Location: Korzeniewski, Zoladz, 2001 @ 9f63f1577d26 / korzeniewski_zoladz_2001.cellml

Author:
pmr2.import <nobody@models.cellml.org>
Date:
2006-07-09 07:38:34+12:00
Desc:
committing version01 of korzeniewski_zoladz_2001
Permanent Source URI:
http://models.cellml.org/workspace/korzeniewski_zoladz_2001/rawfile/9f63f1577d26052e715acf0358fc555012a58fca/korzeniewski_zoladz_2001.cellml

<?xml version='1.0' encoding='utf-8'?>
<!--  FILE :  oxidative_phosphorylation_2001.xml

CREATED :  27th November 2001

LAST MODIFIED : 2nd May 2005

AUTHOR :  Catherine Lloyd
          Department of Engineering Science
          The University of Auckland
          
MODEL STATUS :  This model conforms to the CellML 1.0 Specification released on
10th August 2001, and the 16/01/2002 CellML Metadata 1.0 Specification.

DESCRIPTION :  This file contains a CellML description of oxidative
phosphorylation based on Korzeniewski and Froncisz's mathematical model (1991). 
This model was slightly altered in a subsequent paper (1996) and I have
incorporated some of these changes.

CHANGES:  
  05/12/2001 - CML - The 1991 model of oxidative phosphorylation in mitochondria
                     is not specific to a single cell type.  The 1996 model is
                     relevant to hepatocytes.  Since building this CellML model,
                     Bernard Korzeniewski has directed me towards his most
                     recent publication on oxidative phosphorylation in
                     mammalian skeletal muscle.  I have updated the CellML
                     description accordingly.
  21/01/2002 - AAC - Updated metadata to conform to the 16/1/02 CellML Metadata
                     1.0 Specification.
  26/02/2002 - CML - Corrected several more equations.
  22/07/2002 - CML - Added more metadata.
  09/04/2003 - AAC - Added publication date information.
  02/05/2005 - PJV - Changed unit dimensions to make them consistent.  

--><model xmlns="http://www.cellml.org/cellml/1.0#" xmlns:cmeta="http://www.cellml.org/metadata/1.0#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bqs="http://www.cellml.org/bqs/1.0#" xmlns:cellml="http://www.cellml.org/cellml/1.0#" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:pathway_editor="http://www.physiome.com/pathway_editor/1.0#" xmlns:vCard="http://www.w3.org/2001/vcard-rdf/3.0#" pathway_editor:rendering_config_file="oxidative phosphorylation      1991render.xml" cmeta:id="korzeniewski_zoladz_2001_version01" name="korzeniewski_zoladz_2001_version01">
<documentation xmlns="http://cellml.org/tmp-documentation">
<article>
  <articleinfo>
  <title>Oxidative Phosphorylation</title>
  <author>
    <firstname>Catherine</firstname>
          <surname>Lloyd</surname>
    <affiliation>
      <shortaffil>Bioengineering Institute, University of Auckland</shortaffil>
    </affiliation>
  </author>
</articleinfo>
  <section id="sec_status">
    <title>Model Status</title>
    <para>
            This is the original unchecked version of the model imported from the previous
            CellML model repository, 24-Jan-2006.
          </para>
  </section>
  <sect1 id="sec_structure">
<title>Model Structure</title>

<para>
Oxidative phosphorylation in mitochondria is the main process responsible for the synthesis of ATP in most animal tissues under most conditions.  The energy required for ATP synthesis in the mitochondria is released by substrate dehydrogenation in the TCA cycle and in the beta-oxidation of fatty acids.  These substrate dehydrogenations are coupled to the reduction of the co-enzymes NAD+ or FAD in the mitochondrial matrix.  The reduced forms of these co-enzymes (NADH and FADH2) are reoxidised by molecular oxygen using a series of electron carriers on the inner membrane known as the respiratory chain (see <xref linkend="fig_pathway_diagram"/> below).
</para>

<para>
In 1991, Bernard Korzeniewski and Wojciech Froncisz published a dynamic model of oxidative phosphorylation in isolated mitochondria.  This model was further modified in 1992, in 1996 it was adapted to be specific to intact hepatocytes and in 2001 a model was developed for oxidative phosphorylation in mammalian skeletal muscle.
</para>

<para>
The complete original paper references are cited below:
</para>

<para>
An extended dynamic model of oxidative phosphorylation, Bernard Korzeniewski and Wojciech Froncisz, 1991, <ulink url="http://www.elsevier.com/gej-ng/29/50/show/">
            <emphasis>Biochimica et Biophysica Acta.</emphasis>
          </ulink> 1060, 210-223.  <ulink url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;list_uids=1657162&amp;dopt=Abstract">PubMed ID: 1657162</ulink>
</para>

<para>
<ulink url="http://www.sciencedirect.com/science?_ob=ArticleURL&amp;_udi=B6TFB-3THMT1S-1&amp;_coverDate=02%2F08%2F1996&amp;_alid=185463291&amp;_rdoc=1&amp;_fmt=&amp;_orig=search&amp;_qd=1&amp;_cdi=5222&amp;_sort=d&amp;view=c&amp;_acct=C000011498&amp;_version=1&amp;_urlVersion=0&amp;_userid=140507&amp;md5=0d578e972f42b3ddba0363fbeec39d28">Simulation of oxidative phosphorylation in hepatocytes</ulink>, Bernard Korzeniewski, 1996, <ulink url="http://www.sciencedirect.com/science?_ob=JournalURL&amp;_cdi=5222&amp;auth=y&amp;_acct=C000011498&amp;_version=1&amp;_urlVersion=0&amp;_userid=140507&amp;md5=7d06a1ef3b4293bc0633b8269aa54192">
            <emphasis>Biophysical Chemistry</emphasis>
          </ulink>, 58, 215-224.  (A PDF version of the article is available to subscribers on the ScienceDirect website.)  <ulink url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;list_uids=8820407&amp;dopt=Abstract">PubMed ID: 8820407</ulink>
</para>

<para>
<ulink url="http://www.sciencedirect.com/science?_ob=ArticleURL&amp;_udi=B6TFB-43TFW7P-2&amp;_user=140507&amp;_coverDate=09%2F30%2F2001&amp;_rdoc=2&amp;_fmt=summary&amp;_orig=browse&amp;_srch=%23toc%235222%232001%23999079998%23262338!&amp;_cdi=5222&amp;_sort=d&amp;_docanchor=&amp;_acct=C000011498&amp;_version=1&amp;_urlVersion=0&amp;_userid=140507&amp;md5=a88826fbcc4712498b4ad724217c7870">A model of oxidative phosphorylation in mammalian skeletal muscle</ulink>, Bernard Korzeniewski and Jerzy A. Zoladz, 2001, <ulink url="http://www.sciencedirect.com/science?_ob=JournalURL&amp;_issn=03014622&amp;_auth=y&amp;_acct=C000011498&amp;_version=1&amp;_urlVersion=0&amp;_userid=140507&amp;md5=117558bb3d44f7d93b6110bc8d8d0b2d">
            <emphasis>Biophysical Chemistry</emphasis>
          </ulink>, 92, 17-34.  (The <ulink url="http://www.sciencedirect.com/science?_ob=ArticleURL&amp;_udi=B6TFB-43TFW7P-2&amp;_user=140507&amp;_coverDate=09%2F30%2F2001&amp;_rdoc=2&amp;_fmt=full&amp;_orig=browse&amp;_srch=%23toc%235222%232001%23999079998%23262338!&amp;_cdi=5222&amp;_sort=d&amp;_acct=C000011498&amp;_version=1&amp;_urlVersion=0&amp;_userid=140507&amp;md5=579180314d91930498afe4efd30633fb">full text (HTML)</ulink> and <ulink url="http://www.sciencedirect.com/science?_ob=MImg&amp;_imagekey=B6TFB-43TFW7P-2-1F&amp;_cdi=5222&amp;_orig=browse&amp;_coverDate=09%2F30%2F2001&amp;_sk=999079998&amp;wchp=dGLStV-lSzBA&amp;_acct=C000011498&amp;_version=1&amp;_userid=140507&amp;md5=d7b67e936c09e132c5a3e1874d121f09&amp;ie=f.pdf">PDF</ulink> versions of the article are available on the ScienceDirect website.)  <ulink url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;list_uids=11527576&amp;dopt=Abstract">PubMed ID: 11527576</ulink>
</para>

<para>
The raw CellML description of the oxidative phosphorylation model can be downloaded in various formats as described in <xref linkend="sec_download_this_model"/>.  For an example of a more complete documentation of another real reaction pathway, see <ulink url="${HTML_EXMPL_BI_EGF_INTRO}">The Bhalla Iyengar EGF Pathway Model, 1999</ulink>. 
</para>

<informalfigure float="0" id="fig_pathway_diagram">
<mediaobject>
  <imageobject>
    <objectinfo>
      <title>the conventional rendering of oxidative phosphorylation</title>
    </objectinfo>
    <imagedata fileref="korzeniewski_2001.png"/>
  </imageobject>
</mediaobject>
<caption>A rendering of oxidative phosphorylation. Metabolites are represented by rounded rectangles, catalysts are represented by ellipses and reactions and metabolite translocations are represented by arrows.</caption>
</informalfigure>

<para>
In CellML, models are thought of as connected networks of discrete components. These components may correspond to physiologically separated regions or chemically distinct objects, or may be useful modelling abstractions. This model has 62 components representing chemically distinct objects (metabolites, enzymes and reactions) and two components defined for modeling convenience; global variables which stores the universal variable time, and cell which defines a number of cell specific features.  Because this model has so many components, its CellML rendering would be complex.  For an example of a CellML rendering of a reaction pathway see <ulink url="${HTML_EXMPL_BI_EGF_INTRO}">The Bhalla Iyengar EGF Pathway Model, 1999</ulink>.  
</para>

</sect1>
</article>
</documentation>
  
  
  <!--
    Below, we define some additional units for association with variables and
    constants within the model. The identifiers are fairly self-explanatory.
  -->
  
  <units name="micromolar">
    <unit units="mole" prefix="micro"/>
    <unit units="litre" exponent="-1"/>
  </units>

  <units name="minute">
    <unit units="second" multiplier="60.0"/>
  </units>
  
  <units name="flux">
    <unit units="micromolar"/>
    <unit units="minute" exponent="-1"/>
  </units>

  <units name="second_order_rate_constant_units">
    <unit units="micromolar" exponent="-1"/>
    <unit units="minute" exponent="-1"/>
  </units>
  
  <units name="third_order_rate_constant_units">
    <unit units="micromolar" exponent="-2"/>
    <unit units="minute" exponent="-1"/>
  </units>
  
  <units name="micromolar_per_millivolt_minute">
    <unit units="micromolar"/>
    <unit units="millivolt" exponent="-1"/>
    <unit units="minute" exponent="-1"/>
  </units>
  
  <units name="millivolt">
    <unit units="volt" prefix="milli"/>
  </units>
  
  <units name="per_millivolt">
    <unit units="millivolt" exponent="-1"/>
  </units>
  
  <units base_units="yes" name="proton"/>
  
  <units base_units="yes" name="pH_unit"/>
  
  <units name="molar">
    <unit units="mole"/>
    <unit units="litre" exponent="-1"/>
  </units>
  
  <units name="molar_proton_per_pH_unit">
     <unit units="molar"/>
     <unit units="proton"/>
     <unit units="pH_unit" exponent="-1"/>
  </units>
  
  <units name="kilojoule_per_mole_kelvin">
    <unit units="joule" prefix="kilo"/>
    <unit units="mole" exponent="-1"/>
    <unit units="kelvin" exponent="-1"/>
  </units>
  
  <units name="kilojoule_per_mole_millivolt">
    <unit units="joule" prefix="kilo"/>
    <unit units="mole" exponent="-1"/>
    <unit units="millivolt" exponent="-1"/>
  </units>
  
  <units name="kilojoule_per_mole">
    <unit units="joule" prefix="kilo"/>
    <unit units="mole" exponent="-1"/>
  </units>
  
  <!--  
     The following component is defined for modelling convenience.  It contains 
     all the universal variables, in this case, only time.
   --> 
  <component name="global_variables">
    <variable units="second" public_interface="out" name="time"/>
  </component>

  <component name="cell">
    <variable units="dimensionless" public_interface="out" name="R_cm" initial_value="15.0"/>
    <variable units="kilojoule_per_mole_kelvin" public_interface="out" name="R" initial_value="8.3143"/>
    <variable units="kelvin" public_interface="out" name="T" initial_value="289.0"/>
    <variable units="kilojoule_per_mole_millivolt" public_interface="out" name="F" initial_value="96480.0"/>
    <variable units="kilojoule_per_mole" public_interface="out" name="S"/>
    <variable units="millivolt" public_interface="out" name="Z"/>
    <variable units="millivolt" public_interface="out" name="electric_potential" initial_value="145.0"/>
    <variable units="millivolt" public_interface="out" name="protonmotive_force" initial_value="190.0"/>
    <variable units="millivolt" public_interface="out" name="ex_membrane_potential"/>
    <variable units="millivolt" public_interface="out" name="in_membrane_potential"/>
    <variable units="molar_proton_per_pH_unit" name="c_buffi" initial_value="0.022"/>
    <variable units="molar_proton_per_pH_unit" name="c_buffe" initial_value="0.025"/>
    <variable units="dimensionless" public_interface="out" name="pH_e"/>
    <variable units="dimensionless" public_interface="out" name="pH_i"/>
    <variable units="dimensionless" public_interface="out" name="pKa" initial_value="6.8"/>
    <variable units="micromolar" public_interface="in" name="He"/>
    <variable units="micromolar" public_interface="in" name="Hi"/>
    <variable units="dimensionless" name="delta_pH"/>
    <variable units="dimensionless" name="dpH"/>
    <variable units="molar_proton_per_pH_unit" name="C0_i"/>
    <variable units="molar_proton_per_pH_unit" name="C0_e"/>
    <variable units="dimensionless" public_interface="out" name="r_buffi"/>
    <variable units="dimensionless" public_interface="out" name="r_buffe"/>
    <variable units="dimensionless" public_interface="out" name="BN" initial_value="5.0"/>
    <variable units="dimensionless" public_interface="out" name="u" initial_value="0.861"/> 
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <ci>R_cm</ci>
        <apply>
          <minus/>
          <apply>
            <divide/>
            <ci>in_membrane_potential</ci>
            <ci>ex_membrane_potential</ci>
          </apply>
        </apply>
      </apply>

      <apply>
        <eq/>
        <ci>protonmotive_force</ci>
        <apply>
          <divide/>
          <cn cellml:units="dimensionless">1.0</cn>
          <apply>
            <times/>
            <apply>
              <minus/>
              <cn cellml:units="dimensionless">1.0</cn>
              <ci>u</ci>
            </apply>
            <ci>delta_pH</ci>
          </apply>
        </apply>
      </apply>

      <apply>
        <eq/>
        <ci>electric_potential</ci>
        <apply>
          <minus/>
          <apply>
            <minus/>
            <ci>protonmotive_force</ci>
            <ci>delta_pH</ci>
          </apply>
        </apply>
      </apply>

      <apply>
        <eq/>
        <ci>in_membrane_potential</ci>
        <apply>
          <times/>
          <cn cellml:units="dimensionless">0.65</cn>
          <ci>electric_potential</ci>
        </apply>
      </apply>

      <apply>
        <eq/>
        <ci>ex_membrane_potential</ci>
        <apply>
          <times/>
          <cn cellml:units="dimensionless">-0.35</cn>
          <ci>electric_potential</ci>
        </apply>
      </apply>

      <apply>
        <eq/>
        <ci>u</ci>
        <apply>
          <divide/>
          <ci>electric_potential</ci>
          <ci>protonmotive_force</ci>
        </apply>
      </apply>

      <apply>
        <eq/>
        <ci>C0_i</ci>
        <apply>
          <divide/>
          <apply>
            <minus/>
            <apply>
              <power/>
              <cn cellml:units="dimensionless">10.0</cn>
              <apply>
                <minus/>
                <ci>pH_i</ci>
              </apply>
            </apply>
            <apply>
              <power/>
              <cn cellml:units="dimensionless">10.0</cn>
              <apply>
                <minus/>
                <apply>
                  <minus/>
                  <ci>pH_i</ci>
                </apply>
                <ci>dpH</ci>
              </apply>
            </apply>
          </apply>
          <ci>dpH</ci>
        </apply>
      </apply>

      <apply>
        <eq/>
        <ci>r_buffi</ci>
        <apply>
          <divide/>
          <ci>c_buffi</ci>
          <ci>C0_i</ci>
        </apply>
      </apply>

      <apply>
        <eq/>
        <ci>C0_e</ci>
        <apply>
          <divide/>
          <apply>
            <minus/>
            <apply>
              <power/>
              <cn cellml:units="dimensionless">10.0</cn>
              <apply>
                <minus/>
                <ci>pH_e</ci>
              </apply>
            </apply>
            <apply>
              <power/>
              <cn cellml:units="dimensionless">10.0</cn>
              <apply>
                <minus/>
                <apply>
                  <minus/>
                  <ci>pH_e</ci>
                </apply>
                <ci>dpH</ci>
              </apply>
            </apply>
          </apply>
          <ci>dpH</ci>
        </apply>
      </apply>

      <apply>
        <eq/>
        <ci>r_buffe</ci>
        <apply>
          <divide/>
          <ci>c_buffe</ci>
          <ci>C0_e</ci>
        </apply>
      </apply>

      <apply>
        <eq/>
        <ci>S</ci>
        <apply>
          <times/>
          <cn cellml:units="dimensionless">2.303</cn>
          <ci>R</ci>
          <ci>T</ci>
        </apply>
      </apply>

      <apply>
        <eq/>
        <ci>Z</ci>
        <apply>
          <times/>
          <cn cellml:units="dimensionless">2.303</cn>
          <ci>R</ci>
          <apply>
            <divide/>
            <ci>T</ci>
            <ci>F</ci>
          </apply>
        </apply>
      </apply>

      <apply>
        <eq/>
        <ci>pH_e</ci>
        <apply>
          <minus/>
          <apply>
            <log/>
            <apply>
              <divide/>
              <ci>He</ci>
              <cn cellml:units="dimensionless">1000000.0</cn>
            </apply>
          </apply>
        </apply>
      </apply>

      <apply>
        <eq/>
        <ci>pH_i</ci>
        <apply>
          <minus/>
          <apply>
            <log/>
            <apply>
              <divide/>
              <ci>Hi</ci>
              <cn cellml:units="dimensionless">1000000.0</cn>
            </apply>
          </apply>
        </apply>
      </apply>

      <apply>
        <eq/>
        <ci>delta_pH</ci>
        <apply>
          <times/>
          <ci>Z</ci>
          <apply>
            <minus/>
            <ci>pH_i</ci>
            <ci>pH_e</ci>
          </apply>
        </apply>
      </apply>
    </math>
  </component>

  <!--  
    The following components describe all the metabolites - both reactants and 
    products - involved in oxidative phosphorylation.
  -->

  <component cmeta:id="NAD" name="NAD">
    
    <variable units="micromolar" public_interface="out" name="NAD"/>
    <variable units="dimensionless" public_interface="in" name="BN"/>
    <variable units="dimensionless" public_interface="in" name="R_cm"/>
    <variable units="flux" public_interface="in" name="delta_NAD_rxn0"/>
    <variable units="flux" public_interface="in" name="delta_NAD_rxn4"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci>time</ci>
          </bvar>
          <ci>NAD</ci>
        </apply>
        <apply>
          <times/>
          <apply>
            <plus/>
            <ci>delta_NAD_rxn0</ci>
            <ci>delta_NAD_rxn4</ci>
          </apply>
          <apply>
            <divide/>
            <ci>R_cm</ci>
            <ci>BN</ci>
          </apply>
        </apply>
      </apply>
    </math>
  </component>

