e74a1709-d4ab-43c0-83c3-922c33b716b1"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#c1809e54-6320-4eae-9d42-372675b76ca5">
<rdf:value>
The reversal potential of the channel.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#77d0a8bd-bbdb-48de-81e8-c3711fe2cf16">
<rdf:value>
Rate constant for switching between mode normal and mode Ca.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#membrane">
<cmeta:comment rdf:resource="rdf:#5367cdd4-0e34-41d4-82c4-8e8d261ed246"/>
</rdf:Description>
<rdf:Description rdf:about="#alpha_K1_calculation_eq">
<cmeta:comment rdf:resource="rdf:#aee41d98-40e6-4b37-843c-d37f7b7132d9"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#c490f6a1-536d-45b9-b576-97e01c51d188">
<rdf:value>
Calculate the leakage flux from the NSR into the myoplasm.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="">
<dc:publisher>Department of Physiology, Anatomy & Genetics, University of Oxford</dc:publisher>
<cmeta:comment rdf:resource="rdf:#771db157-b564-4bfb-85cc-435c88aa252c"/>
<dcterms:created rdf:resource="rdf:#17c2cf1c-51cd-4a94-bb35-f72e811cfaec"/>
<dc:creator rdf:resource="rdf:#4f72cb94-c0d1-4db7-b41d-c65e4e7524ca"/>
<cmeta:modification rdf:resource="rdf:#06a944f9-8b49-4d4c-8e8e-4c798a7bdf45"/>
<cmeta:modification rdf:resource="rdf:#554d1c26-d6f6-47e5-bb23-84be70838675"/>
<cmeta:modification rdf:resource="rdf:#5e99f692-2c7a-4340-8804-3d057306f63e"/>
<cmeta:modification rdf:resource="rdf:#64f3554c-3ce1-48ba-a505-31747a85ff7b"/>
<cmeta:modification rdf:resource="rdf:#952ad3db-d625-49c2-83c1-be70e9dc46bd"/>
<cmeta:modification rdf:resource="rdf:#9744ad5e-875e-46a5-8a9c-b2c39cc30222"/>
<cmeta:modification rdf:resource="rdf:#da9e53fa-43be-462f-9e62-f707ef6f7e19"/>
<cmeta:modification rdf:resource="rdf:#e18e006b-41c2-4008-adee-cba1521d1d4d"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#author2VcardN">
<vCard:Given>John</vCard:Given>
<vCard:Family>Rice</vCard:Family>
<vCard:Other>Jeremy</vCard:Other>
</rdf:Description>
<rdf:Description rdf:about="#p_K_calculation_eq">
<cmeta:comment rdf:resource="rdf:#9c262e7e-ab38-4fd7-bd1a-dc1038ecfde3"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#4dd9aa78-8ef7-4c9e-81f4-c1788f3ed068">
<vCard:Given>Catherine</vCard:Given>
<vCard:Family>Lloyd</vCard:Family>
<vCard:Other>May</vCard:Other>
</rdf:Description>
<rdf:Description rdf:about="rdf:#e0bd7381-4ec8-492f-996c-8d97fc5a72e5">
<vCard:Given>Catherine</vCard:Given>
<vCard:Family>Lloyd</vCard:Family>
<vCard:Other>May</vCard:Other>
</rdf:Description>
<rdf:Description rdf:about="rdf:#f82343ca-191b-4d63-9d8b-2ff00f69eec2">
<dc:creator rdf:resource="rdf:#e4b3bc0d-0cad-4858-a9f2-5e7b5c5cd0d4"/>
<rdf:value>This is the CellML description of Jafri, Rice and Winslow's mathematical model for calcium regulation in the ventricular myocyte. It is based on an accurate model of the membrane currents and adds a more sophisticated model of calcium handling. The JRW model is based on the LR-II model for ventricular action potentials, with several modifications.</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#author2Vcard">
<rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person"/>
<vCard:N rdf:resource="rdf:#author2VcardN"/>
</rdf:Description>
<rdf:Description rdf:about="#g_K_calculation_eq">
<cmeta:comment rdf:resource="rdf:#8d17d79c-9e87-4ff1-877c-cf4000b524fc"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#5e99f692-2c7a-4340-8804-3d057306f63e">
<dcterms:modified rdf:resource="rdf:#238b37c0-734c-4302-a362-9308923fe95c"/>
<rdf:value>
Altered some of the connections.
