# Model Mathematics

### Component: c1

$ddtimec1=0$

### Component: c2

$ddtimec2=v13-v1+v6$

### Component: c3

$ddtimec3=v1-2⁢v2$

### Component: c4

$ddtimec4=v2-v3$

### Component: c5

$ddtimec5=v3-v7+v8$

### Component: c6

$ddtimec6=v6-v10+v60$

### Component: c7

$ddtimec7=v4-v5$

### Component: c8

$ddtimec8=v7+v12-v14+v62$

### Component: c9

$ddtimec9=v5+v107+v110+v113+v116+v119+v122+v125-v15$

### Component: c10

$ddtimec10=v10-2⁢v11$

### Component: c11

$ddtimec11=v11-v12$

### Component: c12

$ddtimec12=v15-v4+v106+v109+v112+v115+v118+v121+v124$

### Component: c13

$ddtimec13=v61$

### Component: c14

$ddtimec14=-v8+v14$

### Component: c15

$ddtimec15=v8+v32+v34+v37+v39-v16+v22+v102$

### Component: c16

$ddtimec16=-v10+v61$

### Component: c17

$ddtimec17=v14+v79+v80+v81+v82+v102-v63+v69$

### Component: c18

$ddtimec18=v5+v9+v63-v64$

### Component: c19

$ddtimec19=v66+v64+v68+v105+v107-v65+v67+v80$

### Component: c20

$ddtimec20=v65+v108+v110-v66$

### Component: c21

$ddtimec21=v67+v111+v113-v68$

### Component: c22

$ddtimec22=v35-v16+v24+v38+v63+v71$

### Component: c23

$ddtimec23=v16-v4+v9+v17$

### Component: c24

$ddtimec24=v35-v17+v25+v40+v64+v72$

### Component: c25

$ddtimec25=v17+v19+v21-v18+v20+v34+v105+v106$

### Component: c26

$ddtimec26=v21+v31+v68+v78-v18+v26+v65+v73$

### Component: c27

$ddtimec27=v18-v19+v108+v109$

### Component: c28

$ddtimec28=v19+v27-v28$

### Component: c29

$ddtimec29=v20-v21+v111+v112$

### Component: c30

$ddtimec30=v33+v34+v80-v35+v41+v83$

### Component: c31

$ddtimec31=v36-v22+v69$

### Component: c32

$ddtimec32=v22-v23+v103$

### Component: c33

$ddtimec33=v23-v24+v37+v41+v104$

### Component: c34

$ddtimec34=v24-v25+v39+v114+v115$

### Component: c35

$ddtimec35=v25+v27+v31+v41-v117+v118+v26+v30+v32$

### Component: c36

$ddtimec36=v26-v27+v120+v121$

### Component: c37

$ddtimec37=v30-v31+v123+v124$

### Component: c38

$ddtimec38=v32+v40+v79-v33$

### Component: c39

$ddtimec39=v38+v39+v82-v40$

### Component: c40

$ddtimec40=v33+v37+v81-v36+v38$

### Component: c41

$ddtimec41=v43+v85-v28+v75$

### Component: c42

$ddtimec42=v28-v29$

### Component: c43

$ddtimec43=v29-v20+v30$

### Component: c44

$ddtimec44=v43+v85-v42+v84$

### Component: c45

$ddtimec45=v29+v45+v47-v42+v44+v46$

### Component: c46

$ddtimec46=v42-v43$

### Component: c47

$ddtimec47=v51+v93-v44+v86$

### Component: c48

$ddtimec48=v44-v45$

### Component: c49

$ddtimec49=v45+v49-v46+v50$

### Component: c50

$ddtimec50=v46-v47$