  <component cmeta:id="NADH" name="NADH">
    
    <variable units="micromolar" public_interface="out" name="NADH"/>
    <variable units="dimensionless" public_interface="in" name="BN"/>
    <variable units="dimensionless" public_interface="in" name="R_cm"/>
    <variable units="flux" public_interface="in" name="delta_NADH_rxn4"/>
    <variable units="flux" public_interface="in" name="delta_NADH_rxn0"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci>time</ci>
          </bvar>
          <ci>NADH</ci>
        </apply>
        <apply>
          <times/>
          <apply>
            <plus/>
            <ci>delta_NADH_rxn4</ci>
            <ci>delta_NADH_rxn0</ci>
          </apply>
          <apply>
            <divide/>
            <ci>R_cm</ci>
            <ci>BN</ci>
          </apply>
        </apply>
      </apply>
    </math>
  </component>

  <component cmeta:id="N_t" name="N_t">
    
    <variable units="micromolar" public_interface="out" name="N_t" initial_value="2970.0"/>
    <variable units="micromolar" public_interface="in" name="NAD"/>
    <variable units="micromolar" public_interface="in" name="NADH"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <ci>N_t</ci>
        <apply>
          <plus/>
          <ci>NAD</ci>
          <ci>NADH</ci>
        </apply>
      </apply>
    </math>
  </component>

  <component cmeta:id="O2" name="O2">
    
    <variable units="micromolar" public_interface="out" name="O2"/>
    <variable units="flux" public_interface="in" name="delta_O2_rxn7"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci>time</ci>
          </bvar>
          <ci>O2</ci>
        </apply>
        <ci>delta_O2_rxn7</ci>
      </apply>
    </math>
  </component>

  <component cmeta:id="H2O" name="H2O">
    
    <variable units="micromolar" public_interface="out" name="H2O"/>
    <variable units="flux" public_interface="in" name="delta_H2O_rxn7"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci>time</ci>
          </bvar>
          <ci>H2O</ci>
        </apply>
        <ci>delta_H2O_rxn7</ci>
      </apply>
    </math>
  </component>

  <component cmeta:id="He" name="He">
    
    <variable units="micromolar" public_interface="out" name="He"/>
    <variable units="dimensionless" public_interface="in" name="r_buffe"/>
    <variable units="dimensionless" public_interface="in" name="u"/>
    <variable units="dimensionless" public_interface="in" name="nA"/>
    <variable units="flux" public_interface="in" name="delta_He_rxn0"/>
    <variable units="flux" public_interface="in" name="delta_He_rxn01"/>
    <variable units="flux" public_interface="in" name="delta_He_rxn7"/>
    <variable units="flux" public_interface="in" name="delta_He_rxn1"/>
    <variable units="flux" public_interface="in" name="delta_He_rxn5"/>
    <variable units="flux" public_interface="in" name="delta_He_rxn6"/>
    <variable units="flux" public_interface="in" name="delta_He_rxn8"/>
    <variable units="flux" public_interface="in" name="delta_He_rxn9"/>
    <variable units="flux" public_interface="in" name="delta_He_rxn10"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci>time</ci>
          </bvar>
          <ci>He</ci>
        </apply>
        <apply>
          <divide/>
          <apply>
            <minus/>
            <apply>
              <plus/>
              <apply>
                <times/>
                <cn cellml:units="dimensionless">2.0</cn>
                <apply>
                  <plus/>
                  <cn cellml:units="dimensionless">2.0</cn>
                  <apply>
                    <times/>
                    <cn cellml:units="dimensionless">2.0</cn>
                    <ci>u</ci>
                  </apply>
                </apply>
                <ci>delta_He_rxn7</ci>
              </apply>
              <apply>
                <times/>
                <ci>delta_He_rxn01</ci>
                <apply>
                  <minus/>
                  <cn cellml:units="dimensionless">4.0</cn>
                  <apply>
                    <times/>
                    <cn cellml:units="dimensionless">2.0</cn>
                    <ci>u</ci>
                  </apply>
                </apply>
              </apply>
              <apply>
                <times/>
                <ci>delta_He_rxn0</ci>
                <cn cellml:units="dimensionless">4.0</cn>
              </apply>
            </apply>
            <apply>
              <plus/>
              <apply>
                <times/>
                <ci>delta_He_rxn6</ci>
                <ci>nA</ci>
              </apply>
              <apply>
                <times/>
                <ci>u</ci>
                <ci>delta_He_rxn1</ci>
              </apply>
              <apply>
                <times/>
                <ci>delta_He_rxn8</ci>
                <apply>
                  <minus/>
                  <cn cellml:units="dimensionless">1.0</cn>
                  <ci>u</ci>
                </apply>
              </apply>
              <ci>delta_He_rxn5</ci>
              <ci>delta_He_rxn9</ci>
              <ci>delta_He_rxn10</ci>
            </apply>
          </apply>
          <ci>r_buffe</ci>
        </apply>
      </apply>
    </math>
  </component>

  <component cmeta:id="Hi" name="Hi">
    
    <variable units="micromolar" public_interface="out" name="Hi"/>
    <variable units="dimensionless" public_interface="in" name="R_cm"/>
    <variable units="dimensionless" public_interface="in" name="r_buffi"/>
    <variable units="dimensionless" public_interface="in" name="u"/>
    <variable units="dimensionless" public_interface="in" name="nA"/>
    <variable units="flux" public_interface="in" name="delta_Hi_rxn0"/>
    <variable units="flux" public_interface="in" name="delta_Hi_rxn01"/>
    <variable units="flux" public_interface="in" name="delta_Hi_rxn1"/>
    <variable units="flux" public_interface="in" name="delta_Hi_rxn5"/>
    <variable units="flux" public_interface="in" name="delta_Hi_rxn6"/>
    <variable units="flux" public_interface="in" name="delta_Hi_rxn7"/>
    <variable units="flux" public_interface="in" name="delta_Hi_rxn8"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci>time</ci>
          </bvar>
          <ci>Hi</ci>
        </apply>
        <apply>
          <times/>
          <apply>
            <minus/>
            <apply>
              <plus/>
              <apply>
                <times/>
                <cn cellml:units="dimensionless">2.0</cn>
                <apply>
                  <plus/>
                  <cn cellml:units="dimensionless">2.0</cn>
                  <apply>
                    <times/>
                    <cn cellml:units="dimensionless">2.0</cn>
                    <ci>u</ci>
                  </apply>
                </apply>
                <ci>delta_Hi_rxn7</ci>
              </apply>
              <apply>
                <times/>
                <apply>
                  <minus/>
                  <cn cellml:units="dimensionless">4.0</cn>
                  <apply>
                    <times/>
                    <cn cellml:units="dimensionless">2.0</cn>
                    <ci>u</ci>
                  </apply>
                </apply>
                <ci>delta_Hi_rxn01</ci>
              </apply>
              <apply>
                <times/>
                <cn cellml:units="dimensionless">4.0</cn>
                <ci>delta_Hi_rxn0</ci>
              </apply>
            </apply>
            <apply>
              <plus/>
              <apply>
                <times/>
                <ci>nA</ci>
                <ci>delta_Hi_rxn6</ci>
              </apply>
              <apply>
                <times/>
                <ci>u</ci>
                <ci>delta_Hi_rxn1</ci>
              </apply>
              <apply>
                <times/>
                <apply>
                  <minus/>
                  <cn cellml:units="dimensionless">1.0</cn>
                  <ci>u</ci>
                </apply>
                <ci>delta_Hi_rxn8</ci>
              </apply>
              <ci>delta_Hi_rxn5</ci>
            </apply>
          </apply>
          <apply>
            <divide/>
            <ci>R_cm</ci>
            <ci>r_buffi</ci>
          </apply>
        </apply>
      </apply>
    </math>
  </component>

  <component cmeta:id="Ho" name="Ho">
    
    <variable units="micromolar" public_interface="out" name="Ho"/>
    <variable units="flux" public_interface="in" name="delta_Ho_rxn10"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
         <apply>
          <diff/>
           <bvar>
             <ci>time</ci>
           </bvar>
           <ci>Ho</ci>
         </apply>
         <ci>delta_Ho_rxn10</ci>
      </apply>
    </math>
  </component>

  <component cmeta:id="ADP_mi" name="ADP_mi">
    
    <variable units="micromolar" public_interface="out" name="ADP_mi"/>
    <variable units="flux" public_interface="in" name="delta_ADP_mi_rxn6"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci>time</ci>
          </bvar>
          <ci>ADP_mi</ci>
        </apply>
        <ci>delta_ADP_mi_rxn6</ci>
      </apply>
    </math>
  </component>

  <component cmeta:id="ADP_fi" name="ADP_fi">
    
    <variable units="micromolar" public_interface="out" name="ADP_fi"/>
    <variable units="flux" public_interface="in" name="delta_ADP_fi_rxna4"/>
    <variable units="flux" public_interface="in" name="delta_ADP_fi_rxn1"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci>time</ci>
          </bvar>
          <ci>ADP_fi</ci>
        </apply>
        <apply>
          <plus/>
          <ci>delta_ADP_fi_rxna4</ci>
          <ci>delta_ADP_fi_rxn1</ci>
        </apply>
      </apply>
    </math>
  </component>

  <component cmeta:id="ADP_ti" name="ADP_ti">
    
    <variable units="micromolar" public_interface="out" name="ADP_ti"/>
    <variable units="micromolar" name="ADP_ti_init"/>
    <variable units="micromolar" public_interface="in" name="ADP_fi"/>
    <variable units="micromolar" public_interface="in" name="ADP_mi"/>
    <variable units="dimensionless" public_interface="in" name="R_cm"/>
    <variable units="flux" public_interface="in" name="delta_ADP_ti_rxna4"/>
    <variable units="flux" public_interface="in" name="delta_ADP_fi_rxn1"/>
    <variable units="flux" public_interface="in" name="delta_ADP_mi_rxn6"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <ci>ADP_ti_init</ci>
        <apply>
          <plus/>
          <ci>ADP_fi</ci>
          <ci>ADP_mi</ci>
        </apply>
      </apply>

      <apply>
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci>time</ci>
          </bvar>
          <ci>ADP_ti</ci>
        </apply>
        <apply>
          <times/>
          <apply>
            <plus/>
            <ci>delta_ADP_ti_rxna4</ci>
            <ci>delta_ADP_fi_rxn1</ci>
            <ci>delta_ADP_mi_rxn6</ci>
          </apply>
          <ci>R_cm</ci>
        </apply>
      </apply>
    </math>
  </component>

  <component cmeta:id="ATP_mi" name="ATP_mi">
    
    <variable units="micromolar" public_interface="out" name="ATP_mi"/>
    <variable units="flux" public_interface="in" name="delta_ATP_mi_rxn6"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci>time</ci>
          </bvar>
          <ci>ATP_mi</ci>
        </apply>
        <ci>delta_ATP_mi_rxn6</ci>
      </apply>
    </math>
  </component>

  <component cmeta:id="ATP_fi" name="ATP_fi">
    
    <variable units="micromolar" public_interface="out" name="ATP_fi"/>
    <variable units="flux" public_interface="in" name="delta_ATP_fi_rxna3"/>
    <variable units="flux" public_interface="in" name="delta_ATP_fi_rxn1"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci>time</ci>
          </bvar>
          <ci>ATP_fi</ci>
        </apply>
        <apply>
          <plus/>
          <ci>delta_ATP_fi_rxna3</ci>
          <ci>delta_ATP_fi_rxn1</ci>
        </apply>
      </apply>
    </math>
  </component>

  <component cmeta:id="ATP_ti" name="ATP_ti">
    
    <variable units="micromolar" public_interface="out" name="ATP_ti"/>
    <variable units="micromolar" name="ATP_ti_init"/>
    <variable units="micromolar" public_interface="in" name="ATP_fi"/>
    <variable units="micromolar" public_interface="in" name="ATP_mi"/>
    <variable units="dimensionless" public_interface="in" name="R_cm"/>
    <variable units="flux" public_interface="in" name="delta_ATP_ti_rxna3"/>
    <variable units="flux" public_interface="in" name="delta_ATP_fi_rxn1"/>
    <variable units="flux" public_interface="in" name="delta_ATP_mi_rxn6"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <ci>ATP_ti_init</ci>
        <apply>
          <plus/>
          <ci>ATP_fi</ci>
          <ci>ATP_mi</ci>
        </apply>
      </apply>

      <apply>
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci>time</ci>
          </bvar>
          <ci>ATP_ti</ci>
        </apply>
        <apply>
          <times/>
          <apply>
            <plus/>
            <ci>delta_ATP_ti_rxna3</ci>
            <ci>delta_ATP_fi_rxn1</ci>
            <ci>delta_ATP_mi_rxn6</ci>
          </apply>
          <ci>R_cm</ci>
        </apply>
      </apply>
    </math>
  </component>

  <component cmeta:id="ADP_me" name="ADP_me">
    
    <variable units="micromolar" public_interface="out" name="ADP_me"/>
    <variable units="flux" public_interface="in" name="delta_ADP_me_rxn3"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci>time</ci>
          </bvar>
          <ci>ADP_me</ci>
        </apply>
        <ci>delta_ADP_me_rxn3</ci>
      </apply>
    </math>
  </component>

  <component cmeta:id="ADP_fe" name="ADP_fe">
    
    <variable units="micromolar" public_interface="out" name="ADP_fe"/>
    <variable units="flux" public_interface="in" name="delta_ADP_fe_rxna2"/>
    <variable units="flux" public_interface="in" name="delta_ADP_fe_rxn1"/>
    <variable units="flux" public_interface="in" name="delta_ADP_fe_rxn3"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci>time</ci>
          </bvar>
          <ci>ADP_fe</ci>
        </apply>
        <apply>
          <plus/>
          <ci>delta_ADP_fe_rxna2</ci>
          <ci>delta_ADP_fe_rxn1</ci>
          <ci>delta_ADP_fe_rxn3</ci>
        </apply>
      </apply>
    </math>
  </component>

  <component cmeta:id="ADP_te" name="ADP_te">
    
    <variable units="micromolar" public_interface="out" name="ADP_te"/>
    <variable units="micromolar" name="ADP_te_init"/>
    <variable units="micromolar" public_interface="in" name="ADP_me"/>
    <variable units="micromolar" public_interface="in" name="ADP_fe"/>
    <variable units="flux" public_interface="in" name="delta_ADP_te_rxna2"/>
    <variable units="flux" public_interface="in" name="delta_ADP_te_rxn2"/>
    <variable units="flux" public_interface="in" name="delta_ADP_fe_rxn1"/>
    <variable units="flux" public_interface="in" name="delta_ADP_fe_rxn3"/>
    <variable units="flux" public_interface="in" name="delta_ADP_me_rxn3"/>
    <variable units="flux" public_interface="in" name="delta_ADP_te_rxn9"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <ci>ADP_te_init</ci>
        <apply>
          <plus/>
          <ci>ADP_fe</ci>
          <ci>ADP_me</ci>
        </apply>
      </apply>

      <apply>
        <eq/>
        <apply>
          <diff/>
          <bvar>
             <ci>time</ci>
          </bvar>
          <ci>ADP_te</ci>
        </apply>
        <apply>
          <plus/>
          <ci>delta_ADP_te_rxna2</ci>
          <ci>delta_ADP_te_rxn2</ci>
          <ci>delta_ADP_fe_rxn1</ci>
          <ci>delta_ADP_fe_rxn3</ci>
          <ci>delta_ADP_me_rxn3</ci>
          <ci>delta_ADP_te_rxn9</ci>
        </apply>
      </apply>
    </math>
  </component>

  <component cmeta:id="ATP_me" name="ATP_me">
    
    <variable units="micromolar" public_interface="out" name="ATP_me"/>
    <variable units="flux" public_interface="in" name="delta_ATP_me_rxn3"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci>time</ci>
          </bvar>
          <ci>ATP_me</ci>
        </apply>
        <ci>delta_ATP_me_rxn3</ci>
      </apply>
    </math>
  </component>

  <component cmeta:id="ATP_fe" name="ATP_fe">
    
    <variable units="micromolar" public_interface="out" name="ATP_fe"/>
    <variable units="flux" public_interface="in" name="delta_ATP_fe_rxna1"/>
    <variable units="flux" public_interface="in" name="delta_ATP_fe_rxn1"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <apply>
          <diff/>
          <bvar>
             <ci>time</ci>
          </bvar>
          <ci>ATP_fe</ci>
        </apply>
        <apply>
          <plus/>
          <ci>delta_ATP_fe_rxna1</ci>
          <ci>delta_ATP_fe_rxn1</ci>
        </apply>
      </apply>
    </math>
  </component>

  <component cmeta:id="ATP_te" name="ATP_te">
    
    <variable units="micromolar" public_interface="out" name="ATP_te"/>
    <variable units="micromolar" name="ATP_te_init"/>
    <variable units="micromolar" public_interface="in" name="ATP_me"/>
    <variable units="micromolar" public_interface="in" name="ATP_fe"/>
    <variable units="flux" public_interface="in" name="delta_ATP_te_rxna1"/>
    <variable units="flux" public_interface="in" name="delta_ATP_te_rxn2"/>
    <variable units="flux" public_interface="in" name="delta_ATP_me_rxn3"/>
    <variable units="flux" public_interface="in" name="delta_ATP_fe_rxn1"/>
    <variable units="flux" public_interface="in" name="delta_ATP_te_rxn9"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <ci>ATP_te_init</ci>
        <apply>
          <plus/>
          <ci>ATP_fe</ci>
          <ci>ATP_me</ci>
        </apply>
      </apply>

      <apply>
        <eq/>
        <apply>
          <diff/>
          <bvar>
             <ci>time</ci>
          </bvar>
          <ci>ATP_te</ci>
        </apply>
        <apply>
          <plus/>
          <ci>delta_ATP_te_rxna1</ci>
          <ci>delta_ATP_te_rxn2</ci>
          <ci>delta_ATP_me_rxn3</ci>
          <ci>delta_ATP_fe_rxn1</ci>
          <ci>delta_ATP_te_rxn9</ci>
        </apply>
      </apply>
    </math>
  </component>

  <component cmeta:id="AMP_e" name="AMP_e">
    
    <variable units="micromolar" public_interface="out" name="AMP_e"/>
    <variable units="flux" public_interface="in" name="delta_AMP_e_rxn3"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci>time</ci>
          </bvar>
          <ci>AMP_e</ci>
        </apply>
        <ci>delta_AMP_e_rxn3</ci>
      </apply>
    </math>
  </component>

  <component cmeta:id="Ae_SUM" name="Ae_SUM">
    
    <variable units="micromolar" public_interface="out" name="Ae_SUM" initial_value="6700.0"/>
    <variable units="micromolar" public_interface="in" name="ATP_te"/>
    <variable units="micromolar" public_interface="in" name="ADP_te"/>
    <variable units="micromolar" public_interface="in" name="AMP_e"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <ci>Ae_SUM</ci>
        <apply>
          <plus/>
          <ci>ATP_te</ci>
          <ci>ADP_te</ci>
          <ci>AMP_e</ci>
        </apply>
      </apply>
    </math>
  </component>

  <component cmeta:id="Ai_SUM" name="Ai_SUM">
    
    <variable units="micromolar" public_interface="out" name="Ai_SUM" initial_value="16260.0"/>
    <variable units="micromolar" public_interface="in" name="ATP_ti"/>
    <variable units="micromolar" public_interface="in" name="ADP_ti"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <ci>Ai_SUM</ci>
        <apply>
          <plus/>
          <ci>ATP_ti</ci>
          <ci>ADP_ti</ci>
        </apply>
      </apply>
    </math>
  </component>

  <component cmeta:id="Cr" name="Cr">
    
    <variable units="micromolar" public_interface="out" name="Cr"/>
    <variable units="flux" public_interface="in" name="delta_Cr_rxn9"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci>time</ci>
          </bvar>
          <ci>Cr</ci>
        </apply>
        <ci>delta_Cr_rxn9</ci>
      </apply>
    </math>
  </component>

  <component cmeta:id="PCr" name="PCr">
    
    <variable units="micromolar" public_interface="out" name="PCr"/>
    <variable units="flux" public_interface="in" name="delta_PCr_rxn9"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci>time</ci>
          </bvar>
          <ci>PCr</ci>
        </apply>
        <ci>delta_PCr_rxn9</ci>
      </apply>
    </math>
  </component>

  <component cmeta:id="C_SUM" name="C_SUM">
    
    <variable units="micromolar" public_interface="out" name="C_SUM" initial_value="35000.0"/>
    <variable units="micromolar" public_interface="in" name="Cr"/>
    <variable units="micromolar" public_interface="in" name="PCr"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <ci>C_SUM</ci>
        <apply>
          <plus/>
          <ci>Cr</ci>
          <ci>PCr</ci>
        </apply>
      </apply>
    </math>
  </component>

  <component cmeta:id="Pi_ji" name="Pi_ji">
    
    <variable units="micromolar" public_interface="out" name="Pi_ji"/>
    <variable units="micromolar" name="Pi_ji_init"/>
    <variable units="flux" public_interface="in" name="delta_Pi_ji_rxn8"/>
    <variable units="micromolar" public_interface="in" name="Pi_ti"/>
    <variable units="dimensionless" public_interface="in" name="pH_i"/>
    <variable units="dimensionless" public_interface="in" name="pKa"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <ci>Pi_ji_init</ci>
        <apply>
          <divide/>
          <ci>Pi_ti</ci>
          <apply>
            <plus/>
            <cn cellml:units="dimensionless">1.0</cn>
            <apply>
              <power/>
              <cn cellml:units="dimensionless">10.0</cn>
              <apply>
                <minus/>
                <ci>pH_i</ci>
                <ci>pKa</ci>
              </apply>
            </apply>
          </apply>
        </apply>
      </apply>

      <apply>
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci>time</ci>
          </bvar>
          <ci>Pi_ji</ci>
        </apply>
        <ci>delta_Pi_ji_rxn8</ci>
      </apply>
    </math>
  </component>

  <component cmeta:id="Pi_je" name="Pi_je">
    
    <variable units="micromolar" public_interface="out" name="Pi_je"/>
    <variable units="micromolar" name="Pi_je_init"/>
    <variable units="flux" public_interface="in" name="delta_Pi_je_rxn8"/>
    <variable units="micromolar" public_interface="in" name="Pi_te"/>
    <variable units="dimensionless" public_interface="in" name="pH_e"/>
    <variable units="dimensionless" public_interface="in" name="pKa"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <ci>Pi_je_init</ci>
        <apply>
          <divide/>
          <ci>Pi_te</ci>
          <apply>
            <plus/>
            <cn cellml:units="dimensionless">1.0</cn>
            <apply>
              <power/>
              <cn cellml:units="dimensionless">10.0</cn>
              <apply>
                <minus/>
                <ci>pH_e</ci>
                <ci>pKa</ci>
              </apply>
            </apply>
          </apply>
        </apply>
      </apply>

      <apply>
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci>time</ci>
          </bvar>
          <ci>Pi_je</ci>
        </apply>
        <ci>delta_Pi_je_rxn8</ci>
      </apply>
    </math>
  </component>

  <component cmeta:id="Pi_ti" name="Pi_ti">
    
    <variable units="micromolar" public_interface="out" name="Pi_ti"/>
    <variable units="flux" public_interface="in" name="delta_Pi_ji_rxn8"/>
    <variable units="flux" public_interface="in" name="delta_Pi_ti_rxn6"/>
    <variable units="dimensionless" public_interface="in" name="R_cm"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci>time</ci>
          </bvar>
          <ci>Pi_ti</ci>
        </apply>
        <apply>
          <times/>
          <apply>
            <plus/>
            <ci>delta_Pi_ji_rxn8</ci>
            <ci>delta_Pi_ti_rxn6</ci>
          </apply>
          <ci>R_cm</ci>
        </apply>
      </apply>
    </math>
  </component>

  <component cmeta:id="Pi_te" name="Pi_te">
    
    <variable units="micromolar" public_interface="out" name="Pi_te"/>
    <variable units="flux" public_interface="in" name="delta_Pi_te_rxn2"/>
    <variable units="flux" public_interface="in" name="delta_Pi_je_rxn8"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci>time</ci>
          </bvar>
          <ci>Pi_te</ci>
        </apply>
        <apply>
          <plus/>
          <ci>delta_Pi_te_rxn2</ci>
          <ci>delta_Pi_je_rxn8</ci>
        </apply>
      </apply>
    </math>
  </component>

  <component cmeta:id="Mg_fe" name="Mg_fe">
    
    <variable units="micromolar" public_interface="out" name="Mg_fe" initial_value="4000.0"/>
    <variable units="flux" public_interface="in" name="delta_Mg_fe_rxna1"/>
    <variable units="flux" public_interface="in" name="delta_Mg_fe_rxna2"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci>time</ci>
          </bvar>
          <ci>Mg_fe</ci>
        </apply>
        <apply>
          <plus/>
          <ci>delta_Mg_fe_rxna1</ci>
          <ci>delta_Mg_fe_rxna2</ci>
        </apply>
      </apply>
    </math>
  </component>

  <component cmeta:id="Mg_fi" name="Mg_fi">
    
    <variable units="micromolar" public_interface="out" name="Mg_fi" initial_value="380.0"/>
    <variable units="flux" public_interface="in" name="delta_Mg_fi_rxna3"/>
    <variable units="flux" public_interface="in" name="delta_Mg_fi_rxna4"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci>time</ci>
          </bvar>
          <ci>Mg_fi</ci>
        </apply>
        <apply>
          <plus/>
          <ci>delta_Mg_fi_rxna3</ci>
          <ci>delta_Mg_fi_rxna4</ci>
        </apply>
      </apply>
    </math>
  </component>

  <component cmeta:id="P_SUM" name="P_SUM">
    
    <variable units="micromolar" public_interface="out" name="P_SUM" initial_value="55659.0"/>
    <variable units="micromolar" public_interface="in" name="Pi_ti"/>
    <variable units="micromolar" public_interface="in" name="Pi_te"/>
    <variable units="micromolar" public_interface="in" name="PCr"/>
    <variable units="micromolar" public_interface="in" name="ATP_te"/>
    <variable units="micromolar" public_interface="in" name="ADP_te"/>
    <variable units="micromolar" public_interface="in" name="AMP_e"/>
    <variable units="micromolar" public_interface="in" name="ATP_ti"/>
    <variable units="micromolar" public_interface="in" name="ADP_ti"/>
    <variable units="dimensionless" public_interface="in" name="R_cm"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <ci>P_SUM</ci>
        <apply>
          <plus/>
          <ci>PCr</ci>
          <apply>
            <times/>
            <ci>ATP_te</ci>
            <cn cellml:units="dimensionless">3.0</cn>
          </apply>
          <apply>
            <times/>
            <ci>ADP_te</ci>
            <cn cellml:units="dimensionless">2.0</cn>
          </apply>
          <ci>AMP_e</ci>
          <ci>Pi_te</ci>
          <apply>
            <divide/>
            <apply>
              <plus/>
              <apply>
                <times/>
                <ci>ATP_ti</ci>
                <cn cellml:units="dimensionless">3.0</cn>
              </apply>
              <apply>
                <times/>
                <ci>ADP_ti</ci>
                <cn cellml:units="dimensionless">2.0</cn>
              </apply>
              <ci>Pi_ti</ci>
            </apply>
            <ci>R_cm</ci>
          </apply>
        </apply>
      </apply>
    </math>
  </component>

  <component cmeta:id="c_2" name="c_2">
    
    <variable units="micromolar" public_interface="out" name="c_2"/>
    <variable units="dimensionless" public_interface="in" name="R_cm"/>
    <variable units="flux" public_interface="in" name="delta_c_2_rxn01"/>
    <variable units="flux" public_interface="in" name="delta_c_2_rxn7"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci>time</ci>
          </bvar>
          <ci>c_2</ci>
        </apply>
        <apply>
          <times/>
          <ci>R_cm</ci>
          <cn cellml:units="dimensionless">2.0</cn>
          <apply>
            <plus/>
            <ci>delta_c_2_rxn01</ci>
            <apply>
              <times/>
              <ci>delta_c_2_rxn7</ci>
              <cn cellml:units="dimensionless">2.0</cn>
            </apply>
          </apply>
        </apply>
      </apply>
    </math>
  </component>

  <component cmeta:id="c_3" name="c_3">
    
    <variable units="micromolar" public_interface="out" name="c_3"/>
    <variable units="dimensionless" public_interface="in" name="R_cm"/>
    <variable units="flux" public_interface="in" name="delta_c_3_rxn7"/>
    <variable units="flux" public_interface="in" name="delta_c_3_rxn01"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci>time</ci>
          </bvar>
          <ci>c_3</ci>
        </apply>
        <apply>
          <times/>
          <ci>R_cm</ci>
          <apply>
            <plus/>
            <ci>delta_c_3_rxn01</ci>
            <ci>delta_c_3_rxn7</ci>
          </apply>
        </apply>
      </apply>
    </math>
  </component>

  <component cmeta:id="c_t" name="c_t">
    
    <variable units="micromolar" public_interface="out" name="c_t" initial_value="270.0"/>
    <variable units="micromolar" public_interface="in" name="c_2"/>
    <variable units="micromolar" public_interface="in" name="c_3"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <ci>c_t</ci>
        <apply>
          <plus/>
          <ci>c_2</ci>
          <ci>c_3</ci>
        </apply>
      </apply>
    </math>
  </component>

  <component cmeta:id="UQ" name="UQ">
    
    <variable units="micromolar" public_interface="out" name="UQ"/>
    <variable units="dimensionless" public_interface="in" name="R_cm"/>
    <variable units="flux" public_interface="in" name="delta_UQ_rxn01"/>
    <variable units="flux" public_interface="in" name="delta_UQ_rxn0"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <apply>
          <diff/>
           <bvar>
             <ci>time</ci>
           </bvar>
           <ci>UQ</ci>
        </apply>
        <apply>
          <times/>
          <ci>R_cm</ci>
          <apply>
            <plus/>
            <ci>delta_UQ_rxn01</ci>
            <ci>delta_UQ_rxn0</ci>
          </apply>
        </apply>
      </apply>
    </math>
  </component>

  <component cmeta:id="UQH2" name="UQH2">
    
    <variable units="micromolar" public_interface="out" name="UQH2"/>
    <variable units="dimensionless" public_interface="in" name="R_cm"/>
    <variable units="flux" public_interface="in" name="delta_UQH2_rxn0"/>
    <variable units="flux" public_interface="in" name="delta_UQH2_rxn01"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci>time</ci>
          </bvar>
          <ci>UQH2</ci>
        </apply>
        <apply>
          <times/>
          <ci>R_cm</ci>
          <apply>
            <plus/>
            <ci>delta_UQH2_rxn0</ci>
            <ci>delta_UQH2_rxn01</ci>
          </apply>
        </apply>
      </apply>
    </math>
  </component>

  <component cmeta:id="U_t" name="U_t">
    
    <variable units="micromolar" public_interface="out" name="U_t" initial_value="1350.0"/>
    <variable units="micromolar" public_interface="in" name="UQ"/>
    <variable units="micromolar" public_interface="in" name="UQH2"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <ci>U_t</ci>
        <apply>
          <plus/>
          <ci>UQ</ci>
          <ci>UQH2</ci>
        </apply>
      </apply>
    </math>
  </component>

  <component cmeta:id="a_2" name="a_2">
    
    <variable units="micromolar" public_interface="out" name="a_2"/>
    <variable units="flux" public_interface="in" name="delta_a_2_rxn7"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci>time</ci>
          </bvar>
          <ci>a_2</ci>
        </apply>
        <ci>delta_a_2_rxn7</ci>
      </apply>
    </math>
  </component>

  <component cmeta:id="a_3" name="a_3">
    
    <variable units="micromolar" public_interface="out" name="a_3"/>
    <variable units="flux" public_interface="in" name="delta_a_3_rxn7"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci>time</ci>
          </bvar>
          <ci>a_3</ci>
        </apply>
        <ci>delta_a_3_rxn7</ci>
      </apply>
    </math>
  </component>

  <component cmeta:id="a_t" name="a_t">
    
    <variable units="micromolar" public_interface="out" name="a_t" initial_value="135.0"/>
    <variable units="micromolar" public_interface="in" name="a_2"/>
    <variable units="micromolar" public_interface="in" name="a_3"/>
    <variable units="second" public_interface="in" name="time"/>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <ci>a_t</ci>
        <apply>
          <plus/>
          <ci>a_2</ci>
          <ci>a_3</ci>
        </apply>
      </apply>
    </math>
  </component>

  <!--  
    The following components describe all the enzymes involved in oxidative    
    phosphorylation.  Because enzymes only act as catalysts in reactions, their
    concentrations remain constant and therefore no delta variables are 
    declared.
  -->

  <component name="complex_I">
    <variable units="micromolar" public_interface="out" name="complex_I"/>
    <variable units="second" public_interface="in" name="time"/>
  </component>

  <component name="complex_III">
    <variable units="micromolar" public_interface="out" name="complex_III"/>
    <variable units="second" public_interface="in" name="time"/>
  </component>

  <component name="ATP_synthetase">
    <variable units="micromolar" public_interface="out" name="ATP_synthetase"/>
    <variable units="second" public_interface="in" name="time"/>
  </component>

  <component name="Pi_transferase">
    <variable units="micromolar" public_interface="out" name="Pi_transferase"/>
    <variable units="second" public_interface="in" name="time"/>
  </component>

  <component name="ATP_ADP_translocase">
    <variable units="micromolar" public_interface="out" name="ATP_ADP_translocase"/>
    <variable units="second" public_interface="in" name="time"/>
  </component>

  <component name="adenylate_kinase">
    <variable units="micromolar" public_interface="out" name="adenylate_kinase"/>
    <variable units="second" public_interface="in" name="time"/>
  </component>

  <component name="creatine_kinase">
    <variable units="micromolar" public_interface="out" name="creatine_kinase"/>
    <variable units="second" public_interface="in" name="time"/>
  </component>

  <!--
    The following components represent the reaction steps in the oxidative 
    phosphorylation pathway.
  -->

  <component cmeta:id="adenine_nucleotide_Mg_dissociations" name="adenine_nucleotide_Mg_dissociations">
    
    <variable units="micromolar" public_interface="in" name="ATP_te"/>
    <variable units="micromolar" public_interface="in" name="ATP_fe"/>
    <variable units="micromolar" public_interface="in" name="Mg_fe"/>
    <variable units="micromolar" public_interface="in" name="ADP_te"/>
    <variable units="micromolar" public_interface="in" name="ADP_fe"/>
    <variable units="micromolar" public_interface="in" name="ATP_ti"/>
    <variable units="micromolar" public_interface="in" name="ATP_fi"/>
    <variable units="micromolar" public_interface="in" name="Mg_fi"/>
    <variable units="micromolar" public_interface="in" name="ADP_ti"/>
    <variable units="micromolar" public_interface="in" name="ADP_fi"/>
    <variable units="flux" public_interface="out" name="delta_ATP_te_rxna1"/>
    <variable units="flux" public_interface="out" name="delta_ATP_fe_rxna1"/>
    <variable units="flux" public_interface="out" name="delta_Mg_fe_rxna1"/>
    <variable units="flux" public_interface="out" name="delta_ADP_te_rxna2"/>
    <variable units="flux" public_interface="out" name="delta_ADP_fe_rxna2"/>
    <variable units="flux" public_interface="out" name="delta_Mg_fe_rxna2"/>
    <variable units="flux" public_interface="out" name="delta_ATP_ti_rxna3"/>
    <variable units="flux" public_interface="out" name="delta_ATP_fi_rxna3"/>
    <variable units="flux" public_interface="out" name="delta_Mg_fi_rxna3"/>
    <variable units="flux" public_interface="out" name="delta_ADP_ti_rxna4"/>
    <variable units="flux" public_interface="out" name="delta_ADP_fi_rxna4"/>
    <variable units="flux" public_interface="out" name="delta_Mg_fi_rxna4"/>
    <variable units="micromolar" name="k_DTe" initial_value="24.0"/>
    <variable units="micromolar" name="k_DDe" initial_value="347.0"/>
    <variable units="micromolar" name="k_DTi" initial_value="17.0"/>
    <variable units="micromolar" name="k_DDi" initial_value="282.0"/>
    <variable units="flux" name="r_ATP_mi_diss"/>
    <variable units="flux" name="r_ADP_mi_diss"/>
    <variable units="flux" name="r_ATP_me_diss"/>
    <variable units="flux" name="r_ADP_me_diss"/>
    <reaction reversible="no">
      <variable_ref variable="ATP_te">
        <role stoichiometry="1" delta_variable="delta_ATP_te_rxna1" role="reactant"/>
      </variable_ref>
      <variable_ref variable="ATP_fe">
        <role stoichiometry="1" delta_variable="delta_ATP_fe_rxna1" role="product"/>
      </variable_ref>
      <variable_ref variable="Mg_fe">
        <role stoichiometry="1" delta_variable="delta_Mg_fe_rxna1" role="product"/>
      </variable_ref>
      <variable_ref variable="r_ATP_me_diss">
        <role role="rate">
          <math xmlns="http://www.w3.org/1998/Math/MathML">
            <apply>
              <eq/>
              <ci>r_ATP_me_diss</ci>
              <apply>
                <divide/>
                <ci>ATP_te</ci>
                <apply>
                  <divide/>
                  <apply>
                    <plus/>
                    <ci>Mg_fe</ci>
                    <cn cellml:units="dimensionless">1.0</cn>
                  </apply>
                  <ci>k_DTe</ci>
                </apply>
              </apply>
            </apply>
          </math>
        </role>
      </variable_ref>
    </reaction>

    <reaction reversible="no">
      <variable_ref variable="ADP_te">
        <role stoichiometry="1" delta_variable="delta_ADP_te_rxna2" role="reactant"/>
      </variable_ref>
      <variable_ref variable="ADP_fe">
        <role stoichiometry="1" delta_variable="delta_ADP_fe_rxna2" role="product"/>
      </variable_ref>
      <variable_ref variable="Mg_fe">
        <role stoichiometry="1" delta_variable="delta_Mg_fe_rxna2" role="product"/>
      </variable_ref>
      <variable_ref variable="r_ADP_me_diss">
        <role role="rate">
          <math xmlns="http://www.w3.org/1998/Math/MathML">
            <apply>
              <eq/>
              <ci>r_ADP_me_diss</ci>
              <apply>
                <divide/>
                <ci>ADP_te</ci>
                <apply>
                  <divide/>
                  <apply>
                    <plus/>
                    <ci>Mg_fe</ci>
                    <cn cellml:units="dimensionless">1.0</cn>
                  </apply>
                  <ci>k_DDe</ci>
                </apply>
              </apply>
            </apply>
          </math>
        </role>
      </variable_ref>
    </reaction>

    <reaction reversible="no">
      <variable_ref variable="ATP_ti">
        <role stoichiometry="1" delta_variable="delta_ATP_ti_rxna3" role="reactant"/>
      </variable_ref>
      <variable_ref variable="ATP_fi">
        <role stoichiometry="1" delta_variable="delta_ATP_fi_rxna3" role="product"/>
      </variable_ref>
      <variable_ref variable="Mg_fi">
        <role stoichiometry="1" delta_variable="delta_Mg_fi_rxna3" role="product"/>
      </variable_ref>
      <variable_ref variable="r_ATP_mi_diss">
        <role role="rate">
          <math xmlns="http://www.w3.org/1998/Math/MathML">
            <apply>
              <eq/>
              <ci>r_ATP_mi_diss</ci>
              <apply>
                <divide/>
                <ci>ATP_ti</ci>
                <apply>
                  <divide/>
                  <apply>
                    <plus/>
                    <ci>Mg_fi</ci>
                    <cn cellml:units="dimensionless">1.0</cn>
                  </apply>
                  <ci>k_DDi</ci>
                </apply>
              </apply>
            </apply>
          </math>
        </role>
      </variable_ref>
    </reaction>

    <reaction reversible="no">
      <variable_ref variable="ADP_ti">
        <role stoichiometry="1" delta_variable="delta_ADP_ti_rxna4" role="reactant"/>
      </variable_ref>
      <variable_ref variable="ADP_fi">
        <role stoichiometry="1" delta_variable="delta_ADP_fi_rxna4" role="product"/>
      </variable_ref>
      <variable_ref variable="Mg_fi">
        <role stoichiometry="1" delta_variable="delta_Mg_fi_rxna4" role="product"/>
      </variable_ref>
      <variable_ref variable="r_ADP_mi_diss">
        <role role="rate">
          <math xmlns="http://www.w3.org/1998/Math/MathML">
            <apply>
              <eq/>
              <ci>r_ADP_mi_diss</ci>
              <apply>
                <divide/>
                <ci>ADP_ti</ci>
                <apply>
                  <divide/>
                  <apply>
                    <plus/>
                    <ci>Mg_fi</ci>
                    <cn cellml:units="dimensionless">1.0</cn>
                  </apply>
                  <ci>k_DDi</ci>
                </apply>
              </apply>
            </apply>
          </math>
        </role>
      </variable_ref>
    </reaction>
  </component>

  <component cmeta:id="complex_I_rxn" name="complex_I_rxn">
    
    <variable units="micromolar" public_interface="in" name="NADH"/>
    <variable units="micromolar" public_interface="in" name="Hi"/>
    <variable units="micromolar" public_interface="in" name="UQ"/>
    <variable units="micromolar" public_interface="in" name="NAD"/>
    <variable units="micromolar" public_interface="in" name="He"/>
    <variable units="micromolar" public_interface="in" name="UQH2"/>
    <variable units="micromolar" public_interface="in" name="complex_I"/>
    <variable units="flux" public_interface="out" name="delta_NADH_rxn0"/>
    <variable units="flux" public_interface="out" name="delta_Hi_rxn0"/>
    <variable units="flux" public_interface="out" name="delta_UQ_rxn0"/>
    <variable units="flux" public_interface="out" name="delta_NAD_rxn0"/>
    <variable units="flux" public_interface="out" name="delta_He_rxn0"/>
    <variable units="flux" public_interface="out" name="delta_UQH2_rxn0"/>
    <variable units="millivolt" name="E_c1"/>
    <variable units="micromolar_per_millivolt_minute" name="k_c1" initial_value="238.95"/>
    <variable units="flux" name="r_c1"/>
    <reaction reversible="no">
      <variable_ref variable="NADH">
         <role stoichiometry="1" delta_variable="delta_NADH_rxn0" role="reactant"/>
      </variable_ref>
      <variable_ref variable="Hi">
         <role stoichiometry="1" delta_variable="delta_Hi_rxn0" role="reactant"/>
      </variable_ref>
      <variable_ref variable="UQ">
         <role stoichiometry="1" delta_variable="delta_UQ_rxn0" role="reactant"/>
      </variable_ref>
      <variable_ref variable="NAD">
         <role stoichiometry="1" delta_variable="delta_NAD_rxn0" role="product"/>
      </variable_ref>
      <variable_ref variable="He">
         <role stoichiometry="1" delta_variable="delta_He_rxn0" role="product"/>
      </variable_ref>
      <variable_ref variable="UQH2">
         <role stoichiometry="1" delta_variable="delta_UQH2_rxn0" role="product"/>
      </variable_ref>
      <variable_ref variable="complex_I">
         <role role="catalyst"/>
      </variable_ref>
      <variable_ref variable="r_c1">
        <role role="rate">
          <math xmlns="http://www.w3.org/1998/Math/MathML">
            <apply>
              <eq/>
              <ci>r_c1</ci>
              <apply>
                <times/>
                <ci>k_c1</ci>
                <ci>E_c1</ci>
              </apply>
            </apply>
          </math>
        </role>
      </variable_ref>
    </reaction>
  </component>

  <component cmeta:id="complex_III_rxn" name="complex_III_rxn">
    
    <variable units="micromolar" public_interface="in" name="c_3"/>
    <variable units="micromolar" public_interface="in" name="Hi"/>
    <variable units="micromolar" public_interface="in" name="UQ"/>
    <variable units="micromolar" public_interface="in" name="c_2"/>
    <variable units="micromolar" public_interface="in" name="He"/>
    <variable units="micromolar" public_interface="in" name="UQH2"/>
    <variable units="micromolar" public_interface="in" name="complex_III"/>
    <variable units="flux" public_interface="out" name="delta_c_3_rxn01"/>
    <variable units="flux" public_interface="out" name="delta_Hi_rxn01"/>
    <variable units="flux" public_interface="out" name="delta_UQ_rxn01"/>
    <variable units="flux" public_interface="out" name="delta_c_2_rxn01"/>
    <variable units="flux" public_interface="out" name="delta_He_rxn01"/>
    <variable units="flux" public_interface="out" name="delta_UQH2_rxn01"/>
    <variable units="millivolt" name="E_c3"/>
    <variable units="micromolar_per_millivolt_minute" name="k_c3" initial_value="136.41"/>
    <variable units="flux" name="r_c3"/>
    <reaction reversible="no">
      <variable_ref variable="c_3">
        <role stoichiometry="1" delta_variable="delta_c_3_rxn01" role="reactant"/>
      </variable_ref>
      <variable_ref variable="Hi">
        <role stoichiometry="1" delta_variable="delta_Hi_rxn01" role="reactant"/>
      </variable_ref>
      <variable_ref variable="UQH2">
        <role stoichiometry="1" delta_variable="delta_UQH2_rxn01" role="reactant"/>
      </variable_ref>
      <variable_ref variable="c_2">
        <role stoichiometry="1" delta_variable="delta_c_2_rxn01" role="product"/>
      </variable_ref>
      <variable_ref variable="He">
        <role stoichiometry="1" delta_variable="delta_He_rxn01" role="product"/>
      </variable_ref>
      <variable_ref variable="UQ">
        <role stoichiometry="1" delta_variable="delta_UQ_rxn01" role="product"/>
      </variable_ref>
      <variable_ref variable="complex_III">
        <role role="catalyst"/>
      </variable_ref>
      <variable_ref variable="r_c3">
        <role role="rate">
          <math xmlns="http://www.w3.org/1998/Math/MathML">
            <apply>
              <eq/>
              <ci>r_c3</ci>
              <apply>
                <times/>
                <ci>k_c3</ci>
                <ci>E_c3</ci>
              </apply>
            </apply>
          </math>
        </role>
      </variable_ref>
    </reaction>
  </component>

  <component cmeta:id="complex_IV_rxn" name="complex_IV_rxn">
    
    <variable units="micromolar" public_interface="in" name="Hi"/>
    <variable units="micromolar" public_interface="in" name="O2"/>
    <variable units="micromolar" public_interface="in" name="c_2"/>
    <variable units="micromolar" public_interface="in" name="He"/>
    <variable units="micromolar" public_interface="in" name="H2O"/>
    <variable units="micromolar" public_interface="in" name="c_3"/>
    <variable units="micromolar" public_interface="in" name="a_2"/>
    <variable units="micromolar" public_interface="in" name="a_3"/>
    <variable units="flux" public_interface="out" name="delta_Hi_rxn7"/>
    <variable units="flux" public_interface="out" name="delta_O2_rxn7"/>
    <variable units="flux" public_interface="out" name="delta_c_2_rxn7"/>
    <variable units="flux" public_interface="out" name="delta_a_2_rxn7"/>
    <variable units="flux" public_interface="out" name="delta_He_rxn7"/>
    <variable units="flux" public_interface="out" name="delta_H2O_rxn7"/>
    <variable units="flux" public_interface="out" name="delta_c_3_rxn7"/>
    <variable units="flux" public_interface="out" name="delta_a_3_rxn7"/>
    <variable units="micromolar" name="km_O" initial_value="120.0"/>
    <variable units="second_order_rate_constant_units" name="k_c4" initial_value="3.6"/>
    <variable units="flux" name="r_c4"/>
    <reaction reversible="no">
      <variable_ref variable="Hi">
        <role stoichiometry="8" delta_variable="delta_Hi_rxn7" role="reactant"/>
      </variable_ref>
      <variable_ref variable="O2">
        <role stoichiometry="1" delta_variable="delta_O2_rxn7" role="reactant"/>
      </variable_ref>
      <variable_ref variable="c_2">
        <role stoichiometry="4" delta_variable="delta_c_2_rxn7" role="reactant"/>
      </variable_ref>
      <variable_ref variable="a_3">
        <role stoichiometry="1" delta_variable="delta_a_3_rxn7" role="reactant"/>
      </variable_ref>
      <variable_ref variable="He">
        <role stoichiometry="1" delta_variable="delta_He_rxn7" role="product"/>
      </variable_ref>
      <variable_ref variable="H2O">
        <role stoichiometry="1" delta_variable="delta_H2O_rxn7" role="product"/>
      </variable_ref>
      <variable_ref variable="a_2">
        <role stoichiometry="1" delta_variable="delta_a_2_rxn7" role="product"/>
      </variable_ref>
      <variable_ref variable="c_3">
        <role stoichiometry="1" delta_variable="delta_c_3_rxn7" role="product"/>
      </variable_ref>
      <variable_ref variable="r_c4">
        <role role="rate">
          <math xmlns="http://www.w3.org/1998/Math/MathML">
            <apply>
              <eq/>
              <ci>r_c4</ci>
              <apply>
                <times/>
                <ci>k_c4</ci>
                <ci>a_2</ci>
                <apply>
                  <divide/>
                  <ci>c_2</ci>
                  <apply>
                    <plus/>
                    <cn cellml:units="dimensionless">1.0</cn>
                    <apply>
                      <divide/>
                      <ci>km_O</ci>
                      <ci>O2</ci>
                    </apply>
                  </apply>
                </apply>
              </apply>
            </apply>
          </math>
        </role>
      </variable_ref>
    </reaction>
  </component>

  <component cmeta:id="ATP_ADP_exchange" name="ATP_ADP_exchange">
    
     <variable units="micromolar" public_interface="in" name="He"/>
     <variable units="micromolar" public_interface="in" name="ATP_fi"/>
     <variable units="micromolar" public_interface="in" name="ADP_fe"/>
     <variable units="micromolar" public_interface="in" name="ADP_fi"/>
     <variable units="micromolar" public_interface="in" name="ATP_fe"/>
     <variable units="micromolar" public_interface="in" name="Hi"/>
     <variable units="micromolar" public_interface="in" name="ATP_ADP_translocase"/>
     <variable units="flux" public_interface="out" name="delta_He_rxn1"/>
     <variable units="flux" public_interface="out" name="delta_ATP_fi_rxn1"/>
     <variable units="flux" public_interface="out" name="delta_ADP_fe_rxn1"/>
     <variable units="flux" public_interface="out" name="delta_ADP_fi_rxn1"/>
     <variable units="flux" public_interface="out" name="delta_ATP_fe_rxn1"/>
     <variable units="flux" public_interface="out" name="delta_Hi_rxn1"/>
     <variable units="millivolt" public_interface="in" name="Z"/>
     <variable units="flux" name="k_EXCH" initial_value="54572"/>
     <variable units="micromolar" name="km_ADP" initial_value="3.5"/>
     <variable units="millivolt" public_interface="in" name="in_membrane_potential"/>
     <variable units="flux" name="r_EXCH"/>
     <reaction reversible="no">
        <variable_ref variable="Hi">
          <role stoichiometry="1" delta_variable="delta_Hi_rxn1" role="reactant"/>
        </variable_ref>
        <variable_ref variable="ATP_fi">
          <role stoichiometry="1" delta_variable="delta_ATP_fi_rxn1" role="reactant"/>
        </variable_ref>
        <variable_ref variable="ADP_fe">
          <role stoichiometry="1" delta_variable="delta_ADP_fe_rxn1" role="reactant"/>
        </variable_ref>
        <variable_ref variable="ADP_fi">
          <role stoichiometry="1" delta_variable="delta_ADP_fi_rxn1" role="product"/>
        </variable_ref>
        <variable_ref variable="ATP_fe">
          <role stoichiometry="1" delta_variable="delta_ATP_fe_rxn1" role="product"/>
        </variable_ref>
        <variable_ref variable="He">
          <role stoichiometry="1" delta_variable="delta_He_rxn1" role="product"/>
        </variable_ref>
        <variable_ref variable="ATP_ADP_translocase">
          <role role="catalyst"/>
        </variable_ref>
        <variable_ref variable="r_EXCH">
          <role role="rate">
            <math xmlns="http://www.w3.org/1998/Math/MathML">
              <apply>
              <eq/>
                <ci>r_EXCH</ci>
                <apply>
                <times/>
                  <ci>k_EXCH</ci>
                  <apply>
                  <minus/>
                    <apply>
                    <divide/>
                      <ci>ADP_fe</ci>
                      <apply>
                      <plus/>
                        <ci>ADP_fe</ci>
                        <apply>
                        <times/>
                          <ci>ATP_fe</ci>
                          <apply>
                          <power/>
                            <cn cellml:units="dimensionless">10.0</cn>
                            <apply>
                            <divide/>
                              <apply>
                              <minus/>
                                <ci>in_membrane_potential</ci>
                              </apply>
                              <ci>Z</ci>
                            </apply>
                          </apply>
                        </apply>
                      </apply>
                    </apply>
                    <apply>
                    <divide/>
                      <ci>ADP_fi</ci>
                      <apply>
                      <plus/>
                        <ci>ADP_fi</ci>
                        <apply>
                        <times/>
                          <ci>ATP_fi</ci>
                          <apply>
                          <power/>
                            <cn cellml:units="dimensionless">10.0</cn>
                            <apply>
                            <divide/>
                              <apply>
                              <minus/>
                                <ci>in_membrane_potential</ci>
                                </apply>
                              <ci>Z</ci>
                            </apply>
                          </apply>
                        </apply>
                      </apply>
                    </apply>
                  </apply>
                  <apply>
                  <divide/>
                     <cn cellml:units="dimensionless">1.0</cn>
                     <apply>
                    <plus/>
                        <cn cellml:units="dimensionless">1.0</cn>
                        <apply>
                      <divide/>
                           <ci>km_ADP</ci>
                           <ci>ADP_fe</ci>
                        </apply>
                     </apply>
                  </apply> 
                </apply>
              </apply>
            </math>
          </role>
        </variable_ref>
     </reaction>
  </component>  

  <component cmeta:id="ATP_utilisation" name="ATP_utilisation">
    
    <variable units="micromolar" public_interface="in" name="ATP_te"/>
    <variable units="micromolar" public_interface="in" name="Pi_te"/>
    <variable units="micromolar" public_interface="in" name="ADP_te"/>
    <variable units="flux" public_interface="out" name="delta_ATP_te_rxn2"/>
    <variable units="flux" public_interface="out" name="delta_Pi_te_rxn2"/>
    <variable units="flux" public_interface="out" name="delta_ADP_te_rxn2"/>
    <variable units="micromolar" name="km_A" initial_value="150.0"/>
    <variable units="flux" name="k_UT" initial_value="686.5"/>
    <variable units="flux" name="r_UT"/>
    <reaction reversible="no">
      <variable_ref variable="ATP_te">
        <role stoichiometry="1" delta_variable="delta_ATP_te_rxn2" role="reactant"/>
      </variable_ref>
      <variable_ref variable="Pi_te">
        <role stoichiometry="1" delta_variable="delta_Pi_te_rxn2" role="product"/>
      </variable_ref>
      <variable_ref variable="ADP_te">
        <role stoichiometry="1" delta_variable="delta_ADP_te_rxn2" role="product"/>
      </variable_ref>
      <variable_ref variable="r_UT">
        <role role="rate">
          <math xmlns="http://www.w3.org/1998/Math/MathML">
            <apply>
              <eq/>
              <ci>r_UT</ci>
              <apply>
                <times/>
                <ci>k_UT</ci>
                <apply>
                  <divide/>
                  <cn cellml:units="dimensionless">1.0</cn>
                  <apply>
                    <plus/>
                    <cn cellml:units="dimensionless">1.0</cn>
                    <apply>
                      <divide/>
                      <ci>km_A</ci>
                      <ci>ATP_te</ci>
                    </apply>
                  </apply>
                </apply>
              </apply>
            </apply>
          </math>
        </role>
      </variable_ref>
    </reaction>
  </component>

  <component cmeta:id="adenylate_phosphate_transfer" name="adenylate_phosphate_transfer">
    
    <variable units="micromolar" public_interface="in" name="ADP_fe"/>
    <variable units="micromolar" public_interface="in" name="ADP_me"/>
    <variable units="micromolar" public_interface="in" name="ATP_me"/>
    <variable units="micromolar" public_interface="in" name="AMP_e"/>
    <variable units="micromolar" public_interface="in" name="adenylate_kinase"/>
    <variable units="flux" public_interface="out" name="delta_ADP_fe_rxn3"/>
    <variable units="flux" public_interface="out" name="delta_ADP_me_rxn3"/>
    <variable units="flux" public_interface="out" name="delta_ATP_me_rxn3"/>
    <variable units="flux" public_interface="out" name="delta_AMP_e_rxn3"/>
    <variable units="second_order_rate_constant_units" name="kf_AK" initial_value="862.10"/>
    <variable units="second_order_rate_constant_units" name="kb_AK" initial_value="22.747"/>
    <variable units="flux" name="r_AK"/>
    <reaction reversible="yes">
      <variable_ref variable="ADP_fe">
        <role stoichiometry="1" direction="forward" delta_variable="delta_ADP_fe_rxn3" role="reactant"/>
      </variable_ref>
      <variable_ref variable="ADP_me">
        <role stoichiometry="1" direction="forward" delta_variable="delta_ADP_me_rxn3" role="reactant"/>
      </variable_ref>
      <variable_ref variable="ATP_me">
        <role stoichiometry="1" direction="forward" delta_variable="delta_ATP_me_rxn3" role="product"/>
      </variable_ref>
      <variable_ref variable="AMP_e">
        <role stoichiometry="1" direction="forward" delta_variable="delta_AMP_e_rxn3" role="product"/>
      </variable_ref>
      <variable_ref variable="adenylate_kinase">
        <role role="catalyst"/>
      </variable_ref>
      <variable_ref variable="r_AK">
        <role role="rate">
          <math xmlns="http://www.w3.org/1998/Math/MathML">
            <apply>
              <eq/>
              <ci>r_AK</ci>
              <apply>
                <minus/>
                <apply>
                  <times/>
                  <ci>kf_AK</ci>
                  <ci>ADP_me</ci>
                  <ci>ADP_fe</ci>
                </apply>
                <apply>
                  <times/>
                  <ci>kb_AK</ci>
                  <ci>ATP_me</ci>
                  <ci>AMP_e</ci>
                </apply>
              </apply>
            </apply>
          </math>
        </role>
      </variable_ref>
    </reaction>
  </component>