</rdf:value>
<cmeta:modifier rdf:resource="rdf:#81e8230e-d58b-46cf-987f-6bddcd7ce222"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#381202dd-b46a-4f25-a29b-f5fb8775c135">
<rdf:value>
The voltage-dependent inactivation gate for the L-type calcium
channel - the y gate.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#Bi_calculation_eq">
<cmeta:comment rdf:resource="rdf:#13a28452-e692-483c-9aa7-02e6c73e7464"/>
</rdf:Description>
<rdf:Description rdf:about="#i_K_calculation_eq">
<cmeta:comment rdf:resource="rdf:#033e0120-32a3-460a-b3ed-e608fc10acb9"/>
</rdf:Description>
<rdf:Description rdf:about="#i_ns_K_calculation_eq">
<cmeta:comment rdf:resource="rdf:#4883548f-e381-4a8d-bdfe-2e6add011c43"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#b19917af-867f-44ba-ab12-31486eab52de">
<rdf:value>
In the JRW model, subcellular calcium regulatory mechanisms are
described in detail. There are six calcium fluxes to consider;
J_rel, J_leak, J_up, J_tr, J_xfer and J_trpn. In addition, three
membrane current fluxes are also necessary for the formulation of
calcium regulation; i_p_Ca, i_Ca_L_Ca and i_NaCa.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#da6198e9-5668-4bee-a76e-6da5db8c80ec">
<rdf:value>
The plateau potassium current component contains the equations which
describe the contribution of a time independent [K]o-insensitive
channel at plateau potentials.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#i_p_Ca_calculation_eq">
<cmeta:comment rdf:resource="rdf:#7ddfbcc9-9bcb-4fe4-ad8e-71f0f6cac2b0"/>
</rdf:Description>
<rdf:Description rdf:about="#fast_sodium_current">
<cmeta:comment rdf:resource="rdf:#e50a5ea4-de41-4321-8f12-1ae320cbcff5"/>
</rdf:Description>
<rdf:Description rdf:about="#P_C1_diff_eq">
<cmeta:comment rdf:resource="rdf:#11c8815a-fed4-4f76-8be7-2df9b3cddac5"/>
</rdf:Description>
<rdf:Description rdf:about="#i_Na_calculation_eq">
<cmeta:comment rdf:resource="rdf:#e24c338d-ca40-48a7-b588-19037f4fc73a"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#17c2cf1c-51cd-4a94-bb35-f72e811cfaec">
<dcterms:W3CDTF>2007-05-20T00:00:00+12:00</dcterms:W3CDTF>
</rdf:Description>
<rdf:Description rdf:about="#dX_dt_eq">
<cmeta:comment rdf:resource="rdf:#5580b920-d04c-4598-bfc0-4503e68356d0"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#9a1fa90c-4777-497e-bbac-0895f3065f07">
<vCard:Given>N</vCard:Given>
<vCard:Family>Smith</vCard:Family>
<vCard:Other>P</vCard:Other>
</rdf:Description>
<rdf:Description rdf:about="#E_NaN_calculation_eq">
<cmeta:comment rdf:resource="rdf:#5321b474-ca6b-4aa0-81d4-0490640fefa8"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#db0581ea-d6d8-4ca9-acbf-4f86cef69467">
<vCard:N rdf:resource="rdf:#5f5294aa-fcbb-4861-bc45-a1635c90631e"/>
</rdf:Description>
<rdf:Description rdf:about="#alpha_a_calculation_eq">
<cmeta:comment rdf:resource="rdf:#1814fb0f-f79f-4e7c-8d1f-2449b1fb8720"/>
</rdf:Description>
<rdf:Description rdf:about="#I_ns_K_max_calculation_eq">
<cmeta:comment rdf:resource="rdf:#5fefa518-4317-4642-9cb0-70a5c95a481e"/>
</rdf:Description>
<rdf:Description rdf:about="#i_Ca_L_K_calculation_eq">
<cmeta:comment rdf:resource="rdf:#243419e0-6d85-4733-9b4c-f8546f83b7a4"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#835c7777-1095-4391-89ed-42f400cea57d">
<rdf:value>
The maximal sodium component current.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#dc3340a8-8e9f-4a6f-90f7-d5dcacc46abd">
<vCard:Orgname>Oxford University</vCard:Orgname>
<vCard:Orgunit>Department of Physiology, Anatomy & Genetics</vCard:Orgunit>
</rdf:Description>
<rdf:Description rdf:about="rdf:#6c2141e9-882d-4886-962f-5a9b8afc349e">
<rdf:value>
The kinetics of the state transitions in mode normal.