### Component: c51

$ddtimec51=v47+v53+v55-v48+v52+v54$

### Component: c52

$ddtimec52=v48-v49$

### Component: c53

$ddtimec53=v49+v51+v91+v93-v48+v50+v90+v92$

### Component: c54

$ddtimec54=v50-v51$

### Component: c55

$ddtimec55=v59+v101-v52+v94$

### Component: c56

$ddtimec56=v52-v53$

### Component: c57

$ddtimec57=v53+v57-v54+v58$

### Component: c58

$ddtimec58=v54-v55$

### Component: c59

$ddtimec59=v55-v56$

### Component: c60

$ddtimec60=v57+v59+v99+v101-v56+v58+v98+v100$

### Component: c61

$ddtimec61=v56-v57$

### Component: c62

$ddtimec62=v58-v59$

### Component: c63

$ddtimec63=v69+v103-v70$

### Component: c64

$ddtimec64=v70+v104-v71+v81+v83$

### Component: c65

$ddtimec65=v71+v114+v116-v72+v82$

### Component: c66

$ddtimec66=v72+v74+v78+v83+v117+v119-v73+v77+v79$

### Component: c67

$ddtimec67=v73+v120+v122-v74$

### Component: c68

$ddtimec68=v77+v123+v125-v78$

### Component: c69

$ddtimec69=v66+v74-v75$

### Component: c70

$ddtimec70=v75-v76$

### Component: c71

$ddtimec71=v76-v67+v77$

### Component: c72

$ddtimec72=v76+v87+v89-v84+v86+v88$

### Component: c73

$ddtimec73=v84-v85$

### Component: c74

$ddtimec74=v86-v87$

### Component: c75

$ddtimec75=v87+v91-v92+v88$

### Component: c76

$ddtimec76=v88-v89$

### Component: c77

$ddtimec77=v89+v95+v97-v90+v94+v96$

### Component: c78

$ddtimec78=v90-v91$

### Component: c79

$ddtimec79=v92-v93$

### Component: c80

$ddtimec80=v94-v95$

### Component: c81

$ddtimec81=v95+v99-v96+v100$

### Component: c82

$ddtimec82=v96-v97$

### Component: c83

$ddtimec83=v97-v98$

### Component: c84

$ddtimec84=v98-v99$

### Component: c85

$ddtimec85=v100-v101$

### Component: c86

$ddtimec86=v60$

### Component: c87

$ddtimec87=v62$

### Component: c88

$ddtimec88=v106-v107$

### Component: c89

$ddtimec89=v109-v110$

### Component: c90

$ddtimec90=v112-v113$

### Component: c91

$ddtimec91=v115-v116$

### Component: c92

$ddtimec92=v118-v119$

### Component: c93

$ddtimec93=v121-v122$

### Component: c94

$ddtimec94=v124-v125$

### Component: Raf_activation

$Raf_activation=c45+c46+c48+c50+c72+c73+c74+c76$

### Component: MEKPP_total

$MEKPP_total=c51+c77$

### Component: ERKPP_total

$ERKPP_total=c59+c83$

### Component: Ras_GTP_total

$Ras_GTP_total=c42+c28+c70+c69$

### Component: ShcP_total

$ShcP_total=c33+c34+c35+c36+c37+c38+c39+c40+c64+c65+c66+c67+c68+c91+c92+c93+c94$

### Component: EGF_EGFR_totalx2

$EGF_EGFR_totalx2=2⁢c5+c7+c8+c11+c15+c17+c18+c19+c20+c21+c23+c25+c27+c29+c32+c33+c34+c35+c36+c37+c63+c64+c65+c66+c67+c68+c88+c89+c90+c91+c92+c93+c94$

### Component: v1

$v1=k1⁢c1⁢c2-kd1⁢c3$

### Component: v2

$v2=k2⁢c3⁢c3-kd2⁢c4$

### Component: v3

$v3=k3⁢c4-kd3⁢c5$

### Component: v4

$v4=k4⁢c23⁢c12-kd4⁢c7$

### Component: v5

$v5=k5⁢c7$

### Component: v6

$v6=k6⁢c2-kd6⁢c6$

### Component: v7

$v7=k6⁢c5$

### Component: v8

$v8=k8⁢c5⁢c14-kd8⁢c15$

### Component: v9

$v9=k6⁢c23$

### Component: v10

$v10=k10b⁢c6⁢c16-kd10⁢c10$

### Component: v11

$v11=k2⁢c10⁢c10-kd2⁢c11$

### Component: v12

$v12=k3⁢c11-kd3⁢c8$

### Component: v13

$v13=k13⁢1$

### Component: v14

$v14=k8⁢c8⁢c14-kd8⁢c17$

### Component: v15

$v15=k15⁢c9$

### Component: v16

$v16=k16⁢c22⁢c15-kd16⁢c23$

### Component: v17

$v17=k17⁢c24⁢c23-kd17⁢c25$

### Component: v18

$v18=k18⁢c26⁢c25-kd18⁢c27$

### Component: v19

$v19=k19⁢c27-kd19⁢c28⁢c25$

### Component: v20

$v20=k20⁢c25⁢c43-kd20⁢c29$

### Component: v21

$v21=k21⁢c29-kd21⁢c25⁢c26$

### Component: v22

$v22=k22⁢c31⁢c15-kd22⁢c32$

### Component: v23

$v23=k23⁢c32-kd23⁢c33$

### Component: v24

$v24=k16⁢c22⁢c33-kd24⁢c34$

### Component: v25

$v25=k25⁢c24⁢c34-kd25⁢c35$

### Component: v26

$v26=k18⁢c26⁢c35-kd18⁢c36$

### Component: v27

$v27=k19⁢c36-kd19⁢c35⁢c28$

### Component: v28

$v28=k28⁢c28⁢c41-kd28⁢c42$

### Component: v29

$v29=k29⁢c42-kd29⁢c43⁢c45$

### Component: v30

$v30=k20⁢c35⁢c43-kd20⁢c37$

### Component: v31

$v31=k21⁢c37-kd21⁢c35⁢c26$

### Component: v32

$v32=k32⁢c35-kd32⁢c38⁢c15$

### Component: v33

$v33=k33⁢c38-kd33⁢c40⁢c30$

### Component: v34

$v34=k34⁢c25-kd34⁢c15⁢c30$

### Component: v35

$v35=k35⁢c30-kd35⁢c24⁢c22$

### Component: v36

$v36=Vm36⁢c40Km36+c40$

### Component: v37

$v37=k37⁢c33-kd37⁢c15⁢c40$

### Component: v38

$v38=k16⁢c22⁢c40-kd24⁢c39$

### Component: v39

$v39=k37⁢c34-kd37⁢c15⁢c39$

### Component: v40

$v40=k40⁢c24⁢c39-kd40⁢c38$

### Component: v41

$v41=k41⁢c30⁢c33-kd41⁢c35$

### Component: v42

$v42=k42⁢c44⁢c45-kd42⁢c46$

### Component: v43

$v43=k43⁢c46$

### Component: v44

$v44=k44⁢c47⁢c45-kd44⁢c48$

### Component: v45

$v45=k45⁢c48$

### Component: v46

$v46=k44⁢c49⁢c45-kd44⁢c50$

### Component: v47

$v47=k47⁢c50$

### Component: v48

$v48=k48⁢c51⁢c53-kd48⁢c52$

### Component: v49

$v49=k49⁢c52$

### Component: v50

$v50=k50⁢c53⁢c49-kd50⁢c54$

### Component: v51

$v51=k49⁢c54$

### Component: v52

$v52=k52⁢c55⁢c51-kd52⁢c56$

### Component: v53

$v53=k53⁢c56$

### Component: v54

$v54=k52⁢c51⁢c57-kd52⁢c58$

### Component: v55

$v55=k55⁢c58$

### Component: v56

$v56=k56⁢c59⁢c60-kd56⁢c61$

### Component: v57

$v57=k57⁢c61$

### Component: v58

$v58=k58⁢c60⁢c57-kd58⁢c62$

### Component: v59

$v59=k59⁢c62$

### Component: v60

$v60=k60⁢c6$

### Component: v61

$v61=k61⁢c16$

### Component: v62

$v62=k60⁢c8$

### Component: v63

$v63=k16⁢c17⁢c22-kd16⁢c18$

### Component: v64

$v64=k17⁢c24⁢c18-kd17⁢c19$

### Component: v65

$v65=k18⁢c26⁢c19-kd18⁢c20$

### Component: v66

$v66=k19⁢c20-kd19⁢c69⁢c19$

### Component: v67

$v67=k20⁢c71⁢c19-kd20⁢c21$

### Component: v68

$v68=k21⁢c21-kd21⁢c19⁢c26$

### Component: v69

$v69=k22⁢c31⁢c17-kd22⁢c63$

### Component: v70

$v70=k23⁢c63-kd23⁢c64$

### Component: v71

$v71=k16⁢c22⁢c64-kd24⁢c65$

### Component: v72

$v72=k25⁢c24⁢c65-kd25⁢c66$

### Component: v73

$v73=k18⁢c26⁢c66-kd18⁢c67$

### Component: v74

$v74=k19⁢c67-kd19⁢c66⁢c69$

### Component: v75

$v75=k28⁢c69⁢c41-kd28⁢c70$

### Component: v76

$v76=k29⁢c70-kd29⁢c71⁢c72$

### Component: v77

$v77=k20⁢c71⁢c66-kd20⁢c68$

### Component: v78

$v78=k21⁢c68-c26⁢kd21⁢c66$

### Component: v79

$v79=k32⁢c66-kd32⁢c17⁢c38$

### Component: v80

$v80=k34⁢c19-kd34⁢c17⁢c30$

### Component: v81

$v81=k37⁢c64-kd37⁢c17⁢c40$

### Component: v82

$v82=k37⁢c65-kd37⁢c17⁢c39$

### Component: v83

$v83=k41⁢c30⁢c64-kd41⁢c66$

### Component: v84

$v84=k42⁢c44⁢c72-kd42⁢c73$

### Component: v85

$v85=k43⁢c73$

### Component: v86

$v86=k44⁢c47⁢c72-kd44⁢c74$

### Component: v87

$v87=k45⁢c74$

### Component: v88

$v88=k44⁢c72⁢c75-kd44⁢c76$

### Component: v89

$v89=k47⁢c76$

### Component: v90

$v90=k48⁢c77⁢c53-kd48⁢c78$

### Component: v91

$v91=k49⁢c78$

### Component: v92

$v92=k50⁢c53⁢c75-kd50⁢c79$

### Component: v93

$v93=k49⁢c79$

### Component: v94

$v94=k52⁢c55⁢c77-kd52⁢c80$

### Component: v95

$v95=k53⁢c80$

### Component: v96

$v96=k52⁢c77⁢c81-kd52⁢c82$

### Component: v97

$v97=k55⁢c82$

### Component: v98

$v98=k56⁢c83⁢c60-kd56⁢c84$

### Component: v99

$v99=k57⁢c84$

### Component: v100

$v100=k58⁢c60⁢c81-kd58⁢c85$

### Component: v101

$v101=k59⁢c85$

### Component: v102

$v102=k6⁢c15-kd6⁢c17$

### Component: v103

$v103=k6⁢c32-kd6⁢c63$

### Component: v104

$v104=k6⁢c33-kd6⁢c64$

### Component: v105

$v105=k6⁢c25-kd6⁢c19$

### Component: v106

$v106=k4⁢c25⁢c12-kd4⁢c88$

### Component: v107

$v107=k5⁢c88$

### Component: v108

$v108=k6⁢c27-kd6⁢c20$

### Component: v109

$v109=k4⁢c27⁢c12-kd4⁢c89$

### Component: v110

$v110=k5⁢c89$

### Component: v111

$v111=k6⁢c29-kd6⁢c21$

### Component: v112

$v112=k4⁢c29⁢c12-kd4⁢c90$

### Component: v113

$v113=k5⁢c90$

### Component: v114

$v114=k6⁢c34-kd6⁢c65$

### Component: v115

$v115=k4⁢c34⁢c12-kd4⁢c91$

### Component: v116

$v116=k5⁢c91$

### Component: v117

$v117=k6⁢c35-kd6⁢c66$

### Component: v118

$v118=k4⁢c35⁢c12-kd4⁢c92$

### Component: v119

$v119=k5⁢c92$

### Component: v120

$v120=k6⁢c36-kd6⁢c67$

### Component: v121

$v121=k4⁢c36⁢c12-kd4⁢c93$

### Component: v122

$v122=k5⁢c93$

### Component: v123

$v123=k6⁢c37-kd6⁢c68$

### Component: v124

$v124=k4⁢c37⁢c12-kd4⁢c94$

### Component: v125

$v125=k5⁢c94$

### Component: C

$C=RT⁢1kd1k1⁢c1+1$

### Component: reaction_rates

$k5=1.55ifC<31000.2ifC>100000C⁢-0.0000135+1.551otherwise$
Source
Derived from workspace Schoeberl, Eichler-Jonsson, Gilles, Muller, 2002 at changeset 8b48eacb54d2.
Collaboration
To begin collaborating on this work, please use your git client and issue this command: