# Generated Code

The following is matlab code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

```function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction()
% This is the "main function".  In Matlab, things work best if you rename this function to match the filename.
[VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel();
end

function [algebraicVariableCount] = getAlgebraicVariableCount()
% Used later when setting a global variable with the number of algebraic variables.
% Note: This is not the "main method".
algebraicVariableCount =0;
end
% There are a total of 0 entries in each of the rate and state variable arrays.
% There are a total of 21 entries in the constant variable array.
%

function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel()
% Create ALGEBRAIC of correct size
global algebraicVariableCount;  algebraicVariableCount = getAlgebraicVariableCount();
% Initialise constants and state variables
[INIT_STATES, CONSTANTS] = initConsts;

% Set timespan to solve over
tspan = [0, 10];

% Set numerical accuracy options for ODE solver
options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1);

% Solve model with ODE solver
[VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options);

% Compute algebraic variables
[RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS);
ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI);

% Plot state variables against variable of integration
[LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends();
figure();
plot(VOI, STATES);
xlabel(LEGEND_VOI);
l = legend(LEGEND_STATES);
set(l,'Interpreter','none');
end

function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends()
LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = '';
LEGEND_CONSTANTS(:,17) = strpad('v_cystathionine in component v_cystathionine (flux)');
LEGEND_CONSTANTS(:,1) = strpad('Cys in component Cys (micromolar)');
LEGEND_CONSTANTS(:,2) = strpad('CGS in component CGS (micromolar)');
LEGEND_CONSTANTS(:,3) = strpad('Pi in component Pi (micromolar)');
LEGEND_CONSTANTS(:,4) = strpad('Phser in component Phser (micromolar)');
LEGEND_CONSTANTS(:,16) = strpad('Km_CGS_app_Cys in component v_cystathionine (micromolar)');
LEGEND_CONSTANTS(:,5) = strpad('Km_CGS_Cys in component v_cystathionine (micromolar)');
LEGEND_CONSTANTS(:,6) = strpad('kcat_CGS in component v_cystathionine (first_order_rate_constant)');
LEGEND_CONSTANTS(:,15) = strpad('kcat_CGS_app_Cys in component v_cystathionine (first_order_rate_constant)');
LEGEND_CONSTANTS(:,7) = strpad('Km_CGS_Phser in component v_cystathionine (micromolar)');
LEGEND_CONSTANTS(:,8) = strpad('Ki_CGS_Pi in component v_cystathionine (micromolar)');
LEGEND_CONSTANTS(:,20) = strpad('v_Thr in component v_Thr (flux)');
LEGEND_CONSTANTS(:,9) = strpad('TS in component TS (micromolar)');
LEGEND_CONSTANTS(:,19) = strpad('Km_TS in component v_Thr (micromolar)');
LEGEND_CONSTANTS(:,18) = strpad('kcat_TS in component v_Thr (first_order_rate_constant)');
LEGEND_CONSTANTS(:,13) = strpad('K1K2 in component v_Thr (micromolar2)');
LEGEND_CONSTANTS(:,14) = strpad('Ki_TS_Pi in component v_Thr (micromolar)');
LEGEND_CONSTANTS(:,21) = strpad('J_Phser in component J_Phser (flux)');
LEGEND_STATES  = LEGEND_STATES';
LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC';
LEGEND_RATES = LEGEND_RATES';
LEGEND_CONSTANTS = LEGEND_CONSTANTS';
end

function [STATES, CONSTANTS] = initConsts()
VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = [];
CONSTANTS(:,1) = 15.0;
CONSTANTS(:,2) = 0.7;
CONSTANTS(:,3) = 10000.0;
CONSTANTS(:,4) = 500.0;
CONSTANTS(:,5) = 460.0;
CONSTANTS(:,6) = 30.0;
CONSTANTS(:,7) = 2500.0;
CONSTANTS(:,8) = 2500.0;
CONSTANTS(:,9) = 5.0;
CONSTANTS(:,10) = 20.0;
CONSTANTS(:,11) = 0.42;
CONSTANTS(:,12) = 3.5;
CONSTANTS(:,13) = 73.0;
CONSTANTS(:,14) = 1000.0;
CONSTANTS(:,15) = CONSTANTS(:,6)./(1.00000+ (CONSTANTS(:,7)./CONSTANTS(:,4)).*(1.00000+CONSTANTS(:,3)./CONSTANTS(:,8)));
CONSTANTS(:,16) = CONSTANTS(:,5)./(1.00000+ (CONSTANTS(:,7)./CONSTANTS(:,4)).*(1.00000+CONSTANTS(:,3)./CONSTANTS(:,8)));
CONSTANTS(:,17) = ( CONSTANTS(:,15).*CONSTANTS(:,2).*CONSTANTS(:,1))./(CONSTANTS(:,16)+CONSTANTS(:,1));
CONSTANTS(:,18) = (CONSTANTS(:,11)+ CONSTANTS(:,12).*(power(CONSTANTS(:,10), 2.00000)./CONSTANTS(:,13)))./(1.00000+power(CONSTANTS(:,10), 2.00000)./CONSTANTS(:,13));
CONSTANTS(:,19) =  (( 250.000.*((1.00000+CONSTANTS(:,10)./0.500000)./(1.00000+CONSTANTS(:,10)./1.10000)))./(1.00000+power(CONSTANTS(:,10), 2.00000)./140.000)).*(1.00000+CONSTANTS(:,3)./CONSTANTS(:,14));
CONSTANTS(:,20) = ( CONSTANTS(:,9).*CONSTANTS(:,18).*CONSTANTS(:,4))./(CONSTANTS(:,19)+CONSTANTS(:,4));
CONSTANTS(:,21) = CONSTANTS(:,17)+CONSTANTS(:,20);
if (isempty(STATES)), warning('Initial values for states not set');, end
end

function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS)
global algebraicVariableCount;
statesSize = size(STATES);
statesColumnCount = statesSize(2);
if ( statesColumnCount == 1)
STATES = STATES';
ALGEBRAIC = zeros(1, algebraicVariableCount);
utilOnes = 1;
else
statesRowCount = statesSize(1);
ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount);
RATES = zeros(statesRowCount, statesColumnCount);
utilOnes = ones(statesRowCount, 1);
end
RATES = RATES';
end

% Calculate algebraic variables
function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI)
statesSize = size(STATES);
statesColumnCount = statesSize(2);
if ( statesColumnCount == 1)
STATES = STATES';
utilOnes = 1;
else
statesRowCount = statesSize(1);
utilOnes = ones(statesRowCount, 1);
end
end

% Pad out or shorten strings to a set length
req_length = 160;
insize = size(strin,2);
if insize > req_length
strout = strin(1:req_length);
else
strout = [strin, blanks(req_length - insize)];
end
end

```
Source
Derived from workspace Curien, Ravanel, Dumas, 2003 at changeset 4c67c03817f1.
Collaboration
To begin collaborating on this work, please use your git client and issue this command:
Tools