In the normal mode, the calcium channel is able to make the
transition to the open, conducting state (O) from the closed state
(C) at a normal rate.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#f482e965-99de-48a1-9852-4c2d7ed54695">
<rdf:value>
The closing rate of the h gate.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#e18e006b-41c2-4008-adee-cba1521d1d4d">
<dcterms:modified rdf:resource="rdf:#fde43366-9d9e-4268-9644-d413b3e990b3"/>
<rdf:value>
Removed document type definition as this is declared as optional
according to the W3C recommendation.
</rdf:value>
<cmeta:modifier rdf:resource="rdf:#257afbc7-f3ab-4fcb-b9d1-a7e592ed1877"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#1775b7a7-7ada-46ea-a2ba-390a0ee912be">
<rdf:value>
The nonspecific calcium activated current describes a channel which
is activated by calcium ions, but is permeable to only sodium and
potassium ions.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#e4b3bc0d-0cad-4858-a9f2-5e7b5c5cd0d4">
<vCard:FN>Catherine Lloyd</vCard:FN>
</rdf:Description>
<rdf:Description rdf:about="rdf:#d8bc8fb4-700e-4586-9204-f6044de0ab3e">
<rdf:value>
The activation variable.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#1f01afbb-c1b6-438f-97d0-c3969915c018">
<rdf:value>
Rate constants for state changes in mode normal.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#bd9fdeb3-53d0-4e83-aef8-0442dd315536">
<rdf:value>
The opening rate of the X gate.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#12722d36-293a-4b83-8b20-06f18b5826ea">
<rdf:value>
The time-independent inactivation gate for the time-dependent
potassium channel.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#7cbd6926-4079-4627-aeb4-980877d15eca">
<rdf:value>
The sodium component of the channel's current.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#time_independent_potassium_current">
<cmeta:comment rdf:resource="rdf:#1647eb04-92c1-4804-aab6-6fcfb410ad2c"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#76fd3acd-1b94-4d41-b8cc-72eac01422bc">
<rdf:value>
Calculate some volume fractions as proportions of the total
myoplasmic volume.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#alpha_m_calculation_eq">
<cmeta:comment rdf:resource="rdf:#0d6f844f-69d8-4d90-b8d7-ad63b27dd018"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#81e8230e-d58b-46cf-987f-6bddcd7ce222">
<vCard:N rdf:resource="rdf:#6500dd73-a4b9-4662-b0c1-9f430353267a"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#19e507f5-2e34-4938-ba36-ab0660d9a60f">
<rdf:value>
The rate of change of extracellular potassium ion concentration.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#683e3709-a3fe-4eb9-95e4-bb3566e9f6f1">
<rdf:value>
The kinetics of the state transitions in mode Ca.
Calcium binding to the Ca channel induces a conformational change
from normal mode to mode Ca. This effectively inhibits the
conduction of calcium ions because in mode Ca, the calcium channel
makes the transition to the open, conducting state (O) extremely
slowly.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#Xi_calculation_eq">
<cmeta:comment rdf:resource="rdf:#13ebb9eb-5ba8-4942-99b3-cbe891cb9d52"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#dcb0ba5e-ff99-4875-956b-59e9c8138570">
<rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person"/>
<vCard:N rdf:resource="rdf:#4f25f1b1-cc39-437e-94f6-5ac59983c00d"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#2ae32ec5-47e7-4a3f-b36d-bf28b02932fc">
<rdf:type rdf:resource="http://imc.org/vCard/3.0#internet"/>
<rdf:value>penny.noble@dpag.ox.ac.uk</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#J_rel_calculation_eq">
<cmeta:comment rdf:resource="rdf:#373a86d2-0230-4aa9-bb3d-d655c58c8c0f"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#4f25f1b1-cc39-437e-94f6-5ac59983c00d">
<vCard:Given>John</vCard:Given>
<vCard:Family>Rice</vCard:Family>
<vCard:Other>Jeremy</vCard:Other>
</rdf:Description>
<rdf:Description rdf:about="rdf:#d4ed6796-21bc-4d5a-84d7-7d0f669c1d5e">
<rdf:value>
The time constants for the K1 gate are small enough that the gating
variable can be approximated with it's steady-state value.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#fast_sodium_current_j_gate">
<cmeta:comment rdf:resource="rdf:#68023ec0-d242-4459-80e7-845fb91c4dca"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#3d74ad55-3a32-4a31-a3ef-1da4d0955353">
<rdf:value>
The "open" RyR's are those P_O1 and P_O2 states.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#time_dependent_potassium_current_X_gate">
<cmeta:comment rdf:resource="rdf:#dcbb6aa9-ae72-4aa1-abe4-441cfc3eb735"/>
</rdf:Description>
<rdf:Description rdf:about="#sodium_potassium_pump">
<cmeta:comment rdf:resource="rdf:#8845e476-c0c5-4d31-a07d-501ec259885e"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#9a872fdc-5a08-4acd-9567-8ffea18211ab">
<vCard:N rdf:resource="rdf:#4a1b3e75-9ca4-48ee-b22d-1e7795d75a7d"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#13ebb9eb-5ba8-4942-99b3-cbe891cb9d52">
<rdf:value>
Xi is the inward rectification parameter and is given by the
following equation.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#919037b1-961d-4081-93ac-a5f50d172ed8">
<vCard:N rdf:resource="rdf:#e0bd7381-4ec8-492f-996c-8d97fc5a72e5"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#0f1ed0e4-6d3c-4b56-98fd-fc7c0d93e2e4">
<rdf:value>
The closing rate of the m gate.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#sarcolemmal_calcium_pump">
<cmeta:comment rdf:resource="rdf:#2a82804c-14ac-4488-96b4-897538ff88fd"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#14f47264-a5e7-460c-ba93-1960e67152ef">
<bqs:Pubmed_id>16339881</bqs:Pubmed_id>
<bqs:JournalArticle rdf:resource="rdf:#d598fa86-d150-4cfe-8468-b6187db28592"/>
</rdf:Description>
<rdf:Description rdf:about="#dh_dt_eq">
<cmeta:comment rdf:resource="rdf:#bf72189f-a875-4906-8eb1-514525848cbb"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#dea11591-f612-4c79-bbe9-db9a023993e1">
<vCard:Given>P</vCard:Given>
<vCard:Family>Hunter</vCard:Family>
<vCard:Other>J</vCard:Other>
</rdf:Description>
<rdf:Description rdf:about="rdf:#6500dd73-a4b9-4662-b0c1-9f430353267a">
<vCard:Given>Catherine</vCard:Given>
<vCard:Family>Lloyd</vCard:Family>
<vCard:Other>May</vCard:Other>
</rdf:Description>
<rdf:Description rdf:about="#E_K_calculation_eq">
<cmeta:comment rdf:resource="rdf:#c1809e54-6320-4eae-9d42-372675b76ca5"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#0369ac4e-eed4-49da-ae19-79542aa70493">
<rdf:value>
