# Generated Code

The following is matlab code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

```function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction()
% This is the "main function".  In Matlab, things work best if you rename this function to match the filename.
[VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel();
end

function [algebraicVariableCount] = getAlgebraicVariableCount()
% Used later when setting a global variable with the number of algebraic variables.
% Note: This is not the "main method".
algebraicVariableCount =2;
end
% There are a total of 7 entries in each of the rate and state variable arrays.
% There are a total of 8 entries in the constant variable array.
%

function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel()
% Create ALGEBRAIC of correct size
global algebraicVariableCount;  algebraicVariableCount = getAlgebraicVariableCount();
% Initialise constants and state variables
[INIT_STATES, CONSTANTS] = initConsts;

% Set timespan to solve over
tspan = [0, 10];

% Set numerical accuracy options for ODE solver
options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1);

% Solve model with ODE solver
[VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options);

% Compute algebraic variables
[RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS);
ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI);

% Plot state variables against variable of integration
[LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends();
figure();
plot(VOI, STATES);
xlabel(LEGEND_VOI);
l = legend(LEGEND_STATES);
set(l,'Interpreter','none');
end

function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends()
LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = '';
LEGEND_VOI = strpad('time in component environment (second)');
LEGEND_STATES(:,1) = strpad('Ca_t in component equations (uM_per_kg)');
LEGEND_STATES(:,2) = strpad('TnCa_t in component equations (uM_per_kg)');
LEGEND_STATES(:,3) = strpad('CB_on_t in component equations (uM_per_kg)');
LEGEND_STATES(:,4) = strpad('Ca_released in component equations (uM_per_kg)');
LEGEND_STATES(:,5) = strpad('Ca_sequestered in component equations (uM_per_kg)');
LEGEND_STATES(:,6) = strpad('cumCB_on_t in component equations (uM_per_kg)');
LEGEND_STATES(:,7) = strpad('cumCB_off_t in component equations (uM_per_kg)');
LEGEND_ALGEBRAIC(:,1) = strpad('Ca_release_rate in component equations (uM_per_kg_per_second)');
LEGEND_ALGEBRAIC(:,2) = strpad('dTnCa_t_dt in component equations (uM_per_kg_per_second)');
LEGEND_CONSTANTS(:,1) = strpad('Ca_tot_released in component equations (uM_per_kg)');
LEGEND_CONSTANTS(:,2) = strpad('total_Tn in component equations (uM_per_kg)');
LEGEND_CONSTANTS(:,3) = strpad('total_CB in component equations (uM_per_kg)');
LEGEND_CONSTANTS(:,4) = strpad('k_1 in component equations (kg_per_uM_per_second)');
LEGEND_CONSTANTS(:,5) = strpad('k_2 in component equations (per_second)');
LEGEND_CONSTANTS(:,6) = strpad('k_3 in component equations (per_second)');
LEGEND_CONSTANTS(:,7) = strpad('f in component equations (kg_per_uM_per_second)');
LEGEND_CONSTANTS(:,8) = strpad('g in component equations (per_second)');
LEGEND_RATES(:,1) = strpad('d/dt Ca_t in component equations (uM_per_kg)');
LEGEND_RATES(:,2) = strpad('d/dt TnCa_t in component equations (uM_per_kg)');
LEGEND_RATES(:,3) = strpad('d/dt CB_on_t in component equations (uM_per_kg)');
LEGEND_RATES(:,4) = strpad('d/dt Ca_released in component equations (uM_per_kg)');
LEGEND_RATES(:,5) = strpad('d/dt Ca_sequestered in component equations (uM_per_kg)');
LEGEND_RATES(:,6) = strpad('d/dt cumCB_on_t in component equations (uM_per_kg)');
LEGEND_RATES(:,7) = strpad('d/dt cumCB_off_t in component equations (uM_per_kg)');
LEGEND_STATES  = LEGEND_STATES';
LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC';
LEGEND_RATES = LEGEND_RATES';
LEGEND_CONSTANTS = LEGEND_CONSTANTS';
end

function [STATES, CONSTANTS] = initConsts()
VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = [];
STATES(:,1) = 0;
STATES(:,2) = 0;
STATES(:,3) = 0;
STATES(:,4) = 0;
STATES(:,5) = 0;
STATES(:,6) = 0;
STATES(:,7) = 0;
CONSTANTS(:,1) = 35;
CONSTANTS(:,2) = 70;
CONSTANTS(:,3) = 150;
CONSTANTS(:,4) = 5e6;
CONSTANTS(:,5) = 10;
CONSTANTS(:,6) = 1000;
CONSTANTS(:,7) = 0.4e6;
CONSTANTS(:,8) = 10;
if (isempty(STATES)), warning('Initial values for states not set');, end
end

function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS)
global algebraicVariableCount;
statesSize = size(STATES);
statesColumnCount = statesSize(2);
if ( statesColumnCount == 1)
STATES = STATES';
ALGEBRAIC = zeros(1, algebraicVariableCount);
utilOnes = 1;
else
statesRowCount = statesSize(1);
ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount);
RATES = zeros(statesRowCount, statesColumnCount);
utilOnes = ones(statesRowCount, 1);
end
RATES(:,2) =  CONSTANTS(:,4).*STATES(:,1).*(CONSTANTS(:,2) - STATES(:,2)) -  CONSTANTS(:,5).*STATES(:,2);
RATES(:,3) =  CONSTANTS(:,7).*STATES(:,2).*(CONSTANTS(:,3) - STATES(:,3)) -  CONSTANTS(:,8).*STATES(:,3);
RATES(:,5) =  CONSTANTS(:,6).*STATES(:,1);
RATES(:,6) =  CONSTANTS(:,7).*STATES(:,2).*(CONSTANTS(:,3) - STATES(:,3));
RATES(:,7) =  CONSTANTS(:,8).*STATES(:,3);
ALGEBRAIC(:,1) = piecewise({VOI>0.100000, 0.00000 },  20.0000.*CONSTANTS(:,1).*(1.00000 -  10.0000.*VOI));
RATES(:,4) = ALGEBRAIC(:,1);
ALGEBRAIC(:,2) =  CONSTANTS(:,4).*STATES(:,1).*(CONSTANTS(:,2) - STATES(:,2)) -  CONSTANTS(:,5).*STATES(:,2);
RATES(:,1) = (ALGEBRAIC(:,1) -  CONSTANTS(:,6).*STATES(:,1)) - ALGEBRAIC(:,2);
RATES = RATES';
end

% Calculate algebraic variables
function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI)
statesSize = size(STATES);
statesColumnCount = statesSize(2);
if ( statesColumnCount == 1)
STATES = STATES';
utilOnes = 1;
else
statesRowCount = statesSize(1);
utilOnes = ones(statesRowCount, 1);
end
ALGEBRAIC(:,1) = piecewise({VOI>0.100000, 0.00000 },  20.0000.*CONSTANTS(:,1).*(1.00000 -  10.0000.*VOI));
ALGEBRAIC(:,2) =  CONSTANTS(:,4).*STATES(:,1).*(CONSTANTS(:,2) - STATES(:,2)) -  CONSTANTS(:,5).*STATES(:,2);
end

% Compute result of a piecewise function
function x = piecewise(cases, default)
set = [0];
for i = 1:2:length(cases)
if (length(cases{i+1}) == 1)
x(cases{i} & ~set,:) = cases{i+1};
else
x(cases{i} & ~set,:) = cases{i+1}(cases{i} & ~set);
end
set = set | cases{i};
if(set), break, end
end
if (length(default) == 1)
x(~set,:) = default;
else
x(~set,:) = default(~set);
end
end

% Pad out or shorten strings to a set length
req_length = 160;
insize = size(strin,2);
if insize > req_length
strout = strin(1:req_length);
else
strout = [strin, blanks(req_length - insize)];
end
end

```
Collaboration
To begin collaborating on this work, please use your git client and issue this command: