Generated Code
The following is python code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
# Size of variable arrays: sizeAlgebraic = 12 sizeStates = 5 sizeConstants = 39 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_constants[0] = "t_ss in component Vstim_para (second)" legend_constants[1] = "V_actHolding in component Vstim_para (mV)" legend_constants[2] = "t_act in component Vstim_para (second)" legend_constants[3] = "V_actTest in component Vstim_para (mV)" legend_constants[4] = "Nai in component control_para (mM)" legend_constants[5] = "Cai_init in component control_para (mM)" legend_constants[6] = "inhPump in component control_para (dimensionless)" legend_constants[7] = "K_Cahalf in component control_para (mV)" legend_voi = "time in component time_s (second)" legend_algebraic[2] = "V in component sPulse_protocol_s (mV)" legend_states[0] = "Cai in component Cai (mM)" legend_algebraic[11] = "J_VOCC in component J_VOCC (mM_per_s)" legend_algebraic[6] = "J_CaPump in component J_CaPump (mM_per_s)" legend_algebraic[9] = "J_NaCa in component J_NaCa (mM_per_s)" legend_algebraic[0] = "stress in component CB4HM (dimensionless)" legend_algebraic[1] = "phosphorylation in component CB4HM (dimensionless)" legend_constants[8] = "R in component constants (J_per_K_mol)" legend_constants[9] = "F in component constants (C_per_mmol)" legend_constants[10] = "T in component model_para (kelvin)" legend_constants[11] = "Nao in component model_para (mM)" legend_constants[12] = "Cao in component model_para (mM)" legend_constants[13] = "V_cell in component model_para (fm3)" legend_constants[14] = "V_Cahalf in component model_para (mV)" legend_constants[15] = "g_mCa in component model_para (nS)" legend_constants[16] = "V_pmax in component model_para (mM_per_s)" legend_constants[17] = "n in component model_para (dimensionless)" legend_constants[18] = "K_ph in component model_para (mM)" legend_constants[19] = "K_NaCa in component model_para (mM)" legend_constants[20] = "G_NaCa in component model_para (mM_per_s_mV)" legend_constants[21] = "n_M in component model_para (dimensionless)" legend_constants[22] = "Ca_halfMLCK in component model_para (mM)" legend_constants[23] = "M_init in component initials (dimensionless)" legend_constants[24] = "Mp_init in component initials (dimensionless)" legend_constants[25] = "AM_init in component initials (dimensionless)" legend_constants[26] = "AMp_init in component initials (dimensionless)" legend_constants[27] = "K_7 in component model_para (per_s)" legend_constants[28] = "K_2 in component model_para (per_s)" legend_constants[29] = "K_3 in component model_para (per_s)" legend_constants[30] = "K_4 in component model_para (per_s)" legend_constants[31] = "K_5 in component model_para (per_s)" legend_algebraic[4] = "rho_vCa in component J_VOCC (dimensionless)" legend_constants[32] = "Nai in component model_para (mM)" legend_constants[33] = "K_Cahalf in component model_para (mV)" legend_constants[34] = "inhPump in component model_para (dimensionless)" legend_constants[35] = "Cai_init in component initials (mM)" legend_constants[36] = "z_Ca in component E_Ca (dimensionless)" legend_algebraic[7] = "E in component Nernst_potential (mV)" legend_constants[37] = "z_Na in component E_Na (dimensionless)" legend_constants[38] = "E in component Nernst_potential (mV)" legend_algebraic[10] = "I in component Ionic_currents (pA)" legend_algebraic[8] = "V_mNaCa in component J_NaCa (mV)" legend_algebraic[5] = "K_1 in component K_1 (per_s)" legend_algebraic[3] = "norm in component CB4HM (dimensionless)" legend_states[1] = "M in component CB4HM (dimensionless)" legend_states[2] = "Mp in component CB4HM (dimensionless)" legend_states[3] = "AM in component CB4HM (dimensionless)" legend_states[4] = "AMp in component CB4HM (dimensionless)" legend_rates[0] = "d/dt Cai in component Cai (mM)" legend_rates[1] = "d/dt M in component CB4HM (dimensionless)" legend_rates[2] = "d/dt Mp in component CB4HM (dimensionless)" legend_rates[3] = "d/dt AM in component CB4HM (dimensionless)" legend_rates[4] = "d/dt AMp in component CB4HM (dimensionless)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; constants[0] = 0 constants[1] = -80 constants[2] = 1 constants[3] = 0 constants[4] = 16.55 constants[5] = 0.1e-3 constants[6] = 1 constants[7] = 11 constants[8] = 8.314 constants[9] = 96.48534 constants[10] = 310 constants[11] = 140 constants[12] = 2 constants[13] = 21 constants[14] = -27 constants[15] = 0.046842 constants[16] = 5.1449e-4 constants[17] = 1.9015 constants[18] = 0.6e-3 constants[19] = 7e-3 constants[20] = 5.7297e-5 constants[21] = 8.7613 constants[22] = 256.98e-6 constants[23] = 1 constants[24] = 0 constants[25] = 0 constants[26] = 0 constants[27] = 0.0378 constants[28] = 1.2387 constants[29] = 0.1419 constants[30] = 0.035475 constants[31] = 1.2387 constants[32] = 2.9836 constants[33] = 11 constants[34] = 1 constants[35] = 0.1e-6 constants[36] = 2 constants[37] = 1 constants[38] = ((constants[8]*constants[10])/(constants[37]*constants[9]))*log(constants[11]/constants[4]) states[0] = constants[5] states[1] = constants[23] states[2] = constants[24] states[3] = constants[25] states[4] = constants[26] return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic algebraic[5] = ((power(states[0], constants[21]))/(power(constants[22], constants[21])+power(states[0], constants[21])))*1.00000 algebraic[3] = states[1]+states[2]+states[3]+states[4] rates[1] = (-algebraic[5]*states[1])/algebraic[3]+(constants[28]*states[2])/algebraic[3]+(constants[27]*states[3])/algebraic[3] rates[2] = ((constants[30]*states[4])/algebraic[3]+(algebraic[5]*states[1])/algebraic[3])-((constants[28]+constants[29])*states[2])/algebraic[3] rates[3] = (constants[31]*states[4])/algebraic[3]-((algebraic[5]+constants[27])*states[3])/algebraic[3] rates[4] = ((constants[29]*states[2])/algebraic[3]+(algebraic[5]*states[3])/algebraic[3])-((constants[30]+constants[31])*states[4])/algebraic[3] algebraic[2] = custom_piecewise([less(voi , constants[0]), constants[1] , greater_equal(voi , constants[0]) & less(voi , constants[2]+constants[0]), constants[3] , True, constants[1]]) algebraic[4] = 1.00000/(1.00000+exp((constants[14]-algebraic[2])/constants[7])) algebraic[7] = ((constants[8]*constants[10])/(constants[36]*constants[9]))*log(constants[12]/states[0]) algebraic[10] = constants[15]*algebraic[4]*(algebraic[2]-algebraic[7]) algebraic[11] = -algebraic[10]/(2.00000*constants[13]*constants[9]) algebraic[6] = (-constants[16]*(power(states[0], constants[17])))/(power(constants[18], constants[17])+power(states[0], constants[17])) algebraic[8] = 3.00000*constants[38]-2.00000*algebraic[7] algebraic[9] = ((constants[20]*states[0])/(states[0]+constants[19]))*(algebraic[2]-algebraic[8]) rates[0] = algebraic[11]+constants[6]*algebraic[6]+algebraic[9] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[5] = ((power(states[0], constants[21]))/(power(constants[22], constants[21])+power(states[0], constants[21])))*1.00000 algebraic[3] = states[1]+states[2]+states[3]+states[4] algebraic[2] = custom_piecewise([less(voi , constants[0]), constants[1] , greater_equal(voi , constants[0]) & less(voi , constants[2]+constants[0]), constants[3] , True, constants[1]]) algebraic[4] = 1.00000/(1.00000+exp((constants[14]-algebraic[2])/constants[7])) algebraic[7] = ((constants[8]*constants[10])/(constants[36]*constants[9]))*log(constants[12]/states[0]) algebraic[10] = constants[15]*algebraic[4]*(algebraic[2]-algebraic[7]) algebraic[11] = -algebraic[10]/(2.00000*constants[13]*constants[9]) algebraic[6] = (-constants[16]*(power(states[0], constants[17])))/(power(constants[18], constants[17])+power(states[0], constants[17])) algebraic[8] = 3.00000*constants[38]-2.00000*algebraic[7] algebraic[9] = ((constants[20]*states[0])/(states[0]+constants[19]))*(algebraic[2]-algebraic[8]) algebraic[0] = states[4]+states[3] algebraic[1] = states[4]+states[2] return algebraic def custom_piecewise(cases): """Compute result of a piecewise function""" return select(cases[0::2],cases[1::2]) def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)