  <component cmeta:id="substrate_dehydrogenation" name="substrate_dehydrogenation">
    
    <variable units="micromolar" public_interface="in" name="NAD"/>
    <variable units="micromolar" public_interface="in" name="NADH"/>
    <variable units="flux" public_interface="out" name="delta_NAD_rxn4"/>
    <variable units="flux" public_interface="out" name="delta_NADH_rxn4"/>
    <variable units="flux" name="k_DH" initial_value="28074"/>
    <variable units="micromolar" name="km_N" initial_value="100.0"/>
    <variable units="dimensionless" name="PD" initial_value="0.8"/>
    <variable units="flux" name="r_DH"/>
    <reaction reversible="no">
      <variable_ref variable="NAD">
        <role stoichiometry="1" delta_variable="delta_NAD_rxn4" role="reactant"/>
      </variable_ref>
      <variable_ref variable="NADH">
        <role stoichiometry="1" delta_variable="delta_NADH_rxn4" role="product"/>
      </variable_ref>
      <variable_ref variable="r_DH">
        <role role="rate">
          <math xmlns="http://www.w3.org/1998/Math/MathML">
            <apply>
              <eq/>
              <ci>r_DH</ci>
              <apply>
                <times/>
                <ci>k_DH</ci>
                <apply>
                  <divide/>
                  <cn cellml:units="dimensionless">1.0</cn>
                  <apply>
                    <power/>
                    <apply>
                      <plus/>
                      <cn cellml:units="flux">1.0</cn>
                      <apply>
                        <times/>
                        <ci>km_N</ci>
                        <apply>
                          <divide/>
                          <ci>NAD</ci>
                          <ci>NADH</ci>
                        </apply>
                      </apply>
                    </apply>
                    <ci>PD</ci>
                  </apply>
                </apply>
              </apply>
            </apply>
          </math>
        </role>
      </variable_ref>
    </reaction>
  </component>

  <component cmeta:id="proton_leakage" name="proton_leakage">
    
    <variable units="micromolar" public_interface="in" name="He"/>
    <variable units="micromolar" public_interface="in" name="Hi"/>
    <variable units="flux" public_interface="out" name="delta_He_rxn5"/>
    <variable units="flux" public_interface="out" name="delta_Hi_rxn5"/>
    <variable units="flux" name="kL1" initial_value="2.5"/>
    <variable units="per_millivolt" name="kL2" initial_value="0.038"/>
    <variable units="millivolt" public_interface="in" name="protonmotive_force"/>
    <variable units="flux" name="r_LK"/>
    <reaction reversible="no">
      <variable_ref variable="He">
        <role stoichiometry="1" delta_variable="delta_He_rxn5" role="reactant"/>
      </variable_ref>
      <variable_ref variable="Hi">
        <role stoichiometry="1" delta_variable="delta_Hi_rxn5" role="product"/>
      </variable_ref>
      <variable_ref variable="r_LK">
        <role role="rate">
          <math xmlns="http://www.w3.org/1998/Math/MathML">
            <apply>
              <eq/>
              <ci>r_LK</ci>
              <apply>
                <times/>
                <ci>kL1</ci>
                <apply>
                  <minus/>
                  <apply>
                    <exp/>
                    <apply>
                      <times/>
                      <ci>kL2</ci>
                      <ci>protonmotive_force</ci>
                    </apply>
                  </apply>
                  <cn cellml:units="dimensionless">1.0</cn>
                </apply>
              </apply>
            </apply>
          </math>
        </role>
      </variable_ref>
    </reaction>
  </component>

  <component cmeta:id="ATP_synthesis" name="ATP_synthesis">
    
    <variable units="micromolar" public_interface="in" name="ADP_mi"/>
    <variable units="micromolar" public_interface="in" name="ATP_ti"/>
    <variable units="micromolar" public_interface="in" name="ADP_ti"/>
    <variable units="micromolar" public_interface="in" name="Pi_ti"/>
    <variable units="micromolar" public_interface="in" name="He"/>
    <variable units="micromolar" public_interface="in" name="ATP_mi"/>
    <variable units="micromolar" public_interface="in" name="Hi"/>
    <variable units="micromolar" public_interface="in" name="ATP_synthetase"/>
    <variable units="flux" public_interface="out" name="delta_He_rxn6"/>
    <variable units="flux" public_interface="out" name="delta_Hi_rxn6"/>
    <variable units="flux" public_interface="out" name="delta_ADP_mi_rxn6"/>
    <variable units="flux" public_interface="out" name="delta_Pi_ti_rxn6"/>
    <variable units="flux" public_interface="out" name="delta_ATP_mi_rxn6"/>
    <variable units="kilojoule_per_mole" name="Gibbs_SN"/>
    <variable units="kilojoule_per_mole" name="Gibbs_P"/>
    <variable units="kilojoule_per_mole" name="Gibbs_P0" initial_value="31.9"/>
    <variable units="dimensionless" public_interface="out" name="nA" initial_value="2.5"/>
    <variable units="millivolt" public_interface="in" name="protonmotive_force"/>
    <variable units="millivolt" public_interface="in" name="Z"/>
    <variable units="kilojoule_per_mole_millivolt" public_interface="in" name="F"/>
    <variable units="dimensionless" name="gamma"/>
    <variable units="flux" name="k_SN" initial_value="34316"/>
    <variable units="flux" name="r_SN"/>

    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <eq/>
        <ci>Gibbs_SN</ci>
        <apply>
          <minus/>
          <apply>
            <times/>
            <ci>nA</ci>
            <ci>protonmotive_force</ci>
          </apply>
          <ci>Gibbs_P</ci>
        </apply>
      </apply>

      <apply>
        <eq/>
        <ci>Gibbs_P</ci>
        <apply>
          <plus/>
          <apply>
            <divide/>
            <ci>Gibbs_P0</ci>
            <ci>F</ci>
          </apply>
          <apply>
            <times/>
            <ci>Z</ci>
            <apply>
              <log/>
              <apply>
                <divide/>
                <apply>
                  <times/>
                  <cn cellml:units="dimensionless">1000000.0</cn>
                  <ci>ATP_ti</ci>
                </apply>
                <apply>
                  <times/>
                  <ci>ADP_ti</ci>
                  <ci>Pi_ti</ci>
                </apply>
              </apply>
            </apply>
          </apply>
        </apply>
      </apply>

      <apply>
        <eq/>
         <ci>gamma</ci>
         <apply>
          <power/>
            <cn cellml:units="dimensionless">10.0</cn>
            <apply>
            <divide/>
               <ci>Gibbs_SN</ci>
               <ci>Z</ci>
            </apply>
         </apply>
      </apply>
    </math>

    <reaction reversible="no">
      <variable_ref variable="ADP_mi">
        <role stoichiometry="1" delta_variable="delta_ADP_mi_rxn6" role="reactant"/>
      </variable_ref>
      <variable_ref variable="Pi_ti">
        <role stoichiometry="1" delta_variable="delta_Pi_ti_rxn6" role="reactant"/>
      </variable_ref>
      <variable_ref variable="ATP_mi">
        <role stoichiometry="1" delta_variable="delta_ATP_mi_rxn6" role="product"/>
      </variable_ref>
      <variable_ref variable="ATP_synthetase">
        <role role="catalyst"/>
      </variable_ref>
      <variable_ref variable="r_SN">
        <role role="rate">
          <math xmlns="http://www.w3.org/1998/Math/MathML">
            <apply>
              <eq/>
              <ci>r_SN</ci>
              <apply>
                <times/>
                <ci>k_SN</ci>
                <apply>
                  <divide/>
                  <apply>
                    <minus/>
                    <ci>gamma</ci>
                    <cn cellml:units="dimensionless">1.0</cn>
                  </apply>
                  <apply>
                    <plus/>
                    <ci>gamma</ci>
                    <cn cellml:units="dimensionless">1.0</cn>
                  </apply>
                </apply>
              </apply>
            </apply>
          </math>
        </role>
      </variable_ref>
    </reaction>
  </component>

  <component cmeta:id="phosphate_translocation" name="phosphate_translocation">
    
    <variable units="micromolar" public_interface="in" name="Pi_je"/>
    <variable units="micromolar" public_interface="in" name="He"/>
    <variable units="micromolar" public_interface="in" name="Pi_ji"/>
    <variable units="micromolar" public_interface="in" name="Hi"/>
    <variable units="micromolar" public_interface="in" name="Pi_transferase"/>
    <variable units="flux" public_interface="out" name="delta_Pi_je_rxn8"/>
    <variable units="flux" public_interface="out" name="delta_He_rxn8"/>
    <variable units="flux" public_interface="out" name="delta_Pi_ji_rxn8"/>
    <variable units="flux" public_interface="out" name="delta_Hi_rxn8"/>
    <variable units="second_order_rate_constant_units" name="k_PI" initial_value="69.421"/>
    <variable units="flux" name="r_PI"/>
    <reaction reversible="no">
      <variable_ref variable="Pi_je">
        <role stoichiometry="1" delta_variable="delta_Pi_je_rxn8" role="reactant"/>
      </variable_ref>
      <variable_ref variable="He">
        <role stoichiometry="1" delta_variable="delta_He_rxn8" role="reactant"/>
      </variable_ref>
      <variable_ref variable="Pi_ji">
        <role stoichiometry="1" delta_variable="delta_Pi_ji_rxn8" role="product"/>
      </variable_ref>
      <variable_ref variable="Hi">
        <role stoichiometry="1" delta_variable="delta_Hi_rxn8" role="product"/>
      </variable_ref>
      <variable_ref variable="Pi_transferase">
        <role role="catalyst"/>
      </variable_ref>
      <variable_ref variable="r_PI">
        <role role="rate">
          <math xmlns="http://www.w3.org/1998/Math/MathML">
            <apply>
              <eq/>
              <ci>r_PI</ci>
              <apply>
                <times/>
                <ci>k_PI</ci>
                <apply>
                  <minus/>
                  <apply>
                    <times/>
                    <ci>He</ci>
                    <ci>Pi_je</ci>
                  </apply>
                  <apply>
                    <times/>
                    <ci>Hi</ci>
                    <ci>Pi_ji</ci>
                  </apply>
                </apply>
              </apply>
            </apply>
          </math>
        </role>
      </variable_ref>
    </reaction>
  </component>

  <component cmeta:id="creatine_kinase_rxn" name="creatine_kinase_rxn">
    
    <variable units="micromolar" public_interface="in" name="ATP_te"/>
    <variable units="micromolar" public_interface="in" name="He"/>
    <variable units="micromolar" public_interface="in" name="ADP_te"/>
    <variable units="micromolar" public_interface="in" name="Cr"/>
    <variable units="micromolar" public_interface="in" name="PCr"/>
    <variable units="micromolar" public_interface="in" name="creatine_kinase"/>
    <variable units="flux" public_interface="out" name="delta_ATP_te_rxn9"/>
    <variable units="flux" public_interface="out" name="delta_He_rxn9"/>
    <variable units="flux" public_interface="out" name="delta_ADP_te_rxn9"/>
    <variable units="flux" public_interface="out" name="delta_Cr_rxn9"/>
    <variable units="flux" public_interface="out" name="delta_PCr_rxn9"/>
    <variable units="third_order_rate_constant_units" name="kf_CK" initial_value="1.9258"/> 
    <variable units="second_order_rate_constant_units" name="kb_CK" initial_value="0.00087538"/>
    <variable units="flux" name="r_CK"/>
    <reaction reversible="yes">
      <variable_ref variable="ADP_te">
        <role stoichiometry="1" delta_variable="delta_ADP_te_rxn9" role="reactant"/>
      </variable_ref>
      <variable_ref variable="PCr">
        <role stoichiometry="1" delta_variable="delta_PCr_rxn9" role="reactant"/>
      </variable_ref>
      <variable_ref variable="He">
        <role stoichiometry="1" delta_variable="delta_He_rxn9" role="reactant"/>
      </variable_ref>
      <variable_ref variable="ATP_te">
        <role stoichiometry="1" delta_variable="delta_ATP_te_rxn9" role="product"/>
      </variable_ref>
      <variable_ref variable="Cr">
        <role stoichiometry="1" delta_variable="delta_Cr_rxn9" role="product"/>
      </variable_ref>
      <variable_ref variable="creatine_kinase">
        <role role="catalyst"/>
      </variable_ref>
      <variable_ref variable="r_CK">
        <role role="rate">
          <math xmlns="http://www.w3.org/1998/Math/MathML">
            <apply>
              <eq/>
              <ci>r_CK</ci>
              <apply>
                <minus/>
                <apply>
                  <times/>
                  <ci>kf_CK</ci>
                  <ci>ADP_te</ci>
                  <ci>PCr</ci>
                  <ci>He</ci>
                </apply>
                <apply>
                  <times/>
                  <ci>kb_CK</ci>
                  <ci>ATP_te</ci>
                  <ci>Cr</ci>
                </apply>
              </apply>
            </apply>
          </math>
        </role>
      </variable_ref>
    </reaction>
  </component>

  <component cmeta:id="proton_efflux" name="proton_efflux">
    
    <variable units="micromolar" public_interface="in" name="He"/>
    <variable units="micromolar" public_interface="in" name="Ho"/>
    <variable units="dimensionless" public_interface="in" name="pH_e"/>
    <variable units="dimensionless" name="pH_o" initial_value="7.0"/>
    <variable units="flux" public_interface="out" name="delta_He_rxn10"/>
    <variable units="flux" public_interface="out" name="delta_Ho_rxn10"/>
    <variable units="flux" name="k_EFF" initial_value="1.9258"/> 
    <variable units="flux" name="r_EFF"/>
    <reaction reversible="yes">
      <variable_ref variable="He">
        <role stoichiometry="1" delta_variable="delta_He_rxn10" role="reactant"/>
      </variable_ref>
      <variable_ref variable="Ho">
        <role stoichiometry="1" delta_variable="delta_Ho_rxn10" role="product"/>
      </variable_ref>
      <variable_ref variable="r_EFF">
        <role role="rate">
          <math xmlns="http://www.w3.org/1998/Math/MathML">
            <apply>
              <eq/>
              <ci>r_EFF</ci>
              <apply>
                <times/>
                <ci>k_EFF</ci>
                <apply>
                  <minus/>
                  <ci>pH_o</ci>
                  <ci>pH_e</ci>
                </apply>
              </apply>
            </apply>
          </math>
        </role>
      </variable_ref>
    </reaction>
  </component>

  <connection>
    <map_components component_2="ATP_te" component_1="adenine_nucleotide_Mg_dissociations"/>
    <map_variables variable_2="ATP_te" variable_1="ATP_te"/>
    <map_variables variable_2="delta_ATP_te_rxna1" variable_1="delta_ATP_te_rxna1"/>
  </connection>

  <connection>
    <map_components component_2="ATP_fe" component_1="adenine_nucleotide_Mg_dissociations"/>
    <map_variables variable_2="ATP_fe" variable_1="ATP_fe"/>
    <map_variables variable_2="delta_ATP_fe_rxna1" variable_1="delta_ATP_fe_rxna1"/>
  </connection>

  <connection>
    <map_components component_2="Mg_fe" component_1="adenine_nucleotide_Mg_dissociations"/>
    <map_variables variable_2="Mg_fe" variable_1="Mg_fe"/>
    <map_variables variable_2="delta_Mg_fe_rxna1" variable_1="delta_Mg_fe_rxna1"/>
    <map_variables variable_2="delta_Mg_fe_rxna2" variable_1="delta_Mg_fe_rxna2"/>
  </connection>

  <connection>
    <map_components component_2="ADP_te" component_1="adenine_nucleotide_Mg_dissociations"/>
    <map_variables variable_2="ADP_te" variable_1="ADP_te"/>
    <map_variables variable_2="delta_ADP_te_rxna2" variable_1="delta_ADP_te_rxna2"/>
  </connection>

  <connection>
    <map_components component_2="ADP_fe" component_1="adenine_nucleotide_Mg_dissociations"/>
    <map_variables variable_2="ADP_fe" variable_1="ADP_fe"/>
    <map_variables variable_2="delta_ADP_fe_rxna2" variable_1="delta_ADP_fe_rxna2"/>
  </connection>

  <connection>
    <map_components component_2="Mg_fi" component_1="adenine_nucleotide_Mg_dissociations"/>
    <map_variables variable_2="Mg_fi" variable_1="Mg_fi"/>
    <map_variables variable_2="delta_Mg_fi_rxna3" variable_1="delta_Mg_fi_rxna3"/>
    <map_variables variable_2="delta_Mg_fi_rxna4" variable_1="delta_Mg_fi_rxna4"/>
  </connection>

  <connection>
    <map_components component_2="ATP_ti" component_1="adenine_nucleotide_Mg_dissociations"/>
    <map_variables variable_2="ATP_ti" variable_1="ATP_ti"/>
    <map_variables variable_2="delta_ATP_ti_rxna3" variable_1="delta_ATP_ti_rxna3"/>
  </connection>

  <connection>
    <map_components component_2="ATP_fi" component_1="adenine_nucleotide_Mg_dissociations"/>
    <map_variables variable_2="ATP_fi" variable_1="ATP_fi"/>
    <map_variables variable_2="delta_ATP_fi_rxna3" variable_1="delta_ATP_fi_rxna3"/>
  </connection>

  <connection>
    <map_components component_2="ADP_ti" component_1="adenine_nucleotide_Mg_dissociations"/>
    <map_variables variable_2="ADP_ti" variable_1="ADP_ti"/>
    <map_variables variable_2="delta_ADP_ti_rxna4" variable_1="delta_ADP_ti_rxna4"/>
  </connection>

  <connection>
    <map_components component_2="ADP_fi" component_1="adenine_nucleotide_Mg_dissociations"/>
    <map_variables variable_2="ADP_fi" variable_1="ADP_fi"/>
    <map_variables variable_2="delta_ADP_fi_rxna4" variable_1="delta_ADP_fi_rxna4"/>
  </connection>

  <connection>
    <map_components component_2="complex_I_rxn" component_1="NAD"/>
    <map_variables variable_2="NAD" variable_1="NAD"/>
    <map_variables variable_2="delta_NAD_rxn0" variable_1="delta_NAD_rxn0"/>
  </connection>

  <connection>
    <map_components component_2="complex_I_rxn" component_1="NADH"/>
    <map_variables variable_2="NADH" variable_1="NADH"/>
    <map_variables variable_2="delta_NADH_rxn0" variable_1="delta_NADH_rxn0"/>
  </connection>

  <connection>
    <map_components component_2="complex_I_rxn" component_1="He"/>
    <map_variables variable_2="He" variable_1="He"/>
    <map_variables variable_2="delta_He_rxn0" variable_1="delta_He_rxn0"/>
  </connection>

  <connection>
    <map_components component_2="complex_I_rxn" component_1="Hi"/>
    <map_variables variable_2="Hi" variable_1="Hi"/>
    <map_variables variable_2="delta_Hi_rxn0" variable_1="delta_Hi_rxn0"/>
  </connection>

  <connection>
    <map_components component_2="complex_I_rxn" component_1="UQ"/>
    <map_variables variable_2="UQ" variable_1="UQ"/>
    <map_variables variable_2="delta_UQ_rxn0" variable_1="delta_UQ_rxn0"/>
  </connection>

  <connection>
    <map_components component_2="complex_I_rxn" component_1="UQH2"/>
    <map_variables variable_2="UQH2" variable_1="UQH2"/>
    <map_variables variable_2="delta_UQH2_rxn0" variable_1="delta_UQH2_rxn0"/>
  </connection>

  <connection>
    <map_components component_2="complex_I_rxn" component_1="complex_I"/>
    <map_variables variable_2="complex_I" variable_1="complex_I"/>
  </connection>

  <connection>
    <map_components component_2="complex_III_rxn" component_1="He"/>
    <map_variables variable_2="He" variable_1="He"/>
    <map_variables variable_2="delta_He_rxn01" variable_1="delta_He_rxn01"/>
  </connection>

  <connection>
    <map_components component_2="complex_III_rxn" component_1="Hi"/>
    <map_variables variable_2="Hi" variable_1="Hi"/>
    <map_variables variable_2="delta_Hi_rxn01" variable_1="delta_Hi_rxn01"/>
  </connection>

  <connection>
    <map_components component_2="complex_III_rxn" component_1="UQ"/>
    <map_variables variable_2="UQ" variable_1="UQ"/>
    <map_variables variable_2="delta_UQ_rxn01" variable_1="delta_UQ_rxn01"/>
  </connection>

  <connection>
    <map_components component_2="complex_III_rxn" component_1="UQH2"/>
    <map_variables variable_2="UQH2" variable_1="UQH2"/>
    <map_variables variable_2="delta_UQH2_rxn01" variable_1="delta_UQH2_rxn01"/>
  </connection>

  <connection>
    <map_components component_2="complex_III_rxn" component_1="c_3"/>
    <map_variables variable_2="c_3" variable_1="c_3"/>
    <map_variables variable_2="delta_c_3_rxn01" variable_1="delta_c_3_rxn01"/>
  </connection>

  <connection>
    <map_components component_2="complex_III_rxn" component_1="c_2"/>
    <map_variables variable_2="c_2" variable_1="c_2"/>
    <map_variables variable_2="delta_c_2_rxn01" variable_1="delta_c_2_rxn01"/>
  </connection>

  <connection>
    <map_components component_2="complex_III_rxn" component_1="complex_III"/>
    <map_variables variable_2="complex_III" variable_1="complex_III"/>
  </connection>

  <connection>
    <map_components component_2="complex_IV_rxn" component_1="He"/>
    <map_variables variable_2="He" variable_1="He"/>
    <map_variables variable_2="delta_He_rxn7" variable_1="delta_He_rxn7"/>
  </connection>

  <connection>
    <map_components component_2="complex_IV_rxn" component_1="Hi"/>
    <map_variables variable_2="Hi" variable_1="Hi"/>
    <map_variables variable_2="delta_Hi_rxn7" variable_1="delta_Hi_rxn7"/>
  </connection>

  <connection>
    <map_components component_2="complex_IV_rxn" component_1="c_2"/>
    <map_variables variable_2="c_2" variable_1="c_2"/>
    <map_variables variable_2="delta_c_2_rxn7" variable_1="delta_c_2_rxn7"/>
  </connection>

  <connection>
    <map_components component_2="complex_IV_rxn" component_1="c_3"/>
    <map_variables variable_2="c_3" variable_1="c_3"/>
    <map_variables variable_2="delta_c_3_rxn7" variable_1="delta_c_3_rxn7"/>
  </connection>

  <connection>
    <map_components component_2="complex_IV_rxn" component_1="a_2"/>
    <map_variables variable_2="a_2" variable_1="a_2"/>
    <map_variables variable_2="delta_a_2_rxn7" variable_1="delta_a_2_rxn7"/>
  </connection>

  <connection>
    <map_components component_2="complex_IV_rxn" component_1="a_3"/>
    <map_variables variable_2="a_3" variable_1="a_3"/>
    <map_variables variable_2="delta_a_3_rxn7" variable_1="delta_a_3_rxn7"/>
  </connection>

  <connection>
    <map_components component_2="complex_IV_rxn" component_1="O2"/>
    <map_variables variable_2="O2" variable_1="O2"/>
    <map_variables variable_2="delta_O2_rxn7" variable_1="delta_O2_rxn7"/>
  </connection>

  <connection>
    <map_components component_2="complex_IV_rxn" component_1="H2O"/>
    <map_variables variable_2="H2O" variable_1="H2O"/>
    <map_variables variable_2="delta_H2O_rxn7" variable_1="delta_H2O_rxn7"/>
  </connection>

  <connection>
    <map_components component_2="ATP_ADP_exchange" component_1="He"/>
    <map_variables variable_2="He" variable_1="He"/>
    <map_variables variable_2="delta_He_rxn1" variable_1="delta_He_rxn1"/>
  </connection>

  <connection>
    <map_components component_2="ATP_ADP_exchange" component_1="Hi"/>
    <map_variables variable_2="Hi" variable_1="Hi"/>
    <map_variables variable_2="delta_Hi_rxn1" variable_1="delta_Hi_rxn1"/>
  </connection>

  <connection>
    <map_components component_2="ATP_ADP_exchange" component_1="ATP_fi"/>
    <map_variables variable_2="ATP_fi" variable_1="ATP_fi"/>
    <map_variables variable_2="delta_ATP_fi_rxn1" variable_1="delta_ATP_fi_rxn1"/>
  </connection>

  <connection>
    <map_components component_2="ATP_ADP_exchange" component_1="ADP_fi"/>
    <map_variables variable_2="ADP_fi" variable_1="ADP_fi"/>
    <map_variables variable_2="delta_ADP_fi_rxn1" variable_1="delta_ADP_fi_rxn1"/>
  </connection>
  
  <connection>
    <map_components component_2="ATP_ADP_exchange" component_1="ADP_te"/>
    <map_variables variable_2="delta_ADP_fe_rxn1" variable_1="delta_ADP_fe_rxn1"/>
  </connection>
  
  <connection>
    <map_components component_2="ATP_ADP_exchange" component_1="ATP_te"/>
    <map_variables variable_2="delta_ATP_fe_rxn1" variable_1="delta_ATP_fe_rxn1"/>
  </connection>
  
  <connection>
    <map_components component_2="ATP_ADP_exchange" component_1="ATP_ti"/>
    <map_variables variable_2="delta_ATP_fi_rxn1" variable_1="delta_ATP_fi_rxn1"/>
  </connection>
  
  <connection>
    <map_components component_2="ATP_ADP_exchange" component_1="ADP_ti"/>
    <map_variables variable_2="delta_ADP_fi_rxn1" variable_1="delta_ADP_fi_rxn1"/>
  </connection>
  
  <connection>
    <map_components component_2="ATP_ADP_exchange" component_1="ADP_fe"/>
    <map_variables variable_2="ADP_fe" variable_1="ADP_fe"/>
    <map_variables variable_2="delta_ADP_fe_rxn1" variable_1="delta_ADP_fe_rxn1"/>
  </connection>

  <connection>
    <map_components component_2="ATP_ADP_exchange" component_1="ATP_fe"/>
    <map_variables variable_2="ATP_fe" variable_1="ATP_fe"/>
    <map_variables variable_2="delta_ATP_fe_rxn1" variable_1="delta_ATP_fe_rxn1"/>
  </connection>

  <connection>
    <map_components component_2="ATP_ADP_exchange" component_1="ATP_ADP_translocase"/>
    <map_variables variable_2="ATP_ADP_translocase" variable_1="ATP_ADP_translocase"/>
  </connection>

  <connection>
    <map_components component_2="ATP_utilisation" component_1="ATP_te"/>
    <map_variables variable_2="ATP_te" variable_1="ATP_te"/>
    <map_variables variable_2="delta_ATP_te_rxn2" variable_1="delta_ATP_te_rxn2"/>
  </connection>

  <connection>
    <map_components component_2="ATP_utilisation" component_1="ADP_te"/>
    <map_variables variable_2="ADP_te" variable_1="ADP_te"/>
    <map_variables variable_2="delta_ADP_te_rxn2" variable_1="delta_ADP_te_rxn2"/>
  </connection>

  <connection>
    <map_components component_2="ATP_utilisation" component_1="Pi_te"/>
    <map_variables variable_2="Pi_te" variable_1="Pi_te"/>
    <map_variables variable_2="delta_Pi_te_rxn2" variable_1="delta_Pi_te_rxn2"/>
  </connection>

  <connection>
    <map_components component_2="adenylate_phosphate_transfer" component_1="ADP_fe"/>
    <map_variables variable_2="ADP_fe" variable_1="ADP_fe"/>
    <map_variables variable_2="delta_ADP_fe_rxn3" variable_1="delta_ADP_fe_rxn3"/>
  </connection>
  
  <connection>
    <map_components component_2="adenylate_phosphate_transfer" component_1="ADP_te"/>
    <map_variables variable_2="delta_ADP_fe_rxn3" variable_1="delta_ADP_fe_rxn3"/>
    <map_variables variable_2="delta_ADP_me_rxn3" variable_1="delta_ADP_me_rxn3"/>
  </connection>
  
  <connection>
    <map_components component_2="adenylate_phosphate_transfer" component_1="ADP_me"/>
    <map_variables variable_2="ADP_me" variable_1="ADP_me"/>
    <map_variables variable_2="delta_ADP_me_rxn3" variable_1="delta_ADP_me_rxn3"/>
  </connection>

  <connection>
    <map_components component_2="adenylate_phosphate_transfer" component_1="ATP_me"/>
    <map_variables variable_2="ATP_me" variable_1="ATP_me"/>
    <map_variables variable_2="delta_ADP_me_rxn3" variable_1="delta_ATP_me_rxn3"/>
  </connection>
  
  <connection>
    <map_components component_2="adenylate_phosphate_transfer" component_1="ATP_te"/>
    <map_variables variable_2="delta_ADP_me_rxn3" variable_1="delta_ATP_me_rxn3"/>
  </connection>

  <connection>
    <map_components component_2="adenylate_phosphate_transfer" component_1="AMP_e"/>
    <map_variables variable_2="AMP_e" variable_1="AMP_e"/>
    <map_variables variable_2="delta_AMP_e_rxn3" variable_1="delta_AMP_e_rxn3"/>
  </connection>

  <connection>
    <map_components component_2="adenylate_phosphate_transfer" component_1="adenylate_kinase"/>
    <map_variables variable_2="adenylate_kinase" variable_1="adenylate_kinase"/>
  </connection>

  <connection>
    <map_components component_2="substrate_dehydrogenation" component_1="NADH"/>
    <map_variables variable_2="NADH" variable_1="NADH"/>
    <map_variables variable_2="delta_NADH_rxn4" variable_1="delta_NADH_rxn4"/>
  </connection>

  <connection>
    <map_components component_2="substrate_dehydrogenation" component_1="NAD"/>
    <map_variables variable_2="NAD" variable_1="NAD"/>
    <map_variables variable_2="delta_NAD_rxn4" variable_1="delta_NAD_rxn4"/>
  </connection>

  <connection>
    <map_components component_2="proton_leakage" component_1="He"/>
    <map_variables variable_2="He" variable_1="He"/>
    <map_variables variable_2="delta_He_rxn5" variable_1="delta_He_rxn5"/>
  </connection>

  <connection>
    <map_components component_2="proton_leakage" component_1="Hi"/>
    <map_variables variable_2="Hi" variable_1="Hi"/>
    <map_variables variable_2="delta_Hi_rxn5" variable_1="delta_Hi_rxn5"/>
  </connection>

  <connection>
    <map_components component_2="ATP_synthesis" component_1="ADP_mi"/>
    <map_variables variable_2="ADP_mi" variable_1="ADP_mi"/>
    <map_variables variable_2="delta_ADP_mi_rxn6" variable_1="delta_ADP_mi_rxn6"/>
  </connection>
  
  <connection>
    <map_components component_2="ATP_synthesis" component_1="ATP_mi"/>
    <map_variables variable_2="ATP_mi" variable_1="ATP_mi"/>
    <map_variables variable_2="delta_ATP_mi_rxn6" variable_1="delta_ATP_mi_rxn6"/>
  </connection>
  
  <connection>
    <map_components component_2="ATP_synthesis" component_1="He"/>
    <map_variables variable_2="He" variable_1="He"/>
    <map_variables variable_2="delta_He_rxn6" variable_1="delta_He_rxn6"/>
    <map_variables variable_2="nA" variable_1="nA"/>
  </connection>

  <connection>
     <map_components component_2="ATP_synthesis" component_1="Hi"/>
     <map_variables variable_2="Hi" variable_1="Hi"/>
     <map_variables variable_2="delta_Hi_rxn6" variable_1="delta_Hi_rxn6"/>
     <map_variables variable_2="nA" variable_1="nA"/>
  </connection>

  <connection>
    <map_components component_2="ATP_synthesis" component_1="ADP_ti"/>
    <map_variables variable_2="ADP_ti" variable_1="ADP_ti"/>
    <map_variables variable_2="delta_ADP_mi_rxn6" variable_1="delta_ADP_mi_rxn6"/>
  </connection>

  <connection>
    <map_components component_2="ATP_synthesis" component_1="ATP_ti"/>
    <map_variables variable_2="ATP_ti" variable_1="ATP_ti"/>
    <map_variables variable_2="delta_ATP_mi_rxn6" variable_1="delta_ATP_mi_rxn6"/>
  </connection>

  <connection>
    <map_components component_2="ATP_synthesis" component_1="Pi_ti"/>
    <map_variables variable_2="Pi_ti" variable_1="Pi_ti"/>
    <map_variables variable_2="delta_Pi_ti_rxn6" variable_1="delta_Pi_ti_rxn6"/>
  </connection>

  <connection>
    <map_components component_2="ATP_synthesis" component_1="ATP_synthetase"/>
    <map_variables variable_2="ATP_synthetase" variable_1="ATP_synthetase"/>
  </connection>

  <connection>
    <map_components component_2="phosphate_translocation" component_1="Pi_ji"/>
    <map_variables variable_2="Pi_ji" variable_1="Pi_ji"/>
    <map_variables variable_2="delta_Pi_ji_rxn8" variable_1="delta_Pi_ji_rxn8"/>
  </connection>

  <connection>
    <map_components component_2="phosphate_translocation" component_1="Pi_je"/>
    <map_variables variable_2="Pi_je" variable_1="Pi_je"/>
    <map_variables variable_2="delta_Pi_je_rxn8" variable_1="delta_Pi_je_rxn8"/>
  </connection>
  
  <connection>
    <map_components component_2="phosphate_translocation" component_1="Pi_ti"/>
    <map_variables variable_2="delta_Pi_ji_rxn8" variable_1="delta_Pi_ji_rxn8"/>
  </connection>
  
  <connection>
    <map_components component_2="phosphate_translocation" component_1="Pi_te"/>
    <map_variables variable_2="delta_Pi_je_rxn8" variable_1="delta_Pi_je_rxn8"/>
  </connection>

  <connection>
    <map_components component_2="phosphate_translocation" component_1="He"/>
    <map_variables variable_2="He" variable_1="He"/>
    <map_variables variable_2="delta_He_rxn8" variable_1="delta_He_rxn8"/>
  </connection>

  <connection>
    <map_components component_2="phosphate_translocation" component_1="Hi"/>
    <map_variables variable_2="Hi" variable_1="Hi"/>
    <map_variables variable_2="delta_Hi_rxn8" variable_1="delta_Hi_rxn8"/>
  </connection>

  <connection>
    <map_components component_2="phosphate_translocation" component_1="Pi_transferase"/>
    <map_variables variable_2="Pi_transferase" variable_1="Pi_transferase"/>
  </connection>

  <connection>
    <map_components component_2="creatine_kinase_rxn" component_1="He"/>
    <map_variables variable_2="He" variable_1="He"/>
    <map_variables variable_2="delta_He_rxn9" variable_1="delta_He_rxn9"/>
  </connection>

  <connection>
    <map_components component_2="creatine_kinase_rxn" component_1="ATP_te"/>
    <map_variables variable_2="ATP_te" variable_1="ATP_te"/>
    <map_variables variable_2="delta_ATP_te_rxn9" variable_1="delta_ATP_te_rxn9"/>
  </connection>

  <connection>
    <map_components component_2="creatine_kinase_rxn" component_1="ADP_te"/>
    <map_variables variable_2="ADP_te" variable_1="ADP_te"/>
    <map_variables variable_2="delta_ADP_te_rxn9" variable_1="delta_ADP_te_rxn9"/>
  </connection>

  <connection>
    <map_components component_2="creatine_kinase_rxn" component_1="Cr"/>
    <map_variables variable_2="Cr" variable_1="Cr"/>
    <map_variables variable_2="delta_Cr_rxn9" variable_1="delta_Cr_rxn9"/>
  </connection>

  <connection>
    <map_components component_2="creatine_kinase_rxn" component_1="PCr"/>
    <map_variables variable_2="PCr" variable_1="PCr"/>
    <map_variables variable_2="delta_PCr_rxn9" variable_1="delta_PCr_rxn9"/>
  </connection>

  <connection>
    <map_components component_2="creatine_kinase_rxn" component_1="creatine_kinase"/>
    <map_variables variable_2="creatine_kinase" variable_1="creatine_kinase"/>
  </connection>

  <connection>
    <map_components component_2="proton_efflux" component_1="He"/>
    <map_variables variable_2="He" variable_1="He"/>
    <map_variables variable_2="delta_He_rxn10" variable_1="delta_He_rxn10"/>
  </connection>

  <connection>
    <map_components component_2="proton_efflux" component_1="Ho"/>
    <map_variables variable_2="Ho" variable_1="Ho"/>
    <map_variables variable_2="delta_Ho_rxn10" variable_1="delta_Ho_rxn10"/>
  </connection>

  <connection>
    <map_components component_2="cell" component_1="ATP_ti"/>
    <map_variables variable_2="R_cm" variable_1="R_cm"/>
  </connection>

  <connection>
    <map_components component_2="ATP_fi" component_1="ATP_ti"/>
    <map_variables variable_2="ATP_fi" variable_1="ATP_fi"/>
  </connection>

  <connection>
    <map_components component_2="ATP_mi" component_1="ATP_ti"/>
    <map_variables variable_2="ATP_mi" variable_1="ATP_mi"/>
  </connection>

  <connection>
    <map_components component_2="ATP_fe" component_1="ATP_te"/>
    <map_variables variable_2="ATP_fe" variable_1="ATP_fe"/>
  </connection>

  <connection>
    <map_components component_2="ATP_me" component_1="ATP_te"/>
    <map_variables variable_2="ATP_me" variable_1="ATP_me"/>
  </connection>

  <connection>
    <map_components component_2="ADP_fe" component_1="ADP_te"/>
    <map_variables variable_2="ADP_fe" variable_1="ADP_fe"/>
  </connection>

  <connection>
    <map_components component_2="ADP_me" component_1="ADP_te"/>
    <map_variables variable_2="ADP_me" variable_1="ADP_me"/>
  </connection>

  <connection>
    <map_components component_2="ADP_te" component_1="Ae_SUM"/>
    <map_variables variable_2="ADP_te" variable_1="ADP_te"/>
  </connection>

  <connection>
    <map_components component_2="ATP_te" component_1="Ae_SUM"/>
    <map_variables variable_2="ATP_te" variable_1="ATP_te"/>
  </connection>
  
  <connection>
    <map_components component_2="AMP_e" component_1="Ae_SUM"/>
    <map_variables variable_2="AMP_e" variable_1="AMP_e"/>
  </connection>

  <connection>
    <map_components component_2="ADP_ti" component_1="Ai_SUM"/>
    <map_variables variable_2="ADP_ti" variable_1="ADP_ti"/>
  </connection>

  <connection>
    <map_components component_2="ATP_ti" component_1="Ai_SUM"/>
    <map_variables variable_2="ATP_ti" variable_1="ATP_ti"/>
  </connection>

  <connection>
    <map_components component_2="cell" component_1="ADP_ti"/>
    <map_variables variable_2="R_cm" variable_1="R_cm"/>
  </connection>

  <connection>
    <map_components component_2="ADP_fi" component_1="ADP_ti"/>
    <map_variables variable_2="ADP_fi" variable_1="ADP_fi"/>
  </connection>

  <connection>
    <map_components component_2="ADP_mi" component_1="ADP_ti"/>
    <map_variables variable_2="ADP_mi" variable_1="ADP_mi"/>
  </connection>

  <connection>
    <map_components component_2="cell" component_1="Pi_ti"/>
    <map_variables variable_2="R_cm" variable_1="R_cm"/>
  </connection>

  <connection>
    <map_components component_2="cell" component_1="Hi"/>
    <map_variables variable_2="R_cm" variable_1="R_cm"/>
    <map_variables variable_2="r_buffi" variable_1="r_buffi"/>
    <map_variables variable_2="u" variable_1="u"/>
    <map_variables variable_2="Hi" variable_1="Hi"/>
  </connection>

  <connection>
    <map_components component_2="cell" component_1="He"/>
    <map_variables variable_2="r_buffe" variable_1="r_buffe"/>
    <map_variables variable_2="u" variable_1="u"/>
    <map_variables variable_2="He" variable_1="He"/>
  </connection>

  <connection>
    <map_components component_2="cell" component_1="NAD"/>
    <map_variables variable_2="BN" variable_1="BN"/>
    <map_variables variable_2="R_cm" variable_1="R_cm"/>
  </connection>

  <connection>
    <map_components component_2="cell" component_1="NADH"/>
    <map_variables variable_2="BN" variable_1="BN"/>
    <map_variables variable_2="R_cm" variable_1="R_cm"/>
  </connection>

  <connection>
    <map_components component_2="NAD" component_1="N_t"/>
    <map_variables variable_2="NAD" variable_1="NAD"/>
  </connection>

  <connection>
    <map_components component_2="NADH" component_1="N_t"/>
    <map_variables variable_2="NADH" variable_1="NADH"/>
  </connection>

  <connection>
    <map_components component_2="Cr" component_1="C_SUM"/>
    <map_variables variable_2="Cr" variable_1="Cr"/>
  </connection>

  <connection>
    <map_components component_2="PCr" component_1="C_SUM"/>
    <map_variables variable_2="PCr" variable_1="PCr"/>
  </connection>

  <connection>
    <map_components component_2="Pi_te" component_1="P_SUM"/>
    <map_variables variable_2="Pi_te" variable_1="Pi_te"/>
  </connection>

  <connection>
    <map_components component_2="Pi_ti" component_1="P_SUM"/>
    <map_variables variable_2="Pi_ti" variable_1="Pi_ti"/>
  </connection>

  <connection>
    <map_components component_2="PCr" component_1="P_SUM"/>
    <map_variables variable_2="PCr" variable_1="PCr"/>
  </connection>

  <connection>
    <map_components component_2="ATP_te" component_1="P_SUM"/>
    <map_variables variable_2="ATP_te" variable_1="ATP_te"/>
  </connection>

  <connection>
    <map_components component_2="ADP_te" component_1="P_SUM"/>
    <map_variables variable_2="ADP_te" variable_1="ADP_te"/>
  </connection>

  <connection>
    <map_components component_2="AMP_e" component_1="P_SUM"/>
    <map_variables variable_2="AMP_e" variable_1="AMP_e"/>
  </connection>

  <connection>
    <map_components component_2="ATP_ti" component_1="P_SUM"/>
    <map_variables variable_2="ATP_ti" variable_1="ATP_ti"/>
  </connection>

  <connection>
    <map_components component_2="ADP_ti" component_1="P_SUM"/>
    <map_variables variable_2="ADP_ti" variable_1="ADP_ti"/>
  </connection>

  <connection>
    <map_components component_2="cell" component_1="P_SUM"/>
    <map_variables variable_2="R_cm" variable_1="R_cm"/>
  </connection>

  <connection>
    <map_components component_2="cell" component_1="c_3"/>
    <map_variables variable_2="R_cm" variable_1="R_cm"/>
  </connection>

  <connection>
    <map_components component_2="cell" component_1="c_2"/>
    <map_variables variable_2="R_cm" variable_1="R_cm"/>
  </connection>

  <connection>
    <map_components component_2="c_3" component_1="c_t"/>
    <map_variables variable_2="c_3" variable_1="c_3"/>
  </connection>

  <connection>
    <map_components component_2="c_2" component_1="c_t"/>
    <map_variables variable_2="c_2" variable_1="c_2"/>
  </connection>

  <connection>
    <map_components component_2="cell" component_1="UQ"/>
    <map_variables variable_2="R_cm" variable_1="R_cm"/>
  </connection>

  <connection>
    <map_components component_2="cell" component_1="UQH2"/>
    <map_variables variable_2="R_cm" variable_1="R_cm"/>
  </connection>

  <connection>
    <map_components component_2="UQ" component_1="U_t"/>
    <map_variables variable_2="UQ" variable_1="UQ"/>
  </connection>

  <connection>
    <map_components component_2="UQH2" component_1="U_t"/>
    <map_variables variable_2="UQH2" variable_1="UQH2"/>
  </connection>

  <connection>
    <map_components component_2="a_2" component_1="a_t"/>
    <map_variables variable_2="a_2" variable_1="a_2"/>
  </connection>

  <connection>
    <map_components component_2="a_3" component_1="a_t"/>
    <map_variables variable_2="a_3" variable_1="a_3"/>
  </connection>

  <connection>
    <map_components component_2="Pi_ti" component_1="Pi_ji"/>
    <map_variables variable_2="Pi_ti" variable_1="Pi_ti"/>
  </connection>

  <connection>
    <map_components component_2="cell" component_1="Pi_ji"/>
    <map_variables variable_2="pH_i" variable_1="pH_i"/>
    <map_variables variable_2="pKa" variable_1="pKa"/>
  </connection>

  <connection>
    <map_components component_2="Pi_te" component_1="Pi_je"/>
    <map_variables variable_2="Pi_te" variable_1="Pi_te"/>
  </connection>

  <connection>
    <map_components component_2="cell" component_1="Pi_je"/>
    <map_variables variable_2="pH_e" variable_1="pH_e"/>
    <map_variables variable_2="pKa" variable_1="pKa"/>
  </connection>

  <connection>
    <map_components component_2="cell" component_1="ATP_ADP_exchange"/>
    <map_variables variable_2="Z" variable_1="Z"/>
    <map_variables variable_2="in_membrane_potential" variable_1="in_membrane_potential"/>
  </connection>

  <connection>
    <map_components component_2="cell" component_1="proton_leakage"/>
    <map_variables variable_2="protonmotive_force" variable_1="protonmotive_force"/>
  </connection>

  <connection>
    <map_components component_2="cell" component_1="ATP_synthesis"/>
    <map_variables variable_2="Z" variable_1="Z"/>
    <map_variables variable_2="F" variable_1="F"/>
    <map_variables variable_2="protonmotive_force" variable_1="protonmotive_force"/>
  </connection>

  <connection>
    <map_components component_2="cell" component_1="proton_efflux"/>
    <map_variables variable_2="pH_e" variable_1="pH_e"/>
  </connection>

  <connection>
    <map_components component_2="global_variables" component_1="NAD"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>
  
  <connection>
    <map_components component_2="global_variables" component_1="Mg_fi"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>
  
  <connection>
    <map_components component_2="global_variables" component_1="Mg_fe"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>
  
  <connection>
    <map_components component_2="global_variables" component_1="creatine_kinase"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>
  
  <connection>
    <map_components component_2="global_variables" component_1="complex_I"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>
  
  <connection>
    <map_components component_2="global_variables" component_1="complex_III"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>
  
  <connection>
    <map_components component_2="global_variables" component_1="ATP_ADP_translocase"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>
  
  <connection>
    <map_components component_2="global_variables" component_1="UQH2"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>
  
  <connection>
    <map_components component_2="global_variables" component_1="a_t"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>
  
  <connection>
    <map_components component_2="global_variables" component_1="a_3"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>
  
  <connection>
    <map_components component_2="global_variables" component_1="U_t"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>
  
  <connection>
    <map_components component_2="global_variables" component_1="UQ"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>
  
  <connection>
    <map_components component_2="global_variables" component_1="Pi_ji"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>
  
  <connection>
    <map_components component_2="global_variables" component_1="Pi_je"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>
  
  <connection>
    <map_components component_2="global_variables" component_1="PCr"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>
  
  <connection>
    <map_components component_2="global_variables" component_1="c_t"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>
  
  <connection>
    <map_components component_2="global_variables" component_1="Cr"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>
  
  <connection>
    <map_components component_2="global_variables" component_1="P_SUM"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>
  
  <connection>
    <map_components component_2="global_variables" component_1="Ae_SUM"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>
  
  <connection>
    <map_components component_2="global_variables" component_1="Ai_SUM"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>
  
  <connection>
    <map_components component_2="global_variables" component_1="C_SUM"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>

  <connection>
    <map_components component_2="global_variables" component_1="NADH"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>

  <connection>
    <map_components component_2="global_variables" component_1="ADP_ti"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>

  <connection>
    <map_components component_2="global_variables" component_1="ATP_ti"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>

  <connection>
    <map_components component_2="global_variables" component_1="a_2"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>

  <connection>
    <map_components component_2="global_variables" component_1="c_2"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>

  <connection>
    <map_components component_2="global_variables" component_1="O2"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>

  <connection>
    <map_components component_2="global_variables" component_1="H2O"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>

  <connection>
    <map_components component_2="global_variables" component_1="c_3"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>

  <connection>
    <map_components component_2="global_variables" component_1="He"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>

  <connection>
    <map_components component_2="global_variables" component_1="Hi"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>

  <connection>
    <map_components component_2="global_variables" component_1="ATP_mi"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>

  <connection>
    <map_components component_2="global_variables" component_1="ADP_mi"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>

  <connection>
    <map_components component_2="global_variables" component_1="Pi_ti"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>

  <connection>
    <map_components component_2="global_variables" component_1="ADP_fe"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>

  <connection>
    <map_components component_2="global_variables" component_1="ADP_fi"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>

  <connection>
    <map_components component_2="global_variables" component_1="ATP_fe"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>

  <connection>
    <map_components component_2="global_variables" component_1="ATP_fi"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>
  
  <connection>
    <map_components component_2="global_variables" component_1="Ho"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>

  <connection>
    <map_components component_2="global_variables" component_1="Pi_te"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>
  <connection>
    <map_components component_2="global_variables" component_1="N_t"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>

  <connection>
    <map_components component_2="global_variables" component_1="Pi_transferase"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>

  <connection>
    <map_components component_2="global_variables" component_1="ATP_te"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>

  <connection>
    <map_components component_2="global_variables" component_1="ADP_te"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>

  <connection>
    <map_components component_2="global_variables" component_1="ATP_synthetase"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>

  <connection>
    <map_components component_2="global_variables" component_1="AMP_e"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>

  <connection>
    <map_components component_2="global_variables" component_1="ATP_me"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>

  <connection>
    <map_components component_2="global_variables" component_1="ADP_me"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>

  <connection>
    <map_components component_2="global_variables" component_1="adenylate_kinase"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>


<rdf:RDF>
  <rdf:Seq rdf:about="rdf:#3777a8c8-3abc-47fb-a0a1-611de95e1ecb">
    <rdf:li rdf:resource="rdf:#77b613f4-b8ea-4480-a73a-18358b25da9e"/>
    <rdf:li rdf:resource="rdf:#3b0fab0b-5598-422e-a14b-bdd28dfa95e6"/>
  </rdf:Seq>
  <rdf:Description rdf:about="#NADH">
    <dcterms:alternative>
          reduced nicotinamide adenine dinucleotide
        </dcterms:alternative>
    <dc:title>NADH</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="#complex_IV_rxn">
    <cmeta:comment rdf:resource="rdf:#ad018cd2-2bd1-4c54-89dd-46c6ed6399f1"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#a59cebe3-3d2f-404e-8260-a7c2a0816f7e">
    <dcterms:modified rdf:resource="rdf:#8abaf482-f95f-46f0-9512-3627a72f9a44"/>
    <rdf:value>
          The 1991 model of oxidative phosphorylation in mitochondria is not
          specific to a single cell type.  The 1996 model is relevant to
          hepatocytes.  Since building this CellML model, Bernard Korzeniewski
          has directed me towards his most recent publication on oxidative
          phosphorylation in mammalian skeletal muscle.  I have updated the
          CellML description accordingly.
        </rdf:value>
    <cmeta:modifier rdf:resource="rdf:#d3f560ad-fea2-4a23-aab3-99e00cc4cd18"/>
  </rdf:Description>
  <rdf:Description rdf:about="#ATP_fe">
    <dcterms:alternative>
          free external adenosine triphosphate
        </dcterms:alternative>
    <dc:title>ATP_fe</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="#ATP_fi">
    <dcterms:alternative>
          free internal adenosine triphosphate
        </dcterms:alternative>
    <dc:title>ATP_fi</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#ad018cd2-2bd1-4c54-89dd-46c6ed6399f1">
    <rdf:value>
            As electrons flow through the cytochrome oxidase complex (complex 
            IV), the free energy released is coupled to drive the movement of 
            protons against their electrochemical gradient into the outer 
            compartment.  These electrons are eventually accepted by oxygen 
            which is subsequently reduced to water.
          </rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#0b660a21-8d83-4eec-986c-3d0172723302">
    <rdf:value>
            The membrane electrochemical potential ("proton motive force") 
            drives protons back into the matrix through the F0 and F1 parts of 
            the ATP synthetase and generates ATP from ADP plus Pi.
          </rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#233acb42-7645-4d4b-81f6-56ff39664ca5">
    <vCard:Given>Catherine</vCard:Given>
    <vCard:Family>Lloyd</vCard:Family>
    <vCard:Other>May</vCard:Other>
  </rdf:Description>
  <rdf:Description rdf:about="#Pi_ji">
    <dcterms:alternative>
          internal monovalent inorganic phosphate
        </dcterms:alternative>
    <dc:title>Pi_ji</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#c06d7aa5-7c93-4fb6-ad1f-73cc52b5640b">
    <vCard:N rdf:resource="rdf:#26bebebc-6bf7-4f52-b688-f50594a97631"/>
  </rdf:Description>
  <rdf:Description rdf:about="#c_2">
    <dcterms:alternative>reduced cytochrome C</dcterms:alternative>
    <dc:title>c_2</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="#c_3">
    <dcterms:alternative>oxidised cytochrome C</dcterms:alternative>
    <dc:title>c_3</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#7ade6bde-68dc-4b42-bc5f-7fc7eff45854">
    <bqs:Pubmed_id>11527576</bqs:Pubmed_id>
    <bqs:JournalArticle rdf:resource="rdf:#8dfe8162-bb84-457b-abcc-4a77340497dc"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#7e06119a-b513-414e-9ef3-b75692d75c00">
    <rdf:value>
            The efflux of cytosolic protons in muscle cells to the blood depends             on the cytosolic pH.  In active muscle, protons are consumed by the 
            CK-catalysed reaction.  This causes the cytosolic pH to be greater 
            than the extracellular pH, which in turn results in an influx of 
            protons down their electrochemical gradient.  Therefore the flow of 
            protons through the cell surface membrane can be bidirectional.
          </rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#complex_I_rxn">
    <cmeta:comment rdf:resource="rdf:#eef029e7-e0d3-4404-9f19-93ea7ad4a9db"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#ec768dbc-eb51-41c1-901d-8cceae4d4576">
    <vCard:Given>Autumn</vCard:Given>
    <vCard:Family>Cuellar</vCard:Family>
    <vCard:Other>A</vCard:Other>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#4e95a405-7597-4bf2-b3f5-a596b08717c2">
    <dcterms:modified rdf:resource="rdf:#5c3dceb4-3498-4252-9010-0b6ae88d2c80"/>
    <rdf:value>
          Added more metadata.
        </rdf:value>
    <cmeta:modifier rdf:resource="rdf:#0ed78faf-60a2-4698-874a-8eae3bc5b5d7"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#5c57da5c-17f5-4062-95c7-dfd70f476c71">
    <dcterms:modified rdf:resource="rdf:#2023a793-619a-4ba5-a2c3-8935ded2ae9e"/>
    <rdf:value>
          Added publication date information.
        </rdf:value>
    <cmeta:modifier rdf:resource="rdf:#a4a68b48-d910-4130-8e0e-b49d787a7575"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#e00d13ea-6c3c-459b-af6b-0aa17ff8b50f">
    <vCard:ORG rdf:resource="rdf:#b3ed4727-94c9-4b15-bb64-41b7fec615f9"/>
    <vCard:EMAIL rdf:resource="rdf:#06ac9b83-901e-4dd1-9a38-31b4383dd326"/>
    <vCard:N rdf:resource="rdf:#a77c1a61-e344-4098-8847-6e1ef424689a"/>
  </rdf:Description>
  <rdf:Description rdf:about="#Hi">
    <dcterms:alternative>internal protons</dcterms:alternative>
    <dc:title>Hi</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#1d0dcf86-8fc9-4297-a471-c672f536ff80">
    <vCard:N rdf:resource="rdf:#233acb42-7645-4d4b-81f6-56ff39664ca5"/>
  </rdf:Description>
  <rdf:Description rdf:about="#Ho">
    <dcterms:alternative>extracellular protons</dcterms:alternative>
    <dc:title>Ho</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="#c_t">
    <dcterms:alternative>
          total concentration of cytochrome C
        </dcterms:alternative>
    <dc:title>c_t</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="#He">
    <dcterms:alternative>external protons</dcterms:alternative>
    <dc:title>He</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#4e9c48b5-4e4f-4fc8-a3ed-0fb87a127404">
    <rdf:value>
            Creatine kinase catalyses a reversible reaction which is close to 
            thermodynamic equilibrium in resting and active skeletal muscle.  
            Phosphate is transferred between adenine nucleotides and creatine.
          </rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#da4366ad-654c-476c-8d92-b80f2e06b04c">
    <dcterms:modified rdf:resource="rdf:#ea107a3b-bd36-4363-8b09-428a31762bbc"/>
    <rdf:value>
          Updated metadata to conform to the 16/1/02 CellML Metadata 1.0 
          Specification.
        </rdf:value>
    <cmeta:modifier rdf:resource="rdf:#c06d7aa5-7c93-4fb6-ad1f-73cc52b5640b"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#0fb5bbd7-e909-43ce-b67b-11b138c04b4c">
    <dc:subject rdf:resource="rdf:#9fb8b9c1-9f0b-4c53-99d9-6e0cd4c307de"/>
  </rdf:Description>
  <rdf:Description rdf:about="#ADP_fi">
    <dcterms:alternative>
          free internal adenosine diphosphate
        </dcterms:alternative>
    <dc:title>ADP_fi</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#3b0fab0b-5598-422e-a14b-bdd28dfa95e6">
    <rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person"/>
    <vCard:N rdf:resource="rdf:#7021c421-82d8-4ff1-bc82-a76a6ff29137"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#ec2b810e-4d96-4937-bbad-e48f14dc7dc5">
    <dcterms:W3CDTF>2005-05-02</dcterms:W3CDTF>
  </rdf:Description>
  <rdf:Description rdf:about="#complex_III_rxn">
    <cmeta:comment rdf:resource="rdf:#70badc27-d5ea-45c9-b38c-869e34045523"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#eef029e7-e0d3-4404-9f19-93ea7ad4a9db">
    <rdf:value>
            When the complex I oxidises NADH, the resultant electron flow causes             the transfer of protons from the mitochondrial matrix to the outer               compartment.  Ubiquinone accept the electrons and it is reduced.
          </rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#ATP_synthesis">
    <cmeta:comment rdf:resource="rdf:#0b660a21-8d83-4eec-986c-3d0172723302"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#3bba00fc-b141-40d0-8810-bf46ec041b9c">
    <rdf:value>
            The inner mitochondrial membrane is slightly permeable to protons.  
            This allows a few protons to diffuse down their steep 
            electrochemical gradient from the outer compartment into the 
            mitochondrial matrix.
          </rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#77d9a858-71b3-4d9b-ac8b-c2ac2a961d86">
    <vCard:N rdf:resource="rdf:#12a3e282-af3c-4c2d-8ab9-355c0ff60623"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#12a3e282-af3c-4c2d-8ab9-355c0ff60623">
    <vCard:Given>Peter</vCard:Given>
    <vCard:Family>Villiger</vCard:Family>
    <vCard:Other>J</vCard:Other>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#fec1c503-2904-45bc-8601-cf38ad649217">
    <rdf:value>
            The phosphate carrier catalyses the co-translocation of monovalent 
            inorganic phosphate with a proton across the inner mitochondrial 
            membrane.  It is accepted that the phosphate carrier is near 
            equilibrium.
          </rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#8dfe8162-bb84-457b-abcc-4a77340497dc">
    <dc:creator rdf:resource="rdf:#3777a8c8-3abc-47fb-a0a1-611de95e1ecb"/>
    <dc:title>
            A model of oxidative phosphorylation in mammaliam skeletal muscle
          </dc:title>
    <bqs:volume>92</bqs:volume>
    <bqs:first_page>17</bqs:first_page>
    <bqs:Journal rdf:resource="rdf:#7cfe90b2-8e10-4508-a018-343a0a71b65c"/>
    <dcterms:issued rdf:resource="rdf:#a9b165fb-5517-4c25-9b1e-9e4d4c2d3f1f"/>
    <bqs:last_page>34</bqs:last_page>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#26bebebc-6bf7-4f52-b688-f50594a97631">
    <vCard:Given>Autumn</vCard:Given>
    <vCard:Family>Cuellar</vCard:Family>
    <vCard:Other>A.</vCard:Other>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#a9b165fb-5517-4c25-9b1e-9e4d4c2d3f1f">
    <dcterms:W3CDTF>2001-08-30</dcterms:W3CDTF>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#7021c421-82d8-4ff1-bc82-a76a6ff29137">
    <vCard:Given>Jerzy</vCard:Given>
    <vCard:Family>Zoladz</vCard:Family>
    <vCard:Other>A</vCard:Other>
  </rdf:Description>
  <rdf:Description rdf:about="#ATP_me">
    <dcterms:alternative>
          external magnesium-complexed adenosine triphosphate
        </dcterms:alternative>
    <dc:title>ATP_me</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="#adenine_nucleotide_Mg_dissociations">
    <cmeta:comment rdf:resource="rdf:#4067d8e0-cc72-4cbd-995a-5bfaab644b06"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#70badc27-d5ea-45c9-b38c-869e34045523">
    <rdf:value>
            As electrons flow through complex III, UQH2 is reoxidised to UQ and 
            protons are transfered from the mitochondrial matrix to the outer                compartment.  Cytochrome c accept the electrons and is reduced.
          </rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#e1bb7977-0961-4e2f-ad14-89f0029c388f">
    <dcterms:W3CDTF>2002-02-26</dcterms:W3CDTF>
  </rdf:Description>
  <rdf:Description rdf:about="#korzeniewski_zoladz_2001_version01">
    <dc:title>A dynamic model of oxidative phosphorylation</dc:title>
    <cmeta:bio_entity>Skeletal Myocyte</cmeta:bio_entity>
    <cmeta:comment rdf:resource="rdf:#bf105e5d-4319-42e1-89f8-78d8476141c0"/>
    <bqs:reference rdf:resource="rdf:#048f1fb3-3efc-4c70-9f83-fb47802e05a4"/>
    <bqs:reference rdf:resource="rdf:#0f3195da-833c-4643-b3f0-7492a6a0346c"/>
    <bqs:reference rdf:resource="rdf:#0fb5bbd7-e909-43ce-b67b-11b138c04b4c"/>
    <bqs:reference rdf:resource="rdf:#7ade6bde-68dc-4b42-bc5f-7fc7eff45854"/>
    <cmeta:species>Mammalia</cmeta:species>
  </rdf:Description>
  <rdf:Description rdf:about="#ATP_utilisation">
    <cmeta:comment rdf:resource="rdf:#06af9fdc-856d-4ea4-828a-012379da7d7a"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#0f3195da-833c-4643-b3f0-7492a6a0346c">
    <rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Pubmed_id"/>
  </rdf:Description>
  <rdf:Description rdf:about="#ATP_te">
    <dcterms:alternative>
          total external adenosine triphosphate
        </dcterms:alternative>
    <dc:title>ATP_te</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="#Pi_je">
    <dcterms:alternative>
          external monovalent inorganic phosphate
        </dcterms:alternative>
    <dc:title>Pi_je</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="#O2">
    <dcterms:alternative>oxygen</dcterms:alternative>
    <dc:title>O2</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="#adenylate_phosphate_transfer">
    <cmeta:comment rdf:resource="rdf:#f447938c-92bb-42cf-a868-10b1b2305f53"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#06ac9b83-901e-4dd1-9a38-31b4383dd326">
    <rdf:type rdf:resource="http://imc.org/vCard/3.0#internet"/>
    <rdf:value>c.lloyd@auckland.ac.nz</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#ATP_ti">
    <dcterms:alternative>
          total internal adenosine triphosphate
        </dcterms:alternative>
    <dc:title>ATP_ti</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#b3ed4727-94c9-4b15-bb64-41b7fec615f9">
    <vCard:Orgname>The University of Auckland</vCard:Orgname>
    <vCard:Orgunit>The Bioengineering Research Group</vCard:Orgunit>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#d3f560ad-fea2-4a23-aab3-99e00cc4cd18">
    <vCard:N rdf:resource="rdf:#6374e802-de87-4ca5-90aa-125eac8c413e"/>
  </rdf:Description>
  <rdf:Description rdf:about="#proton_leakage">
    <cmeta:comment rdf:resource="rdf:#3bba00fc-b141-40d0-8810-bf46ec041b9c"/>
  </rdf:Description>
  <rdf:Description rdf:about="#a_t">
    <dcterms:alternative>
          total concentration of cytochrome a3
        </dcterms:alternative>
    <dc:title>a_t</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#0326f941-0abb-4c01-9fce-3bf550f35532">
    <dcterms:modified rdf:resource="rdf:#e1bb7977-0961-4e2f-ad14-89f0029c388f"/>
    <rdf:value>
          Corrected several equations.
        </rdf:value>
    <cmeta:modifier rdf:resource="rdf:#1d0dcf86-8fc9-4297-a471-c672f536ff80"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#f447938c-92bb-42cf-a868-10b1b2305f53">
    <rdf:value>
            Adenylate kinase is present in the inter-mitochondial membrane 
            space. It catalyses the near equilibrium reaction of transforming 
            two ADP molecules into one ATP and one AMP molecule.
          </rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#ADP_fe">
    <dcterms:alternative>
          free external adenosine diphosphate
        </dcterms:alternative>
    <dc:title>ADP_fe</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#b990e149-897b-423d-8f26-b41df33b5169">
    <vCard:FN>Catherine Lloyd</vCard:FN>
  </rdf:Description>
  <rdf:Description rdf:about="#ADP_te">
    <dcterms:alternative>
          total external adenosine diphosphate
        </dcterms:alternative>
    <dc:title>ADP_te</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="#PCr">
    <dcterms:alternative>phosphocreatine</dcterms:alternative>
    <dc:title>PCr</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="#ADP_ti">
    <dcterms:alternative>
          total internal adenosine diphosphate
        </dcterms:alternative>
    <dc:title>ADP_ti</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="#phosphate_translocation">
    <cmeta:comment rdf:resource="rdf:#fec1c503-2904-45bc-8601-cf38ad649217"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#7cfe90b2-8e10-4508-a018-343a0a71b65c">
    <dc:title>Biophysical Chemistry</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="#a_2">
    <dcterms:alternative>reduced cytochrome a3</dcterms:alternative>
    <dc:title>a_2</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#ea107a3b-bd36-4363-8b09-428a31762bbc">
    <dcterms:W3CDTF>2002-01-21</dcterms:W3CDTF>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#0ed78faf-60a2-4698-874a-8eae3bc5b5d7">
    <vCard:N rdf:resource="rdf:#b9b23809-339c-4533-8b0f-5e5bb39a96e3"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#77b613f4-b8ea-4480-a73a-18358b25da9e">
    <rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person"/>
    <vCard:N rdf:resource="rdf:#8a1c9f00-c72f-43ed-84a2-e9b3fb588c23"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#9fb8b9c1-9f0b-4c53-99d9-6e0cd4c307de">
    <bqs:subject_type>keyword</bqs:subject_type>
    <rdf:value>metabolism</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#substrate_dehydrogenation">
    <cmeta:comment rdf:resource="rdf:#7379bce1-7893-452e-b2a8-52f80d1b4c56"/>
  </rdf:Description>
  <rdf:Description rdf:about="#Ai_SUM">
    <dcterms:alternative>
          total internal adenine nucleotide concentration
        </dcterms:alternative>
    <dc:title>Ai_SUM</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#286458f7-e32e-46ca-ad3a-12622782549c">
    <rdf:value>
            Adenine nucleotides can be exchanged across the inner mitochondrial 
            membrane by the ATP/ADP translocator.  ADP3- enters in exchange for 
            ATP4-.  Because of the charge difference, an extra proton must be 
            transported out of the matrix for each ADP that enters.
          </rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#N_t">
    <dcterms:alternative>total concentration of NAD</dcterms:alternative>
    <dc:title>N_t</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="#AMP_e">
    <dcterms:alternative>
          free external adenosine monophosphate
        </dcterms:alternative>
    <dc:title>AMP_fe</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="#Ae_SUM">
    <dcterms:alternative>
          total external adenine nucleotide concentration
        </dcterms:alternative>
    <dc:title>Ae_SUM</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#048f1fb3-3efc-4c70-9f83-fb47802e05a4">
    <rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Pubmed_id"/>
  </rdf:Description>
  <rdf:Description rdf:about="#C_SUM">
    <dcterms:alternative>total creatine concentration</dcterms:alternative>
    <dc:title>C_SUM</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="#ATP_mi">
    <dcterms:alternative>
          internal magnesium-complexed adenosine triphosphate
        </dcterms:alternative>
    <dc:title>ATP_mi</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#8a1c9f00-c72f-43ed-84a2-e9b3fb588c23">
    <vCard:Given>Bernard</vCard:Given>
    <vCard:Family>Korzeniewski</vCard:Family>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#a77c1a61-e344-4098-8847-6e1ef424689a">
    <vCard:Given>Catherine</vCard:Given>
    <vCard:Family>Lloyd</vCard:Family>
    <vCard:Other>May</vCard:Other>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#7379bce1-7893-452e-b2a8-52f80d1b4c56">
    <rdf:value>
            A simple first-order reaction is used for the description of 
            substrate dehydrogenation.  It is assumed that the rate depends only             on the concentration of NAD, and that it is an irreversible 
            dehydrogenase, 2-oxoglutarate dehydrogenase and pyruvate 
            dehydrogenase.  Their activity follows Michaelis-Menten kinetics. 
            The power expression Pe determines sensitivity of substrate 
            dehydrogenation to the NAD/NADH ratio. 
          </rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#U_t">
    <dcterms:alternative>
          total concentration of ubiquinone
        </dcterms:alternative>
    <dc:title>U_t</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#8abaf482-f95f-46f0-9512-3627a72f9a44">
    <dcterms:W3CDTF>2001-12-05</dcterms:W3CDTF>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#3a7dca82-0d5c-4995-928a-f0d103f35b15">
    <dcterms:W3CDTF>2001-11-27</dcterms:W3CDTF>
  </rdf:Description>
  <rdf:Description rdf:about="#Pi_ti">
    <dcterms:alternative>
          total internal inorganic phosphate
        </dcterms:alternative>
    <dc:title>Pi_ti</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="#UQH2">
    <dcterms:alternative>reduced ubiquinone</dcterms:alternative>
    <dc:title>UQH2</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="#Pi_te">
    <dcterms:alternative>
          total external inorganic phosphate
        </dcterms:alternative>
    <dc:title>Pi_te</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#bf105e5d-4319-42e1-89f8-78d8476141c0">
    <dc:creator rdf:resource="rdf:#b990e149-897b-423d-8f26-b41df33b5169"/>
    <rdf:value>
          This is the CellML description of Korzeniewski and Froncisz's 
          mathematical model of oxidative phosphorylation (1991).  In 1996 they 
          further modified and developed the model, making it specific to liver 
          hepatocytes.  Most recent changes (2001) have extended the model and 
          have made it specific to mammalian skeletal muscle.  These changes 
          have been incorporated into the CellML description.
          
          The model distinguishes three modes of the work of cells.  The rate 
          equations for some reactions are slightly altered, dependent on the 
          mode of work.  This CellML description concentrates on mode 1 only, 
          where;
          1)  Beta-oxidation of fatty acids as the source of reducing 
          equivalents, fatty acids as a respiratory substrate, no additional ATP
          supply (glycolysis), only "basal" ATP consumption (protein synthesis, 
          ion transport).
        </rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#06af9fdc-856d-4ea4-828a-012379da7d7a">
    <rdf:value>
            The reactions of "basal" ATP consumption (protein synthesis, ion 
            transport) are believed to be independent of ATP (and ADP) 
            concentration.  In the following rate equation, the ATP usage 
            process is almost saturated with ATP at physiological concentrations             of this compound.
          </rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#proton_efflux">
    <cmeta:comment rdf:resource="rdf:#7e06119a-b513-414e-9ef3-b75692d75c00"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#a4a68b48-d910-4130-8e0e-b49d787a7575">
    <vCard:N rdf:resource="rdf:#ec768dbc-eb51-41c1-901d-8cceae4d4576"/>
  </rdf:Description>
  <rdf:Description rdf:about="#P_SUM">
    <dcterms:alternative>total phosphate pool</dcterms:alternative>
    <dc:title>P_SUM</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="#Cr">
    <dcterms:alternative>creatine</dcterms:alternative>
    <dc:title>Cr</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="#a_3">
    <dcterms:alternative>oxidised cytochrome a3</dcterms:alternative>
    <dc:title>a_3</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="#creatine_kinase_rxn">
    <cmeta:comment rdf:resource="rdf:#4e9c48b5-4e4f-4fc8-a3ed-0fb87a127404"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#5c3dceb4-3498-4252-9010-0b6ae88d2c80">
    <dcterms:W3CDTF>2002-07-22</dcterms:W3CDTF>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#6374e802-de87-4ca5-90aa-125eac8c413e">
    <vCard:Given>Catherine</vCard:Given>
    <vCard:Family>Lloyd</vCard:Family>
    <vCard:Other>May</vCard:Other>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#f120ed9c-a723-4dcd-9426-0aec7d9c3724">
    <dcterms:modified rdf:resource="rdf:#ec2b810e-4d96-4937-bbad-e48f14dc7dc5"/>
    <rdf:value>
          Changed unit dimensions to make them consistent.
        </rdf:value>
    <cmeta:modifier rdf:resource="rdf:#77d9a858-71b3-4d9b-ac8b-c2ac2a961d86"/>
  </rdf:Description>
  <rdf:Description rdf:about="#NAD">
    <dcterms:alternative>
          oxidised nicotinamide adenine dinucleotide
        </dcterms:alternative>
    <dc:title>NAD</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="#UQ">
    <dcterms:alternative>oxidised ubiquinone</dcterms:alternative>
    <dc:title>UQ</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#2023a793-619a-4ba5-a2c3-8935ded2ae9e">
    <dcterms:W3CDTF>2003-04-09</dcterms:W3CDTF>
  </rdf:Description>
  <rdf:Description rdf:about="#ADP_me">
    <dcterms:alternative>
          external magnesium-complexed adenosine diphosphate
        </dcterms:alternative>
    <dc:title>ADP_me</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#b9b23809-339c-4533-8b0f-5e5bb39a96e3">
    <vCard:Given>Catherine</vCard:Given>
    <vCard:Family>Lloyd</vCard:Family>
    <vCard:Other>May</vCard:Other>
  </rdf:Description>
  <rdf:Description rdf:about="#ADP_mi">
    <dcterms:alternative>
          internal magnesium-complexed adenosine diphosphate
        </dcterms:alternative>
    <dc:title>ADP_mi</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="#Mg_fe">
    <dcterms:alternative>free external magnesium</dcterms:alternative>
    <dc:title>Mg_fe</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="#ATP_ADP_exchange">
    <cmeta:comment rdf:resource="rdf:#286458f7-e32e-46ca-ad3a-12622782549c"/>
  </rdf:Description>
  <rdf:Description rdf:about="#H2O">
    <dcterms:alternative>water</dcterms:alternative>
    <dc:title>H2O</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="">
    <dc:publisher>
        The University of Auckland, Bioengineering Research Group
      </dc:publisher>
    <cmeta:modification rdf:resource="rdf:#0326f941-0abb-4c01-9fce-3bf550f35532"/>
    <cmeta:modification rdf:resource="rdf:#4e95a405-7597-4bf2-b3f5-a596b08717c2"/>
    <cmeta:modification rdf:resource="rdf:#5c57da5c-17f5-4062-95c7-dfd70f476c71"/>
    <cmeta:modification rdf:resource="rdf:#a59cebe3-3d2f-404e-8260-a7c2a0816f7e"/>
    <cmeta:modification rdf:resource="rdf:#da4366ad-654c-476c-8d92-b80f2e06b04c"/>
    <cmeta:modification rdf:resource="rdf:#f120ed9c-a723-4dcd-9426-0aec7d9c3724"/>
    <dcterms:created rdf:resource="rdf:#3a7dca82-0d5c-4995-928a-f0d103f35b15"/>
    <dc:creator rdf:resource="rdf:#e00d13ea-6c3c-459b-af6b-0aa17ff8b50f"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#4067d8e0-cc72-4cbd-995a-5bfaab644b06">
    <rdf:value>
            Adenine nucleotides bind magnesium ions and these ATP/ADP-Mg 
            complexes participate in reactions catalysed by ATP_synthetase while             free forms are translocated by the ATP-ADP carrier.  
          </rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="#Mg_fi">
    <dcterms:alternative>free internal magnesium</dcterms:alternative>
    <dc:title>Mg_fi</dc:title>
  </rdf:Description>
</rdf:RDF>
</model>