The following equation calculates the reversal potential of the
time-independent potassium current.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#i_Ca_L_Ca_max_calculation_eq">
<cmeta:comment rdf:resource="rdf:#5d6c233b-69dc-4344-922f-95ad5138ca76"/>
</rdf:Description>
<rdf:Description rdf:about="#beta_X_calculation_eq">
<cmeta:comment rdf:resource="rdf:#ff4606f2-8637-46ad-b862-69e0b88de05e"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#5580b920-d04c-4598-bfc0-4503e68356d0">
<rdf:value>
The kinetics of the X gate.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#60792332-37ac-45fd-aa50-b8c1a538327d">
<rdf:value>
The reversal potential of the channel.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#4c24f963-b2b3-4b4c-a1b7-3bac71e76097">
<rdf:value>
Calculate the current.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#J_leak_calculation_eq">
<cmeta:comment rdf:resource="rdf:#c490f6a1-536d-45b9-b576-97e01c51d188"/>
</rdf:Description>
<rdf:Description rdf:about="#E_Kp_calculation_eq">
<cmeta:comment rdf:resource="rdf:#1b23ea30-5d66-4460-91b7-248fa4a6231b"/>
</rdf:Description>
<rdf:Description rdf:about="#beta_m_calculation_eq">
<cmeta:comment rdf:resource="rdf:#0f1ed0e4-6d3c-4b56-98fd-fc7c0d93e2e4"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#015e6d19-3fb5-4cbb-9e6d-670446ac0cab">
<dc:title>Biophysical Journal</dc:title>
</rdf:Description>
<rdf:Description rdf:about="rdf:#0a2d9210-8282-4cb8-ba81-57ba73f665c4">
<rdf:value>
The kinetics of the m gate.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#e50a5ea4-de41-4321-8f12-1ae320cbcff5">
<rdf:value>
The fast sodium current component contains the differential
equations governing the influx of sodium ions through the cell
surface membrane into the cell.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#398816f5-c23b-4cf8-bac4-0528e4302905">
<rdf:value>
The kinetics of calcium binding to the myoplasm buffer troponin -
both high and low affinity binding sites.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#i_Ca_b_calculation_eq">
<cmeta:comment rdf:resource="rdf:#02790508-bb45-42b1-b6da-39202a32797c"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#282e1a65-80d4-4c22-9ea4-7fa13d1b885b">
<rdf:value>
The closing rate of the j gate.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#sodium_background_current">
<cmeta:comment rdf:resource="rdf:#e10d779d-5ea9-4866-a2a8-42119c7918e5"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#d77b30f8-bc47-4ff6-9789-9a9b183df857">
<vCard:Given>Catherine</vCard:Given>
<vCard:Family>Lloyd</vCard:Family>
<vCard:Other>May</vCard:Other>
</rdf:Description>
<rdf:Description rdf:about="rdf:#99ea7d04-14f7-4f8f-a325-9b54ef8b2075">
<rdf:value>
The potential offset for the channel.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#Na_Ca_exchanger_eq">
<cmeta:comment rdf:resource="rdf:#4e609ca2-bc3f-4ed6-9eb3-4bf9e2cdc962"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#f996f632-013a-44f4-b739-8b14712ebdf3">
<rdf:value>
The sodium reversal potential.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#plateau_potassium_current">
<cmeta:comment rdf:resource="rdf:#da6198e9-5668-4bee-a76e-6da5db8c80ec"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#7bc72e28-d28c-4160-b5c3-f9aa39b2c081">
<rdf:value>
The voltage-dependent inactivation gate for the fast sodium current
- the h gate.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#5321b474-ca6b-4aa0-81d4-0490640fefa8">
<rdf:value>
The reversal potential for the background sodium channel.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#i_Kp_calculation_eq">
<cmeta:comment rdf:resource="rdf:#4b84685c-44dc-44c7-b908-38e08c75f7af"/>
</rdf:Description>
<rdf:Description rdf:about="#Kp_calculation_eq">
<cmeta:comment rdf:resource="rdf:#d8bc8fb4-700e-4586-9204-f6044de0ab3e"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#author1VcardN">
<vCard:Given>M</vCard:Given>
<vCard:Family>Jafri</vCard:Family>
<vCard:Other>Saleet</vCard:Other>
</rdf:Description>
<rdf:Description rdf:about="rdf:#35001bc1-312d-4aea-96da-2acbd8b8c2ba">
<dcterms:W3CDTF>2002-02-25</dcterms:W3CDTF>
</rdf:Description>
<rdf:Description rdf:about="rdf:#5f5294aa-fcbb-4861-bc45-a1635c90631e">
<vCard:Given>Catherine</vCard:Given>
<vCard:Family>Lloyd</vCard:Family>
<vCard:Other>May</vCard:Other>
</rdf:Description>
<rdf:Description rdf:about="rdf:#0d6f844f-69d8-4d90-b8d7-ad63b27dd018">
<rdf:value>
The opening rate of the m gate.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#7ddfbcc9-9bcb-4fe4-ad8e-71f0f6cac2b0">
<rdf:value>
The calcium pump current.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#non_specific_calcium_activated_current">
<cmeta:comment rdf:resource="rdf:#1775b7a7-7ada-46ea-a2ba-390a0ee912be"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#e24c338d-ca40-48a7-b588-19037f4fc73a">
<rdf:value>
Calculation of the fast sodium current using the three
Hodkin-Huxley type voltage-dependent gating variables m, h, and j.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#283ef951-972e-447c-a607-28aa80255764">
<rdf:value>
The closing rate of the K1 gate.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#78e399fb-5bcb-4628-b7b4-7910708980d1">
<rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person"/>
<vCard:N rdf:resource="rdf:#25e3f2d9-d168-4e85-81e7-3b7c3e71bef0"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#f690db2d-eb3d-4974-a518-dc77ff82de98">
<rdf:value>
Calculation of the Na/K pump current.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#25e3f2d9-d168-4e85-81e7-3b7c3e71bef0">
<vCard:Given>Raimond</vCard:Given>
<vCard:Family>Winslow</vCard:Family>
<vCard:Other>L</vCard:Other>
</rdf:Description>
<rdf:Description rdf:about="rdf:#1b23ea30-5d66-4460-91b7-248fa4a6231b">
<rdf:value>
The channel's reversal potential.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#gamma_calculation_eq">
<cmeta:comment rdf:resource="rdf:#77d0a8bd-bbdb-48de-81e8-c3711fe2cf16"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#27315f86-73fe-44a3-80d5-17943ee81513">
<rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person"/>
<vCard:N rdf:resource="rdf:#9a1fa90c-4777-497e-bbac-0895f3065f07"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#4f72cb94-c0d1-4db7-b41d-c65e4e7524ca">
<vCard:ORG rdf:resource="rdf:#dc3340a8-8e9f-4a6f-90f7-d5dcacc46abd"/>
<vCard:EMAIL rdf:resource="rdf:#2ae32ec5-47e7-4a3f-b36d-bf28b02932fc"/>
<vCard:N rdf:resource="rdf:#a63bf5ee-4df7-4b74-893c-576b582a555e"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#4b84685c-44dc-44c7-b908-38e08c75f7af">
<rdf:value>
Calculation of the plateau potassium current.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#ff4606f2-8637-46ad-b862-69e0b88de05e">
<rdf:value>
The closing rate of the X gate.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#26691a20-5078-45b0-bc43-ff8d704f6501">
<dcterms:W3CDTF>2002-05-06</dcterms:W3CDTF>
</rdf:Description>
<rdf:Description rdf:about="#beta_j_calculation_eq">
<cmeta:comment rdf:resource="rdf:#282e1a65-80d4-4c22-9ea4-7fa13d1b885b"/>
</rdf:Description>
<rdf:Description rdf:about="rdf:#dcbb6aa9-ae72-4aa1-abe4-441cfc3eb735">
<rdf:value>
The voltage- and time-dependent activation gate for the
time-dependent potassium current - the X gate.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#bf72189f-a875-4906-8eb1-514525848cbb">
<rdf:value>
The kinetics of the h gate.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="rdf:#5fefa518-4317-4642-9cb0-70a5c95a481e">
<rdf:value>
The maximal potassium component current.
</rdf:value>
</rdf:Description>
</rdf:RDF>
</model>